
VADNet: Visual-Based Anti-Cheating Detection Network in FPS Games

Binghua Nie1 , Bin Ma2*

1 Henan Ruisheng Intelligent Technology Co., Ltd., Zhengzhou 450046, China
2 School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046,

China

Corresponding Author Email: mabin@ncwu.edu.cn

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410137 ABSTRACT

Received: 6 September 2023

Revised: 12 December 2023

Accepted: 25 December 2023

Available online: 29 February 2024

The prevalence of cheating in first-person shooter (FPS) games poses a formidable

challenge, undermining user experience and the integrity of competitive play. In response

to this issue, a visual-based anti-cheating detection network, termed VADNet, has been

developed, harnessing the capabilities of deep learning and computer vision techniques.

VADNet incorporates a focus module designed to segment high-resolution images,

alongside a Feature Pyramid Network (FPN) for the fusion of multi-scale features,

culminating in a classifier module tasked with the quantification of cheating behaviors.

Rigorous experimentation on a dataset derived from a real online FPS game substantiates

VADNet's efficacy in identifying players who resort to cheating, as evidenced by high

precision, recall, and F1 scores. This investigation advances the field of anti-cheating

mechanisms for FPS games, offering a robust and reliable system to preserve the fairness

and integrity of online gaming environments.

Keywords:

cheat detection, first-person shooter (FPS)

games, visual algorithm

1. INTRODUCTION

FPS games are a highly competitive genre with demanding

requirements for reaction speed, and they have become one of

the mainstream categories in the current gaming market [1-4].

Simultaneously, the issue of cheating has emerged as a major

challenge in the FPS gaming industry, impacting the gaming

ecosystem and players’ overall gaming experience. Recent

data indicates that in the first half of 2023, there were a

cumulative 3.2 billion detections of cheating in mobile games,

marking a 40% year-over-year increase. Among these, the

most prevalent type of cheat used in FPS games is wallhack,

accounting for 58.33% of the total, while aimbot, despite only

representing 8.33%, has the most significant impact on user

experience, as shown in Figure 1. Therefore, detecting and

identifying cheating has become an urgent and imperative

problem that needs immediate resolution in the FPS gaming

industry.

The genre of shooting games, unlike card games and others

that do not require a focus on real-time client-side calculations,

exhibits significant differences. To ensure a smooth gaming

experience in shooting games, many gameplay calculation

logics need to be executed locally on the client-side [5]. This

makes it impractical to adopt server-side validation methods,

laying the groundwork for cheating through hacks. Utilizing

cross-process hacks with elevated privileges enables the

extraction of crucial game logic data, allowing for features

such as wallhacks through external rendering processes. In this

scenario, the game logic executes without any anomalies, and

the game remains unaware of the detailed information related

to the hacking process. Alternatively, modifying shader data

can influence the GPU rendering process, enabling features

like perspective rendering, character coloring, and removing

grass and trees. These challenging hacks are difficult for

conventional anti-cheat measures to handle and detect.

Therefore, this study adopted a visual approach using deep

learning to discern and counteract these issues.

(a) wallhack cheats (b) aimbot cheats

Figure 1. Common cheating methods

This paper proposes a deep learning and visual analysis-

based FPS anti-cheat model, aimed at detecting the use of

cheats by analyzing player behavior in game videos. The

logical patterns of players’ in-game actions are examined, and

visual recognition techniques are employed, allowing the

model to effectively determine the presence of cheating

behavior, irrespective of the cheat type involved. To achieve

the anti-cheat objectives, three key challenges must be

addressed:

Challenge 1: Recognizing Visual Disparities

The use of deep learning for visual detection of cheating has

been identified as a promising approach [6-8], attributed to

significant visual differences between normal players and

cheaters. This method, which does not require additional

Traitement du Signal
Vol. 41, No. 1, February, 2024, pp. 431-440

Journal homepage: http://iieta.org/journals/ts

431

https://orcid.org/0009-0005-3443-1356
https://orcid.org/0009-0001-5529-1832
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410137&domain=pdf

privacy information and relies solely on reliable image data [9],

faces the challenge of accurately identifying these visual

differences.

Challenge 2: Quantifying Cheating Behavior

The often subtle and difficult-to-detect behavioral

differences manifested by cheating behavior necessitate real-

time capabilities in cheating detection systems [10, 11].

Furthermore, the quantification of appropriate cheating

detection indicators and the design of a reasonable detection

system are demanded, ensuring the system's ability to

accurately and rapidly respond to various situations [12, 13].

Challenge 3: Enhancing Credibility

It is crucial for anti-cheat system design to ensure accurate

cheating detection without falsely identifying legitimate

players as cheaters. The critical challenge lies in improving

target detection and cheat classification accuracy, reducing

false-positive rates to avoid negatively impacting legitimate

players, and enhancing the overall credibility of the cheat

detection system [14, 15].

Contributions are as follows: (1) A visual-based FPS game

anti-cheat network has been developed, achieving

comprehensive cheat detection through supervised learning on

datasets of normal gaming and cheating scenarios. (2) By

detecting and categorizing player behavior, a set of key

performance indicators has been introduced. Monitoring the

relative relationships between actions such as aiming

frequency, effective aiming duration, and kill count enables

the more accurate capture of differences between cheating

players and regular players. (3) Extensive experiments and

analyses conducted on a real online FPS game dataset have

demonstrated the network's effectiveness and potential in

detecting players using cheats.

2. RELATED WORK

2.1 Traditional methods

Park and Lee [16] categorized methods for detecting game

cheats into three types: player client detection, game network

communication detection, and game remote server detection.

In the case of Player Unknown’s Battlegrounds (PUBG), the

Battle Eye system employed by the game continuously

collects information on all processes in the user’s memory. It

randomly extracts files from the player’s computer for analysis.

However, this inevitably raises a series of privacy concerns.

Yu et al. [17] investigated the situation where players’ clients

send data packet commands to the server. They monitored

different amounts of traffic during various time periods to

identify changes in traffic when cheats were used compared to

normal gameplay. However, cunning cheaters often employ

techniques such as traffic obfuscation, encryption, and

confusion to bypass detection. Some games, like "Fantasy

Westward Journey" and "Dungeon & Fighter," intermittently

present image captchas or numeric quizzes during gameplay

to determine if users are present [18]. However, the

effectiveness of these anti-cheat methods, based on pop-up

event detection, has gradually diminished due to

advancements in facial recognition and image processing

technologies.

2.2 Deep learning methods

Traditional cheating detection systems often struggle to be

effective against new vulnerabilities or sophisticated cheaters.

With the advancement of artificial intelligence (AI)

technology, methods based on image processing and AI have

been widely explored in the field of cheating detection by

many researchers. Galli et al. [19]. developed AI agents

resembling human players by analyzing human player

behavior using various methods. However, this approach has

low accuracy and requires human involvement, resulting in

inefficiency. Spijkerman and Marie Ehlers [20] applied

Support Vector Machines (SVMs), decision trees, and Naive

Bayes machine learning models to analyze players’ mouse and

keyboard operations. By integrating learning features into

SVM models, they achieved superior cheating detection

results. However, relying solely on SVMs for cheating

detection may overlook crucial information such as players’

aiming frequency, hit rates, and pre-aim positions [21]. Some

researchers have used Recurrent Neural Networks (RNNs) to

detect cheating. However, RNNs’ sequential computation

process leads to high computational complexity during

training and inference. This limitation restricts the scalability

and accuracy of RNNs when dealing with long sequences or

large-scale tasks [22-24].

In comparison to traditional image processing methods,

deep learning can automatically learn and extract features

from images without relying on manually designed feature

extractors [25-27]. Through the combination and training of

multiple layers of neural networks, deep learning excels at

extracting advanced features from complex images. Deep

learning has achieved significant success in areas such as

image recognition, object detection, image enhancement, and

image reconstruction. In the context of game cheating

detection, deep learning’s capabilities are evident, as

exemplified by the automatic recognition of cheating behavior

patterns, such as "aimbot," in players of games like PUBG.

These models leverage extensive datasets of player behavior

features to accurately identify key cheating indicators,

providing essential auxiliary criteria for the detector’s

judgment [28-30].

2.3 Preliminary

This section provides an overview of object detection and

the important definitions used in the employed models.

Additionally, a concise summary of commonly used symbols

is given in Table 1.

Table 1. Notations and definitions

Notations Definitions

W Convolutional layer parameter matrix

ω Width of the image or bounding box

ℎ Height of the image or bounding box

c Number of channels

BN Batch normalization

IoU Intersection over Union

Ttg Effective targeting time

Ntg Effective targeting count

1. Intersection over Union (IoU)

Defined as the intersection area of two rectangular boxes

divided by their union area, expressed by the following

formula:

| |

| |

A B
IoU

A B


=


 (1)

432

2. Batch Normalization (BN)

BN normalizes the variance and mean of features across

examples within each small batch, aiming to prevent issues

like gradients vanishing or exploding.

3. Max pooling

Pooling layers down sample each input feature map by

utilizing a 2×2 max-pooling window with a stride of 2,

achieving a reduction in the spatial dimensions of the input

data.

4. Effective targeting

The duration during which aiming is detected, and a person

is recognized in the viewfinder is considered the effective

targeting time in object detection.

3. METHODOLOGY

This section introduces the proposed vision-based anti-

cheating detection model, as shown in Figure 2, which consists

of four key modules: the data preprocessing module, backbone

module, neck module, and head module. Images from the

dataset are first concatenated and padded through the data

preprocessing module. Subsequently, the backbone module

splits and applies convolutional operations to extract features

from the images. Pooling operations are then used to merge

the feature vectors. The neck module serves as a connecting

module to further optimize and fuse features to adapt to the

downstream tasks. Finally, the head module calculates the loss

function and classifies the indicators of cheating through the

classifier module for output.

3.1 Data preprocessing module

The data preprocessing module primarily involves scaling

the input images to the network's input size and normalizing

them. During the model training phase, this module employs

Mosaic data augmentation operations to concatenate multiple

images into a new complete photo for data input, using random

scaling, random cropping, and random arrangement. This

approach not only enhances the training speed of the model

but also reduces its memory requirements.

The module utilizes adaptive anchor box calculation, with

the formula as follows:

w
r

h
=

1, if min max

, otherwise

b a
m

m b a

m

w w
N

N h h

N

    
+     

=     



m

t

N
R

N
=

(2)

𝑟 represents the aspect ratio. Initially, utilizing 𝑛 bounding

boxes and 9 anchor boxes, the aspect ratio 𝑟 is calculated. If

the maximum aspect ratio (𝑟) of the anchor boxes is greater

than the minimum aspect ratio (𝑟) of the bounding boxes, it is

considered a successful match. If the probability of a

successful match is less than 98%, a genetic algorithm and k-

means are employed to recalculate the anchors, and the anchor

box with the highest success rate is saved.

Adaptive image scaling techniques have been incorporated,

and the formula is as follows:

0 0

1 1

min ,
w h

w h


 
=  

 
 (3)

1 1 1w w h =  = 

1 0dw w w= −

1 0dh h h= −

(4)

Figure 2. Illustration of the proposed VADNet anti-cheating detection model

433

Calculate the minimum scaling factor 𝛼 between the target

image and the original image. Then, multiply the height and

width of the target image by 𝛼 to compute the size of the scaled

image. Finally, adaptively calculate the padding values for

convolution and pooling in the model based on the scaled

image size, accounting for potential black borders.

3.2 Backbone module

The backbone module introduces the focus module to

segment the image, splitting the high-resolution image (feature

map) into multiple low-resolution images or feature maps.

The input 𝑥 ∈ ℝ𝑏×𝑐×𝑤×ℎ undergoes the focus layer to

obtain �̂� ∈ ℝ𝑏×4𝑐×
𝑤

2
×
ℎ

2, where the channel count is quadrupled

compared to the original RGB three-channel mode. The final

result �̂� is a feature map with twice the down-sampling

without losing information, as depicted in Figure 3.

(a) Structure of the focus module

(b) Illustration of image segmentation

Figure 3. Process of the focus module

After this image is subjected to another convolution

operation, it results in 𝑦 ∈ ℝ𝑏×𝑐′×
𝑤

2
×
ℎ

2 , as depicted in Figure 3.

The formula for this process is as follows:

() (), ' '
1

ˆ *
C

c c c c
c

y f x W b
=

 
= + 

 
 (5)

The input feature map comprises c input channels
(�̂�1: �̂�2: �̂�3: … : �̂�𝑐) and c' output channels (𝑦1: 𝑦2: 𝑦3: … : 𝑦𝑐′).
The weight parameters of this CONV layer have the shape

[filter_height, filter_width, in_channels, out_channels],

denoted by 𝑊(𝑐,𝑐′) ∈ ℝ𝑟×𝑟×𝑐×𝑐′ . Here, f represents the

activation function, and 𝑏𝑐′ is the bias term for the output

feature maps of the same size.

The output 𝑦 undergoes several CSP1_X and CSP2_X

layers. The structure of CSP1_X is illustrated in Figure 4, and

the corresponding formula is as follows:

()1 ,
1

*
C

cc c
c

y f y W b 

=

 
= + 

 


2
ˆ CBL()y y=

(6)

() () ()()2 2 2 2
ˆ ˆ ˆ ˆRes Res Res

X

y y y y = ∣ ‖ ‖

()2 2 ,
1

ˆ *
C

cc c
c

y f y W b 



=

 
= + 

 


Figure 4. Schematic diagram of submodule construction

The Convolutional Block Layer (CBL) sums over all input

channels, multiplying each channel by the corresponding

weights and adding biases. The formula for feature extraction

using the Res (Residual) method is as follows:

(),
1

CBL() ReLU BN *
C

cc c
c

y y W b 

=

  
= +  

  


Res() CBL(CBL())y y y= +

(7)

The CBL structure consists of three network layers:

Convolution (Conv), Batch Normalization, and Leaky ReLU.

In CSP1_X, we go through several CBL structures and

concatenate residuals to obtain the final output �̂�. CSP2_X is

similar to CSP1_X, but the Res part is replaced with 2X CBL

structures. The formulas are as follows:

()1 ,
1

*
C

cc c
c

y f y W b 

=

 
= + 

 


2
ˆ CBL()y y=

() () ()()2 2 2 2

2

ˆ ˆ ˆ ˆCBL CBL | | CBL

X

y y y y = ∣

(8)

()2 2 ,
1

ˆ *
C

cc c
c

y f y W b 



=

 
= + 

 


()()1 2
ˆ ReLU BNy y y= ‖

(9)

Figure 5. SPP module illustration

As shown in Figure 5, SPP performs max pooling on each

feature map using three different sizes of pooling kernels to

obtain predetermined feature map sizes. Finally, all feature

maps are flattened into feature vectors and fused.

434

3.3 Neck module

The Neck network is a crucial component in object

detection algorithms, responsible for further optimizing and

fusing features extracted by the backbone network to better

adapt to the requirements of object detection tasks, as

illustrated in Figure 6. The FPN is a top-down process that

transfers and fuses high-level feature information through

upsampling to obtain feature maps for prediction, allowing the

network to perform object detection at multiple scales. In the

bottom-up stage, images are input into the backbone network,

and features with different scales of information are extracted

using CSP1_X, CSP2_X, and Conv. In the top-down stage, the

feature maps obtained at higher levels are transmitted to the

lower levels through upsampling, enriching the semantic

information in the lower-level feature maps. Finally, in the

Lateral Connection process, the features obtained by

upsampling the higher-level feature maps are fused with the

lower-level feature maps, and the fusion can be a simple

addition or a 1×1 convolution. After fusion, a fused feature

map is generated at each scale, forming a feature pyramid.

This feature pyramid contains semantic information at

different scales, enabling the model to detect objects at

different scales. Although FPN has already integrated shallow

features once, it still cannot achieve satisfactory segmentation

results. Therefore, PAN is introduced, enhancing the network's

perception of multi-scale information through a mechanism

that fuses features along both lateral and contextual paths.

Figure 6. FPN-PAN structure

As shown in Figure 6, it involves downsampling N2 (N2

and P2 are the same feature map, so N2 already contains a

considerable amount of low-level features). The downsampled

feature map is then fused with P3 to obtain N3. Therefore, N3

contains more low-level features than P3, and this pattern

continues for N4, N5, and so forth.

3.4 Head module

The model has three main loss functions: Classification

Loss (cls_loss), responsible for determining whether the

classification of anchor boxes matches the annotations;

Localization Loss (box_loss), which measures the error

between predicted boxes and annotated boxes (GIoU); and

Confidence Loss (obj_loss), which calculates the network's

confidence. Binary cross-entropy loss functions are employed

for both classification and localization losses, as represented

by the following formulas:

 
1

ln (1)ln(1)C y a y a
n

= − + − − (10)

where, x represents the sample, y represents the label, a

represents the predicted output, and n represents the total

number of samples. The confidence loss calculation adopts the

CIOU_Loss as the bounding box loss function, and the

formula is as follows:

()2

Lass 2

,
CIOU IOU

gtb b
v

c


= − − (11)

where, IOU is the intersection over union between the

predicted box and the ground truth box. 𝜌2(𝑏, 𝑏𝑔𝑡) represents

the Euclidean| distance between the center points of the

predicted box and the ground truth box. c denotes the diagonal

distance of the minimum closed region that can

simultaneously contain the predicted box and the ground truth

box.

1

v

IOU v
 =

− +

2

2

4
arctan arctan

gt

gt

w w
v

hh

    
= −        

(12)

where, wgt and hgt are the width and height of the ground truth

bounding box, and w and h are the width and height of the

predicted bounding box. Additionally, the output end of the

Head module adopts sigmoid as the activation function,

addressing the issue of slow weight updates in the loss

function.

3.5 Classifier module

The differentiation in the ratios of duration, frequency, and

kill effectiveness in aiming between normal players and those

suspected of cheating is analyzed. Data standards are

quantified to ascertain the usage of cheats by a player. The

calculation of the duration of effective aiming is conducted by

recognizing the period during which the player aims and

maintains the target within sight. The duration ratio is

subsequently calculated by dividing the duration of effective

aiming by the total operational time of the aiming mechanism.

The formula is delineated as follows:

t
T

A

T g

T
 = (13)

where, TA represents the total time with the sight open,

calculated by the continuous duration of the aiming action

detected through target recognition. The ratio of effective

aiming instances is the number of times effective aiming

occurs divided by the total number of times the sight is open.

t
N

A

N g

N
 = (14)

435

The ratio of scoped kills is the quotient of the number of

kills and the number of times the sight is opened.

K
K

A

N

N
 = (15)

In the process of normal player behavior, there is ineffective

scoping, i.e., situations where there is no one in sight. However,

for cheating players, the ratios of effective scoping

occurrences (𝛽𝑁) and effective scoping duration (𝛽𝑇) are

significantly higher than those of normal players, and the

scoped kill ratio (𝛽𝐾) is also higher. By quantifying and

statistically analyzing the differences in these three indicators

between normal players and cheaters, we can classify whether

cheating is involved.

4. EXPERIMENT

4.1 Datasets

Our dataset consists of videos collected from online FPS

games provided by a network company, ensuring privacy

protection. Frames from the videos were processed and cut

into numerous images, and the self-made dataset was created

through preprocessing and labeling, resulting in training,

testing, and validation sets. The basic statistics of the dataset

are summarized in Table 2.

Table 2. Basic statistics of the dataset

Dataset Size #Sample

Train 640×640 2115

Valid 640×640 200

Test 640×640 100

4.2 Experiment settings

The experiment runs on a device equipped with an NVIDIA

Tesla T4 16GB GPU. In this experiment, the model undergoes

training for 100 epochs with a batch size of 16, and the images

are resized to 640×640 pixels. Multi-scale training is applied,

treating the dataset as a single category. The SGD optimizer

and synchronized batch normalization are utilized. A quarter-

sized data loader is employed, and a cosine learning rate

scheduler is used. Label smoothing is set to 0.0, and early

stopping waits for 100 epochs.

4.3 Evaluation metrics

Three common metrics are employed for evaluation,

including precision, recall, and F1 score. Additionally, a

confusion matrix is plotted to illustrate the correct recognition

scenarios (see Table 3).

Table 3. Different recognition scenarios

Total Population

(P+N)
Positive (PP) Negative (NN)

Positive (P)
True Positive

(TP)

False Negative

(FN)

Negative (N)
False Positive

(FP)

True Negative

(TN)

1. Precision

()

TP
P

TP FP
=

+
 (16)

Therefore, P (Precision) refers to the proportion of correctly

predicted positive samples (TP) among all samples predicted

as positive TP+FP. An increase in P indicates that the model's

judgments of "predicted positive" are more reliable, meaning

that the model more accurately identifies positive instances.

2. Recall

()

TP
R

TP FN
=

+
 (17)

Recall, starting from true positive labels, calculates the

proportion of correctly predicted positive samples (TP) among

all true positive samples (TP+FN). A higher recall is desirable

as it indicates that the model makes fewer false negatives and

has a lower probability of missing actual positive instances.

3. F1-Score

()2

2

1 ()P R
F

P R






+  
=

 +
 (18)

When β=1, the term is referred to as the F1-Score, which

assigns equal importance to Recall and Precision,

amalgamating these two metrics into a singular measure.

(a) Precision curve

(b) Recall curve

436

(c) Precision-recall curve

(d) F1-Score curve

Figure 7. Evaluation metrics on the dataset

4.4 Experiment result

As shown in Figure 7, it can be observed that P is 1.00,

indicating that when the model predicts a sample as a positive

class, there is a 100% probability of being correct. This

suggests that the model has high confidence when predicting

positive classes.

R is 0.82, indicating that the model successfully identified

82% of actual positive samples, implying that the model is

effective in capturing most positive instances in the dataset.

The P-R index of 0.729 mAP@0.5 means that the area under

the Precision-Recall curve is 0.729, and the mean average

precision at IOU 0.5 is 0.729. This indicates that the model

performs relatively well in binary classification, maintaining

high precision and recall simultaneously under certain

thresholds.

The F1-Score of 0.63, being the harmonic mean of precision

and recall, provides a comprehensive evaluation of the model's

ability to balance false positives and false negatives.

As shown in Figure 8, the labels and predictions of batch 0

in the validation dataset exhibit a high level of synchronization,

confirming our outstanding performance in the process of

recognizing the dataset. Figure 9 shows the box_loss, cls_loss,

and dfl_loss on the training and validation sets. The box_loss

calculates the error between the predicted box and the

annotated box using Complete Intersection over Union (CIoU).

The cls_loss computes whether the anchor box and its

corresponding classification are correct, while the dfl_loss

represents the distribution focal loss.

mAP50(B) stands for Mean Average Precision at IoU 0.50

for Large Objects, and its formula is as follows:

1

1 N

i

i

mAP AP
N =

=  (19)

(a) Label results of the validation dataset

(b) Prediction results of the validation dataset

Figure 8. Visualization comparison of batch 0 labels and

predictions in the validation dataset

APi refers to the area under the Precision-Recall curve for

class i, AP50 signifies that the IoU value is set to 50%, and

AP50-95 indicates that the IoU values range from 50% to 95%.

The calculation involves taking the mean of the AP values at

these IoU levels.

Looking at the convergence curves of the loss functions on

the validation set: (1) Box loss, val_loss, and dfl_loss exhibit

a trend of initially decreasing and then increasing. Their

minimum values appear before training for 50 epochs,

437

suggesting a potential overfitting issue. To address this, it may

be beneficial to adjust the learning rate accordingly. (2)

Precision fluctuates between 0.5 and 0.8, indicating substantial

variability in the model's accuracy. This instability could be

attributed to uneven data distribution, and improvements may

be achieved by adjusting weights and thresholds. (3) Recall

and mAP50 remain relatively stable, maintaining around 0.7.

This indicates that the model provides comprehensive

coverage of positive samples when identifying targets. (4)

mAP50-95 also shows relative stability, hovering around 0.40

with slight fluctuations. This suggests that the model exhibits

good robustness and consistent performance on the dataset.

Figure 9. Loss function convergence curve

Figure 10 shows the confusion matrix during the prediction

process. Each row of this confusion matrix corresponds to the

true class, and each column corresponds to the predicted class.

Each element in the matrix indicates the percentage of samples

belonging to a specific class in the total samples when the

model predicts that class.

Figure 10. Confusion matrix

This helps understand the model's classification accuracy

for each class and identifies classes that are prone to confusion.

Analyzing this confusion matrix allows insights into the

model's performance on individual classes and reveals which

classes are more likely to be confused. In the graph, it is

evident that the confusion probability for the "ADS" class is

relatively low, indicating high prediction accuracy. On the

other hand, there is a higher confusion probability between the

"head" class and the "person" class, possibly due to difficulties

in calculating the effective aiming duration and the number of

effective aiming instances.

5. CONCLUSION

In this study, deep learning visual algorithms were

integrated to identify cheating in FPS games, leading to the

acquisition of a series of quantifiable player metrics, such as

effective aiming duration, through training on key labels.

Comprehensive analyses and visualizations of the target

detection results were conducted, leading to the conclusion

that the model exhibits exceptional performance on crucial

labels (such as ADS and nameplate), demonstrating high

accuracy. The convergence curves for precision, recall, and

F1-Score also indicated favorable performance, providing a

reliable basis for subsequent calculations of metrics like

effective aiming duration.

Nevertheless, limitations were observed, including notable

fluctuations in the precision convergence curve, which suggest

issues such as overfitting and potential for improvement in the

recognition rate of the "head" label. Future research directions

will be aimed at addressing these challenges to further enhance

the model's performance. Efforts will be dedicated to finer

parameter tuning, with an exploration of more suitable

learning rates and adjustment parameters to mitigate model

fluctuations and overfitting. To improve recognition of the

head label, the introduction of advanced target detection

techniques or adjustments to network structures will be

438

considered to better capture features in the head region.

Moreover, the ongoing optimization of the dataset, with the

incorporation of more gaming scenarios and cheat variations,

is aimed at enhancing the model's robustness.

FUNDING

This work was supported by the Industry-University

Cooperative Education Project of Ministry of Education of

China.

REFERENCES

[1] Lugrin, J.L., Cavazza, M., Charles, F., Le Renard, M.,

Freeman, J., Lessiter, J. (2013). Immersive FPS games:

User experience and performance. In Proceedings of the

2013 ACM International Workshop On Immersive

Media Experiences, Barcelona, Spain, pp. 7-12.

https://doi.org/10.1145/2512142.2512146

[2] Yan, J., Randell, B. (2005). A systematic classification

of cheating in online games. In Proceedings of 4th ACM

SIGCOMM Workshop on Network and System Support

for Games, Hawthorne, NY, USA, pp. 1-9.

https://doi.org/10.1145/1103599.1103606

[3] Wu, Y., Chen, V.H.H. (2013). A social-cognitive

approach to online game cheating. Computers in Human

Behavior, 29(6): 2557-2567.

https://doi.org/10.1016/j.chb.2013.06.032

[4] Blackburn, J., Kourtellis, N., Skvoretz, J., Ripeanu, M.,

Iamnitchi, A. (2014). Cheating in online games: A social

network perspective. ACM Transactions on Internet

Technology (TOIT), 13(3): 9.

https://doi.org/10.1145/2602570

[5] Park, S., Ahmad, A., Lee, B. (2020). Blackmirror:

Preventing wallhacks in 3d online fps games. In

Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, Virtual Event,

USA, pp. 987-1000.

https://doi.org/10.1145/3372297.3417890

[6] Chapel, L., Botvich, D., Malone, D. (2010). Probabilistic

approaches to cheating detection in online games. In

Proceedings of the 2010 IEEE Conference on

Computational Intelligence and Games, Copenhagen,

Denmark, pp. 195-201.

https://doi.org/10.1109/ITW.2010.5593353

[7] Gaspareto, O.B., Barone, D.A.C., Schneider, A.M.

(2008). Neural networks applied to speed cheating

detection in online computer games. In 2008 Fourth

International Conference on Natural Computation, Jinan,

China, pp. 526-529.

https://doi.org/10.1109/ICNC.2008.720

[8] Zhang, Q. (2021). Improvement of online game anti-

cheat system based on deep learning. In 2021 2nd

International Conference on Information Science and

Education, Chongqing, China, pp. 652-655.

https://doi.org/10.1109/ICISE-IE53922.2021.00153

[9] Nguyen, T.T., Nguyen, A.T., Nguyen, T.A.H., Vu, L.T.,

Nguyen, Q.U., Hai, L.D. (2015). Unsupervised anomaly

detection in online game. In Proceedings of the 6th

International Symposium on Information and

Communication Technology, Hue, Viet Nam, pp. 4-10.

https://doi.org/10.1145/2833258.2833305

[10] Maario, A., Shukla, V.K., Ambikapathy, A., Sharma, P.

(2021). Redefining the risks of kernel-level anti-cheat in

online gaming. In 2021 8th International Conference on

Signal Processing and Integrated Networks, Noida, India,

pp. 676-680.

https://doi.org/10.1109/SPIN52536.2021.9566108

[11] Woo, J., Kang, S.W., Kim, H.K., Park, J. (2018).

Contagion of cheating behaviors in online social

networks. IEEE Access, 6: 29098-29108.

https://doi.org/10.1109/ACCESS.2018.2834220

[12] Rogers, J., Aygun, R., Etzkorn, L. (2022). Cheat

detection through temporal inference of constrained

orders for subsequences. In 2022 IEEE Fifth

International Conference on Artificial Intelligence and

Knowledge Engineering, Laguna Hills, CA, USA, pp.

45-52. https://doi.org/10.1109/AIKE55402.2022.00014

[13] Dinh, P.V., Nguyen, T.N., Nguyen, Q.U. (2016). An

empirical study of anomaly detection in online games. In

2016 3rd National Foundation for Science and

Technology Development Conference on Information

and Computer, Danang, Vietnam, pp. 171-176.

https://doi.org/10.1109/NICS.2016.7725645

[14] Kanervisto, A., Kinnunen, T., Hautamaki, V. (2022).

GAN-Aimbots: Using machine learning for cheating in

first person shooters. IEEE Transactions on Games,

15(4): 566-579.

https://doi.org/10.1109/TG.2022.3173450

[15] Ondras, J., Gunes, H. (2018). Detecting deception and

suspicion in dyadic game interactions. In Proceedings of

the 20th ACM International Conference on Multimodal

Interaction, Boulder, USA, pp. 200-209.

https://doi.org/10.1145/3242969.3242993

[16] Park, K., Lee, H. (2008). A taxonomy of online game

security. In Encyclopedia of Internet Technologies and

Applications, pp. 606-611. https://doi.org/10.4018/978-

1-59140-993-9.ch085

[17] Yu, S. Y., Hammerla, N., Yan, J., Andras, P. (2012). A

statistical aimbot detection method for online FPS games.

In the 2012 International Joint Conference on Neural

Networks, Brisbane, QLD, Australia, pp. 1-8.

https://doi.org/10.1109/IJCNN.2012.6252489

[18] Yahyavi, A., Huguenin, K., Gascon-Samson, J., Kienzle,

J., Kemme, B. (2013). Watchmen: Scalable cheat-

resistant support for distributed multi-player online

games. In 2013 IEEE 33rd International Conference on

Distributed Computing Systems, Philadelphia, PA, USA,

pp. 134-144. https://doi.org/10.1109/ICDCS.2013.62

[19] Galli, L., Loiacono, D., Cardamone, L., Lanzi, P.L.

(2011). A cheating detection framework for unreal

tournament iii: A machine learning approach. In 2011

IEEE Conference on Computational Intelligence and

Games, Seoul, Korea (South), pp. 266-272.

https://doi.org/10.1109/CIG.2011.6032016

[20] Spijkerman, R., Marie Ehlers, E. (2020). Cheat detection

in a multiplayer first-person shooter using artificial

intelligence tools. In Proceedings of the 2020 3rd

International Conference on Computational Intelligence

and Intelligent Systems, Tokyo, Japan, pp. 87-92.

https://doi.org/10.1145/3440840.3440857

[21] Liu, D., Gao, X., Zhang, M., Wang, H., & Stavrou, A.

(2017e). Detecting passive cheats in online games via

performance-skillfulness inconsistency. In 2017 47th

Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, Denver, CO, USA,

439

pp. 615-626.

[22] Su, Y., Yao, D., Chu, X., et al. (2022). Few-shot learning

for trajectory-based mobile game cheating detection. In

Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, Washington,

DC USA, pp. 3941-3949.

https://doi.org/10.1145/3534678.3539157

[23] Tao, J., Xu, J., Gong, L., Li, Y., Fan, C., Zhao, Z. (2018).

NGUARD: A game bot detection framework for NetEase

MMORPGs. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining, London, UK, pp. 811-820.

https://doi.org/10.1145/3219819.3219925

[24] Xu, J., Luo, Y., Tao, J., Fan, C., Zhao, Z., Lu, J. (2020).

Nguard+ an attention-based game bot detection

framework via player behavior sequences. ACM

Transactions on Knowledge Discovery from Data

(TKDD), 14(6): 65. https://doi.org/10.1145/3399711

[25] Jonnalagadda, A., Frosio, I., Schneider, S., McGuire, M.,

Kim, J. (2021). Robust vision-based cheat detection in

competitive gaming. Proceedings of the ACM on

Computer Graphics and Interactive Techniques, 4(1): 7

https://doi.org/10.1145/3451259

[26] Han, M.L., Kwak, B.I., Kim, H.K. (2022). Cheating and

detection method in massively multiplayer online role-

playing game: Systematic literature review. IEEE Access,

10: 49050-49063.

https://doi.org/10.1109/ACCESS.2022.3172110

[27] Islam, M.S., Dong, B., Chandra, S., Khan, L.,

Thuraisingham, B. (2020). GCI: A GPU-based transfer

learning approach for detecting cheats of computer game.

IEEE Transactions on Dependable and Secure

Computing, 19(2): 804-816.

https://doi.org/10.1109/TDSC.2020.3013817

[28] Tao, J., Xiong, Y., Zhao, S., et al. (2022). Explainable AI

for cheating detection and churn prediction in online

games. IEEE Transactions on Games, 15(2): 242–251.

https://doi.org/10.1109/TG.2022.3173399

[29] Kaiser, E., Feng, W.C., Schluessler, T. (2009). Fides:

Remote anomaly-based cheat detection using client

emulation. In Proceedings of the 16th ACM conference

on Computer and communications security, Chicago

Illinois, USA, pp. 269-279.

https://doi.org/10.1145/1653662.1653695

[30] Tao, J., Xiong, Y., Zhao, S., Xu, Y., Lin, J., Wu, R., Fan,

C. (2020). Xai-driven explainable multi-view game

cheating detection. In 2020 IEEE Conference on Games,

Osaka, Japan, pp. 144-151.

https://doi.org/10.1109/CoG47356.2020.9231843

440

