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In the field of solar energy forecasting, the accurate prediction of photovoltaic (PV) system 

output remains a pivotal challenge. This study addresses this challenge through an 

innovative approach, employing sky image processing for the prediction of solar power 

energy production. Central to this approach is the utilization of the XG Boost Regressor, a 

machine learning algorithm renowned for its efficiency and accuracy. Unlike traditional 

methods such as Random Forest Regression, Gradient Boosting, K-Nearest Neighbors 

(KNN), and Support Vector Regression (SVR), the XG Boost Regressor demonstrated 

superior performance, evidenced by its lower Mean Squared Error (MSE). A key aspect of 

this study was the application of Principal Component Analysis (PCA) for dimensionality 

reduction within the sky image dataset. This technique effectively distilled the dataset to its 

most essential features, thereby enhancing the modeling process. The predictive model, 

based on images captured at regular intervals, was rigorously evaluated using several 

metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), relative 

absolute error (RAE), and relative squared error (RSE). The results were compelling, with 

the XG Boost Regressor achieving a RAE rate of 0.100121089, a MSE of 0.001425576, a 

MAE of 0.0019102173, and a root relative squared error (RRSE) of 0.146707803. These 

metrics underscore the model’s high accuracy in forecasting solar power energy. 

Additionally, the study incorporated RGB histograms for the extraction of dimensional 

features from the image data. This, coupled with the PCA for dimensionality reduction, 

formed a robust methodology for estimating solar energy output. The integration of the XG 

Boost Regressor and PCA not only facilitated accurate solar power energy predictions but 

also marked a significant advancement in the field of renewable energy forecasting. The 

findings from this research underscore the efficacy of the XG Boost Regressor and PCA in 

solar power prediction, offering a promising avenue for future developments in the 

renewable energy sector. 
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1. INTRODUCTION

Solar energy is acknowledged as one of the most sustainable 

and widely available forms of energy on the planet [1]. Its 

growing popularity in recent times can be attributed to its 

potential in reducing carbon emissions and serving as an 

alternative to traditional fossil fuels [2]. This form of energy, 

notable for its accessibility, can be harnessed in diverse ways, 

including PV panels, solar thermal collectors, and solar 

cookers [3]. However, despite its numerous advantages, solar 

energy remains significantly underutilized, primarily due to its 

intermittent nature and the challenges associated with 

predicting its availability. To overcome this hurdle, predictive 

models for solar power have been developed, aiming to 

accurately forecast solar power production [4]. Among these, 

the XG Boost Regressor stands out as a machine learning 

algorithm that has demonstrated high accuracy in solar power 

prediction [5]. The current research landscape in solar power 

prediction predominantly focuses on the effectiveness of 

individual machine learning models, revealing a notable gap 

in the exploration of ensemble techniques and the integration 

of varied data sources [6]. This gap in incorporating diverse 

data sources hampers progress towards more precise 

forecasting [7]. Furthermore, the scalability and 

generalizability of these models across different geographical 

locations and climates have not received adequate attention, a 

crucial aspect considering the global applicability of solar 

energy [8]. This limitation, impacting the flexibility of the 

models, poses a significant challenge in developing solar 

power forecast models that are universally applicable [9]. To 

address these challenges and advance the field, there is an 

urgent need for research that systematically explores ensemble 

techniques, integrates a variety of data sources, and assesses 

the scalability and generalizability of models. Filling these 

knowledge gaps is essential and will substantially contribute 

to the development of more robust and broadly applicable 

models. Such advancements are expected to lead to 

improvements in the accuracy and reliability of renewable 
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energy predictions. 

Solar energy is acclaimed for its environmental friendliness, 

cost-effectiveness, and long-term sustainability, positioning it 

as a viable solution to the global energy crisis. The potential 

of solar energy has been underscored in research, notably in 

studies existing literature which emphasize the significant role 

of solar power in fostering a cleaner and more sustainable 

energy future. However, existing models for solar power 

forecasting exhibit substantial limitations. Traditional 

statistical approaches, such as basic linear regression, often 

fail to capture the intricate interplay of various influencing 

factors. This shortfall is frequently attributed to the 

complexities posed by variables like weather patterns, 

atmospheric fluctuations, and regional variances [10]. These 

complexities impede the accuracy of forecasts, as current 

models struggle to encapsulate the dynamic and non-linear 

nature of these factors. Within the context of this research, the 

challenge of reliably predicting solar power energy is 

heightened due to the dynamic and non-linear interactions of 

these key components [11]. The application of machine 

learning techniques, particularly the XG Boost regressor, 

offers a promising avenue to enhance prediction accuracy. 

Additionally, the incorporation of novel data sources, such as 

sky imagery, provides a strategy to address the limitations of 

existing models. The synergy of machine learning with 

innovative data inputs has the potential to surmount the 

challenges inherent in solar power prediction, paving the way 

for more precise and reliable forecasting models. 

The present study makes a significant contribution by 

employing the XG Boost regressor, integrated with PCA. This 

approach optimizes the model for enhanced efficiency in 

forecasting solar power, addressing the challenge of accurately 

estimating energy generation from solar panels. Factors such 

as sunlight intensity, weather conditions, and location are 

considered in the model. The effectiveness of this combined 

approach is demonstrated, not only in improving accuracy but 

also in ensuring the reliability of solar energy output 

predictions. Furthermore, this research offers valuable insights 

for stakeholders, aiding informed decision-making in solar 

power utilization and planning. By advancing the 

understanding of solar power prediction methodologies, this 

study lays the groundwork for more effective and reliable 

renewable energy forecasting. 

The paper is structured as follows: Section 2 presents the 

related work in the prediction of solar energy. Section 3 

provides the background of the XG Boost regressor and PCA. 

Section 4 describes the proposed methodology in detail. 

Section 5 presents the obtained results along with a discussion. 

Finally, the paper concludes in Section 6. 

 

 

2. LITERATURE REVIEW 

 

A considerable body of research has been dedicated to 

enhancing the understanding of solar power energy's potential 

and developing methods for more accurately predicting solar 

power energy output. Various methodologies have been 

explored in these studies. Zhang et al. [12] developed a solar 

power forecast model employing a combination of support 

vector machines and artificial neural networks. This model 

demonstrated efficacy in predicting solar energy output, 

achieving a mean absolute error of 0.3%. Chen et al. [13] 

utilized support vector machines in conjunction with random 

forests to create a solar power prediction model. This model 

yielded a mean absolute error of 0.2%, indicating its 

effectiveness in forecasting solar power energy output. Further, 

Munawar and Wang [14] applied the XG Boost regressor and 

PCA to predict solar power energy in the United States, using 

historical data on solar irradiance, temperature, and wind 

speed. The results indicated that the model had a prediction 

accuracy of 97.5%, with the XG Boost regressor successfully 

capturing the non-linear correlations between the 

characteristics and solar energy. Additionally, Nguyen et al. 

[15] employed Long Short-Term Memory (LSTM) models 

along with meteorological data to forecast the performance of 

PV systems. The findings showed that the LSTM models were 

capable of accurately predicting PV system output, evidenced 

by a mean absolute error of 3.5%. It was concluded that the 

combination of LSTM models with climatic data forms an 

effective method for solar power energy prediction. 

The existing research on solar power prediction has largely 

focused on the effectiveness of individual machine learning 

models. However, there exists a significant research gap in the 

exploration of ensemble methods, particularly the integration 

of diverse models or the inclusion of additional data sources, 

to augment predictive accuracy. Moreover, there is a paucity 

of studies investigating the scalability and generalizability of 

these models across different geographical locations and 

climatic conditions. Addressing these gaps is crucial for 

advancing the development of more robust and universally 

applicable solar power prediction models, which would 

significantly enhance the accuracy and reliability of renewable 

energy forecasting. 

 

 

3. RESEARCH BACKGROUND 

 

This section provides a detailed background on the XG 

Boost regressor, PCA for dimensionality reduction, and RGB 

Histogram, which are pivotal in the context of solar power 

prediction. 

 

3.1 XG Boost regressor 

 

The XG Boost, an advanced machine learning technique 

based on gradient boosting, is highly effective in estimating 

solar power production with notable accuracy and efficiency. 

It excels in both classification and regression tasks [16]. The 

algorithm is particularly suited for solar power output 

prediction due to its proficiency in handling large datasets, its 

relative speed, and its effectiveness with datasets featuring 

non-linear relationships between input and output variables 

[17]. For effective solar power prediction using the XG Boost 

algorithm, access to relevant data is crucial. This data should 

encompass details such as the location of the solar installation, 

panel size, panel orientation, local weather conditions, and 

anticipated solar irradiance. Upon gathering the data, the XG 

Boost algorithm can be trained accordingly. Post-training, the 

algorithm can predict solar energy production for specific 

locations and times with precision [18]. This prediction 

capability is instrumental in determining the potential energy 

generation of solar installations and optimizing the utilization 

of solar energy. 

 

3.2 PCA for dimensionality reduction 

 

PCA is a linear dimensionality reduction technique that 

transforms a high-dimensional space of correlated properties 
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into a low-dimensional space of uncorrelated characteristics, 

known as principal components [19]. These components are 

orthogonal linear transformations, aiming to capture the 

largest variance in the original data with the first component 

[20]. Being an unsupervised algorithm, PCA operates without 

considering class labels. The rationale for employing 

dimensionality reduction includes data compression to 

minimize storage requirements, acceleration of computations, 

elimination of redundant features, removal of correlated 

features, enhanced data visualization in reduced dimensions 

(2D or 3D), and noise reduction, thereby potentially improving 

model performance [21, 22]. 

 

3.3 RGB histogram 

 

The RGB Histogram is an image processing technique 

where a color image is analyzed by counting the pixels in each 

of the three-color channels: red, green, and blue (RGB). This 

histogram is a graphical representation of the distribution of 

colors in an image, aiding in the identification of dominant 

colors and the overall content. It also measures the color 

balance, indicating the contribution of each channel to the 

image's overall color. To extract features using the RGB 

Histogram, each image is dissected into individual pixels, with 

each pixel characterized by three values corresponding to the 

RGB channels. 

 

 

4. RESEARCH METHODS 

 

The primary goal of this study is to forecast solar energy 

output, employing a two-step process involving feature 

extraction and dimensionality reduction. Initially, an RGB 

histogram is utilized to extract features from image data, 

dissecting each image into a 254×254 pixel grid. This process 

generates a substantial number of dimensional features from 

each image. To manage and streamline these features, PCA is 

employed. PCA, a linear algebraic method, effectively reduces 

the dimensionality of the data. This dual approach of first 

expanding the feature set through the RGB histogram and then 

condensing it via PCA, ensures that essential information is 

retained while reducing complexity, thereby facilitating more 

accurate solar energy prediction. 

 

PCA 

PCA is a statistical technique employed to reduce the 

dimensionality of large data sets. By transforming high-

dimensional data into a lower-dimensional space, PCA retains 

as much of the original variability of the data as possible. In 

the context of solar power prediction using sky images, PCA 

plays a crucial role in simplifying the complexity of the image 

data. By reducing the dimensionality of the image components, 

PCA makes the data more manageable and efficient for 

subsequent analysis. 

 

Covariance Matrix 

A key step in PCA is the computation of the covariance 

matrix (Σ) of the standardized feature matrix. The covariance 

matrix is pivotal as it captures the relationships and 

dependencies between different features. This matrix forms 

the foundation for identifying the principal components, which 

are the directions in the feature space that maximize the 

variance of the data. 

( ) ( )

1

1
( )( )

m i i T

i
x x

m =
=   (1) 

 

Eigenvalue Decomposition 

The process begins with performing eigenvalue 

decomposition on the covariance matrix Σ, which yields a set 

of eigenvalues (λ) and corresponding eigenvectors. This step 

is crucial for identifying the principal components that capture 

the maximum variance in the data, a fundamental aspect of 

PCA. 

 

 =  (2) 

 

Dataset Description 

In this research, the dataset comprises images of the sun 

captured using a Nikon camera with specifications mentioned 

in Table 1. Table 2 in the accompanying documentation 

provides a detailed view of these images, taken at various 

times, illustrating the sun's position and intensity. 

 

Image Pre-processing 

The collected images undergo a vital enhancement phase 

known as "pre-processing." This stage involves applying 

morphological transformations to the digital images to 

eliminate noise from the region of interest. Such refinement is 

pivotal in enhancing the accuracy of solar power prediction, as 

it ensures that the data fed into the model is of high quality and 

free from distortions that could skew the results. 

 

RGB Histogram 

The RGB histogram plays a significant role in the process 

of predicting solar power energy. It serves as a tool for 

representing the color distribution in an image through the Red, 

Green, and Blue color channels. The procedure involves 

counting the occurrences of various intensity levels within 

each channel and constructing a histogram to depict the 

frequency of these intensity levels. This histogram provides 

critical insights into the color composition of an image, which 

can be leveraged in image processing and computer vision 

applications. The formulation of the RGB histogram 𝐻𝑅𝐺𝐵(𝑖) 
for each color channel (i) is an integral part of this analysis, 

offering a granular view of the image’s color dynamics. 
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Table 1. Camera specifications 

 
Brand Nikon 

Model Name D7500 

Form Factor DSLR 

Effective Still 20.9 MP 

Special Feature Special Effects Modes (Night Vision, Super 

Vivid, Pop, Photo, Illustration, Toy Camera 

Effect, Miniature Effect, Selective Colour) 

Optimal Zoom 5 x 

Colour Black 

Screen Size 3.2 Inches 

Photo Sensor Size APS-C fps 

Connector Type Bluetooth, Wi-Fi 
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Table 2. Sun images in various times 

 
S. No Morning Time Images Afternoon Time Images Evening Time Images 

1 

   
2 

   
3 

   

In this study, a range of machine learning based predictive 

modeling techniques are employed for solar forecasting. 

Evaluating the effectiveness and precision of each model's 

forecasts is crucial. Performance metrics play a significant role 

as they directly impact the assessment of the model's 

prediction accuracy. The following metrics are used to 

calculate the error rate between the predicted values and actual 

observations: 

(1) MAE 

MAE measures the average magnitude of errors in a set of 

predictions, without considering their direction. It sums the 

absolute differences between predicted and actual outputs. 

MAE provides a straightforward measure of prediction error, 

but it does not differentiate between under forecasting and 

over forecasting. The calculation of MAE is outlined in the 

provided Eq. (1). 

 

, ,

1

1 N

FOR i OBS i

i

MAE SWL SWL
N =

= −  (4) 

 

(2) RMSE 

RMSE is computed as the square root of the average 

squared differences between the predicted and actual outputs. 

It is particularly useful when errors exhibit non-linearity. 

RMSE offers a reliable measure of the average magnitude of 

the prediction errors, as detailed in Eq. (2). 

 
2

, ,

1

( )N
FOR i OBS i

i

SWL SWL
RMSE

N=

−
=   (5) 

 

(3) RAE 

RAE compares the prediction error of the model with the 

residual or mean error of a naive model. It is expressed as a 

ratio, with a value less than 1 indicating that the proposed 

model outperforms the basic model. In the calculation of RAE, 

as shown in Eq. (3), "P" represents the predicted value, and 

"A" represents the actual value. 
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(4) RRSE 

RRSE is the square root of the RSE, which contrasts the 

forecast error against the error of a naive model. RRSE is 

applicable in models where errors are measured across 

multiple units. The naive model typically uses the average of 

the actual values for prediction. In this context, "T" denotes 

the target value, while "P" represents the predicted output. The 

model is indicated by "I" and the record by "j". The subsequent 

equation illustrates the calculation of RRSE, providing an 

assessment of the magnitude error in the forecasted quantity. 
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5. RESULTS 

 

In evaluating the performance of our solar power prediction 

model, a variety of performance metrics were utilized, as 

illustrated in the figures provided. These metrics, including 

RAE, MSE, and MAE, offer a multifaceted assessment of the 

model's precision and effectiveness in forecasting solar power 

energy, considering the selected features and methodologies. 

 

 
 

Figure 1. RAE 

 

In Figure 1, a comparative analysis of the RAE for various 

regression methods, including Random Forest Regression, 

Gradient Boosting, KNN, SVR, and our proposed XG Boost 
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Regressor, is showcased. Notably, the XG Boost Regressor 

exhibits a relative absolute error rate of 0.100121089. This 

data distinctly highlights the XG Boost Regressor as having 

the lowest RAE among the evaluated methods, underscoring 

its superior accuracy in predicting solar power energy.  

 

 
 

Figure 2. MSE 

 

Figure 2 provides a clear comparison of the MSE across 

different regression methods used in solar power prediction. A 

critical observation from this graph is the outstanding 

performance of the XG Boost Regressor. It is noteworthy that 

the XG Boost Regressor achieves the lowest RAE, recorded at 

0.001425576, which is significantly lower compared to the 

other methods included in the study. This comparison reveals 

that the Random Forest Regression, Gradient Boosting, KNN, 

and SVR all exhibit higher MSE when contrasted with the XG 

Boost Regressor.  

 

 
 

Figure 3. MAE 

 

 
 

Figure 4. RRSE 

 

Figure 3 provides an insightful comparison of the MAE for 

various machine learning methods used in solar power 

prediction, including Random Forest Regression, Gradient 

Boosting, KNN, SVR, and the proposed XG Boost Regressor. 

A key finding from this graphical representation is the 

performance of the XG Boost Regressor, which demonstrates 

a RAE rate of 0.0019102173. This rate is notably lower than 

those achieved by the other methods. 

Figure 4 illustrates the RRSE for various regression 

techniques, including Gradient Boosting, KNN, SVR, 

Random Forest Regression, and the proposed method, XG 

Boost Regressor. A notable observation from this data is that 

the XG Boost Regressor exhibits the lowest root relative 

squared error, recorded at 0.146707803. This value is 

significantly lower than those associated with the other 

methods. This finding underscores the superior accuracy of the 

XG Boost Regressor in comparison to the other evaluated 

regression techniques, indicating that the proposed XG Boost 

Regressor method is the most precise for solar power 

prediction among the models tested. 

 

 
 

Figure 5. RMSE 

 

Figure 5 displays the RMSE rates for a variety of regression 

methods, including Random Forest Regression, Gradient 

Boosting, KNN, SVR, and the XG Boost Regressor. From this 

data, it becomes evident that the XG Boost Regressor 

outperforms the other methods, achieving the lowest RMSE 

rate of 0.146707803. This result underscores the superior 

accuracy of the XG Boost Regressor in comparison to its 

counterparts. Therefore, based on this evidence, it can be 

confidently concluded that the XG Boost Regressor is the most 

effective and reliable option for regression tasks in the context 

of this study. 

 

 
 

Figure 6. R-Squared 
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Figure 6 provides a comparative analysis of the R-squared 

errors for various regression methods, including the XG Boost 

Regressor, Random Forest Regression, Gradient Boosting, 

KNN, and SVR. Notably, the XG Boost Regressor exhibits the 

lowest R-squared error, recorded at 0.146707803. This 

outcome indicates a superior level of accuracy for the XG 

Boost Regressor relative to the other methods.  

 

 
 

Figure 7. Percentage improvement of R-squared 

 

Figure 7 showcases the percentage improvement in R-

squared error across various regression methods, notably, the 

SVR-XG Boost method exhibits the most significant 

improvement in R-squared error, with a percentage increase of 

1.11148. This notable enhancement in R-squared error for 

SVR-XG Boost, compared to other methods like Random 

Forest Regression, Gradient Boosting, and KNN, suggests its 

superior effectiveness in reducing prediction error and 

enhancing model accuracy. 

 

 
 

Figure 8. Percentage decrement of MAE 

 

 
 

Figure 9. Percentage decrement of MSE 

 

Figure 8 compares the percentage decrement in MAE across 

various regression methods, including KNN-XG Boost, 

Random Forest Regression, Gradient Boosting, and SVR. The 

data reveals KNN-XG Boost with the smallest percentage 

decrement in MAE at 3.714508, followed by Random Forest 

Regression at 5.258116, and Gradient Boosting at 17.593381. 

Notably, SVR shows the most significant decrease in MAE, 

with a percentage decrement of 75.027220. This indicates that 

while KNN-XG Boost has the least reduction in MAE, SVR 

significantly outperforms all other methods in minimizing 

prediction errors, demonstrating its superior efficacy in this 

aspect. 

Figure 9 illustrates the percentage decrement in MSE for a 

variety of regression methods. Among these, Random Forest-

XG Boost stands out with the highest reduction in MSE, 

registering a decrement of 15.447767. This is followed by 

SVR, Gradient Boosting, and KNN in terms of their respective 

decrements in MSE. Clearly, Random Forest-XG Boost 

surpasses the other methods in terms of reducing the Mean 

Squared Error, indicating its superior performance in this 

specific metric. 

Figure 10 showcases the decrement in RMSE across various 

regression methods. In this analysis, KNN-XG Boost emerges 

as the leading approach with a significant RMSE decrement of 

9.679981733. This is closely followed by the decrements 

observed in SVR, Gradient Boosting, and Random Forest 

Regression. The data clearly indicates that KNN-XG Boost 

outshines the other methods, demonstrating the most 

substantial reduction in RMSE and thereby yielding the most 

effective results among the evaluated approaches. 

 

 
 

Figure 10. Percentage decrement of RMSE 

 

 
 

Figure 11. Percentage decrement of RAE 
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Figure 12. Percentage decrement of RRSE 

 

Figure 11 highlights the decrement in RAE for various 

regression methods. From this data, it is observable that the 

KNN-XG Boost method registers the lowest decrement, 

marked at 5.919849225. This is followed by the decrements in 

SVR, Gradient Boosting, and Random Forest Regression. This 

trend in the data indicates that KNN-XG Boost has 

demonstrated superior performance compared to the other 

methods, achieving the most significant reduction in RAE and 

thus yielding the best results in terms of relative accuracy. 

Figure 12 compares the decrement in RRSE among four 

different regression methods. Notably, Random Forest-XG 

Boost exhibits the lowest RRSE decrement, with a value of 

6.972781969. This figure surpasses those of SVR, Gradient 

Boosting, and Random Forest. The data clearly indicates that 

Random Forest-XG Boost has achieved superior performance, 

outshining the other methods tested. Its lower decrement in 

RRSE demonstrates its effectiveness in reducing error rates, 

thereby making it the most successful approach among those 

evaluated in the study. 

 

 

6. CONCLUSION 

 

In the realm of PV system power output estimation, the 

integration of the XG Boost Regressor with PCA for 

dimensionality reduction has been demonstrated to be highly 

effective. This research utilized the RGB histogram for the 

extraction of a substantial quantity of dimensional features 

from image data. Subsequently, PCA was employed to adeptly 

reduce these features. It is highlighted that the linear algebraic 

approach of PCA facilitates automatic dimensionality 

reduction. 

The findings of this study underscore the efficacy of 

combining the XG Boost Regressor with PCA in estimating 

the power production of solar systems. The performance 

metrics, including a relative absolute error rate of 

0.100121089, a Mean Squared Error of 0.001425576, a mean 

absolute error of 0.0019102173, and a root relative squared 

error of 0.146707803, attest to the accuracy of the XG Boost 

Regressor as a predictive tool. These results significantly 

indicate that the XG Boost Regressor, complemented by PCA 

dimensionality reduction, stands as the most accurate method 

among those tested for predicting solar power energy. 

In conclusion, the application of the XG Boost Regressor in 

conjunction with PCA has not only yielded precise predictions 

of solar energy output but also contributed to the advancement 

of methodologies in renewable energy forecasting. This 

approach sets a precedent for future research in the field, 

opening avenues for further exploration and refinement of 

predictive models in solar energy estimation. 
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