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The prevalence of cheating in first-person shooter (FPS) games poses a formidable 

challenge, undermining user experience and the integrity of competitive play. In response 

to this issue, a visual-based anti-cheating detection network, termed VADNet, has been 

developed, harnessing the capabilities of deep learning and computer vision techniques. 

VADNet incorporates a focus module designed to segment high-resolution images, 

alongside a Feature Pyramid Network (FPN) for the fusion of multi-scale features, 

culminating in a classifier module tasked with the quantification of cheating behaviors. 

Rigorous experimentation on a dataset derived from a real online FPS game substantiates 

VADNet's efficacy in identifying players who resort to cheating, as evidenced by high 

precision, recall, and F1 scores. This investigation advances the field of anti-cheating 

mechanisms for FPS games, offering a robust and reliable system to preserve the fairness 

and integrity of online gaming environments. 
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1. INTRODUCTION

FPS games are a highly competitive genre with demanding 

requirements for reaction speed, and they have become one of 

the mainstream categories in the current gaming market [1-4]. 

Simultaneously, the issue of cheating has emerged as a major 

challenge in the FPS gaming industry, impacting the gaming 

ecosystem and players’ overall gaming experience. Recent 

data indicates that in the first half of 2023, there were a 

cumulative 3.2 billion detections of cheating in mobile games, 

marking a 40% year-over-year increase. Among these, the 

most prevalent type of cheat used in FPS games is wallhack, 

accounting for 58.33% of the total, while aimbot, despite only 

representing 8.33%, has the most significant impact on user 

experience, as shown in Figure 1. Therefore, detecting and 

identifying cheating has become an urgent and imperative 

problem that needs immediate resolution in the FPS gaming 

industry. 

The genre of shooting games, unlike card games and others 

that do not require a focus on real-time client-side calculations, 

exhibits significant differences. To ensure a smooth gaming 

experience in shooting games, many gameplay calculation 

logics need to be executed locally on the client-side [5]. This 

makes it impractical to adopt server-side validation methods, 

laying the groundwork for cheating through hacks. Utilizing 

cross-process hacks with elevated privileges enables the 

extraction of crucial game logic data, allowing for features 

such as wallhacks through external rendering processes. In this 

scenario, the game logic executes without any anomalies, and 

the game remains unaware of the detailed information related 

to the hacking process. Alternatively, modifying shader data 

can influence the GPU rendering process, enabling features 

like perspective rendering, character coloring, and removing 

grass and trees. These challenging hacks are difficult for 

conventional anti-cheat measures to handle and detect. 

Therefore, this study adopted a visual approach using deep 

learning to discern and counteract these issues. 

(a) wallhack cheats (b) aimbot cheats

Figure 1. Common cheating methods 

This paper proposes a deep learning and visual analysis-

based FPS anti-cheat model, aimed at detecting the use of 

cheats by analyzing player behavior in game videos. The 

logical patterns of players’ in-game actions are examined, and 

visual recognition techniques are employed, allowing the 

model to effectively determine the presence of cheating 

behavior, irrespective of the cheat type involved. To achieve 

the anti-cheat objectives, three key challenges must be 

addressed: 

Challenge 1: Recognizing Visual Disparities 

The use of deep learning for visual detection of cheating has 

been identified as a promising approach [6-8], attributed to 

significant visual differences between normal players and 

cheaters. This method, which does not require additional 
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privacy information and relies solely on reliable image data [9], 

faces the challenge of accurately identifying these visual 

differences. 

Challenge 2: Quantifying Cheating Behavior  

The often subtle and difficult-to-detect behavioral 

differences manifested by cheating behavior necessitate real-

time capabilities in cheating detection systems [10, 11]. 

Furthermore, the quantification of appropriate cheating 

detection indicators and the design of a reasonable detection 

system are demanded, ensuring the system's ability to 

accurately and rapidly respond to various situations [12, 13]. 

Challenge 3: Enhancing Credibility  

It is crucial for anti-cheat system design to ensure accurate 

cheating detection without falsely identifying legitimate 

players as cheaters. The critical challenge lies in improving 

target detection and cheat classification accuracy, reducing 

false-positive rates to avoid negatively impacting legitimate 

players, and enhancing the overall credibility of the cheat 

detection system [14, 15]. 

Contributions are as follows: (1) A visual-based FPS game 

anti-cheat network has been developed, achieving 

comprehensive cheat detection through supervised learning on 

datasets of normal gaming and cheating scenarios. (2) By 

detecting and categorizing player behavior, a set of key 

performance indicators has been introduced. Monitoring the 

relative relationships between actions such as aiming 

frequency, effective aiming duration, and kill count enables 

the more accurate capture of differences between cheating 

players and regular players. (3) Extensive experiments and 

analyses conducted on a real online FPS game dataset have 

demonstrated the network's effectiveness and potential in 

detecting players using cheats. 
 

 

2. RELATED WORK 

 

2.1 Traditional methods 

 

Park and Lee [16] categorized methods for detecting game 

cheats into three types: player client detection, game network 

communication detection, and game remote server detection. 

In the case of Player Unknown’s Battlegrounds (PUBG), the 

Battle Eye system employed by the game continuously 

collects information on all processes in the user’s memory. It 

randomly extracts files from the player’s computer for analysis. 

However, this inevitably raises a series of privacy concerns. 

Yu et al. [17] investigated the situation where players’ clients 

send data packet commands to the server. They monitored 

different amounts of traffic during various time periods to 

identify changes in traffic when cheats were used compared to 

normal gameplay. However, cunning cheaters often employ 

techniques such as traffic obfuscation, encryption, and 

confusion to bypass detection. Some games, like "Fantasy 

Westward Journey" and "Dungeon & Fighter," intermittently 

present image captchas or numeric quizzes during gameplay 

to determine if users are present [18]. However, the 

effectiveness of these anti-cheat methods, based on pop-up 

event detection, has gradually diminished due to 

advancements in facial recognition and image processing 

technologies. 

 

2.2 Deep learning methods 

 

Traditional cheating detection systems often struggle to be 

effective against new vulnerabilities or sophisticated cheaters. 

With the advancement of artificial intelligence (AI) 

technology, methods based on image processing and AI have 

been widely explored in the field of cheating detection by 

many researchers. Galli et al. [19]. developed AI agents 

resembling human players by analyzing human player 

behavior using various methods. However, this approach has 

low accuracy and requires human involvement, resulting in 

inefficiency. Spijkerman and Marie Ehlers [20] applied 

Support Vector Machines (SVMs), decision trees, and Naive 

Bayes machine learning models to analyze players’ mouse and 

keyboard operations. By integrating learning features into 

SVM models, they achieved superior cheating detection 

results. However, relying solely on SVMs for cheating 

detection may overlook crucial information such as players’ 

aiming frequency, hit rates, and pre-aim positions [21]. Some 

researchers have used Recurrent Neural Networks (RNNs) to 

detect cheating. However, RNNs’ sequential computation 

process leads to high computational complexity during 

training and inference. This limitation restricts the scalability 

and accuracy of RNNs when dealing with long sequences or 

large-scale tasks [22-24]. 

In comparison to traditional image processing methods, 

deep learning can automatically learn and extract features 

from images without relying on manually designed feature 

extractors [25-27]. Through the combination and training of 

multiple layers of neural networks, deep learning excels at 

extracting advanced features from complex images. Deep 

learning has achieved significant success in areas such as 

image recognition, object detection, image enhancement, and 

image reconstruction. In the context of game cheating 

detection, deep learning’s capabilities are evident, as 

exemplified by the automatic recognition of cheating behavior 

patterns, such as "aimbot," in players of games like PUBG. 

These models leverage extensive datasets of player behavior 

features to accurately identify key cheating indicators, 

providing essential auxiliary criteria for the detector’s 

judgment [28-30]. 

 

2.3 Preliminary 

 

This section provides an overview of object detection and 

the important definitions used in the employed models. 

Additionally, a concise summary of commonly used symbols 

is given in Table 1. 

 

Table 1. Notations and definitions 

 
Notations Definitions 

W Convolutional layer parameter matrix 

ω Width of the image or bounding box 

ℎ Height of the image or bounding box 

c Number of channels 

BN Batch normalization 

IoU Intersection over Union 

Ttg Effective targeting time 

Ntg Effective targeting count 

 

1. Intersection over Union (IoU) 

Defined as the intersection area of two rectangular boxes 

divided by their union area, expressed by the following 

formula: 

 

| |

| |

A B
IoU

A B


=


 (1) 
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2. Batch Normalization (BN) 

BN normalizes the variance and mean of features across 

examples within each small batch, aiming to prevent issues 

like gradients vanishing or exploding. 

3. Max pooling 

Pooling layers down sample each input feature map by 

utilizing a 2×2 max-pooling window with a stride of 2, 

achieving a reduction in the spatial dimensions of the input 

data. 

4. Effective targeting 

The duration during which aiming is detected, and a person 

is recognized in the viewfinder is considered the effective 

targeting time in object detection. 

 

 

3. METHODOLOGY 

 

This section introduces the proposed vision-based anti-

cheating detection model, as shown in Figure 2, which consists 

of four key modules: the data preprocessing module, backbone 

module, neck module, and head module. Images from the 

dataset are first concatenated and padded through the data 

preprocessing module. Subsequently, the backbone module 

splits and applies convolutional operations to extract features 

from the images. Pooling operations are then used to merge 

the feature vectors. The neck module serves as a connecting 

module to further optimize and fuse features to adapt to the 

downstream tasks. Finally, the head module calculates the loss 

function and classifies the indicators of cheating through the 

classifier module for output. 

 

3.1 Data preprocessing module 

 

The data preprocessing module primarily involves scaling 

the input images to the network's input size and normalizing 

them. During the model training phase, this module employs 

Mosaic data augmentation operations to concatenate multiple 

images into a new complete photo for data input, using random 

scaling, random cropping, and random arrangement. This 

approach not only enhances the training speed of the model 

but also reduces its memory requirements. 

The module utilizes adaptive anchor box calculation, with 

the formula as follows: 

 

w
r

h
=  

1,  if min max

,  otherwise 

b a
m

m b a

m

w w
N

N h h

N

    
+     

=     



 

m

t

N
R

N
=  

(2) 

 

𝑟 represents the aspect ratio. Initially, utilizing 𝑛 bounding 

boxes and 9 anchor boxes, the aspect ratio 𝑟 is calculated. If 

the maximum aspect ratio (𝑟) of the anchor boxes is greater 

than the minimum aspect ratio (𝑟) of the bounding boxes, it is 

considered a successful match. If the probability of a 

successful match is less than 98%, a genetic algorithm and k-

means are employed to recalculate the anchors, and the anchor 

box with the highest success rate is saved. 

Adaptive image scaling techniques have been incorporated, 

and the formula is as follows: 

 

0 0

1 1

min ,
w h

w h


 
=  

 
 (3) 

 

1 1 1w w h =  =   

1 0dw w w= −  

1 0dh h h= −  

(4) 

 

 

 
 

Figure 2. Illustration of the proposed VADNet anti-cheating detection model 
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Calculate the minimum scaling factor 𝛼 between the target 

image and the original image. Then, multiply the height and 

width of the target image by 𝛼 to compute the size of the scaled 

image. Finally, adaptively calculate the padding values for 

convolution and pooling in the model based on the scaled 

image size, accounting for potential black borders. 

 

3.2 Backbone module 

 

The backbone module introduces the focus module to 

segment the image, splitting the high-resolution image (feature 

map) into multiple low-resolution images or feature maps. 

The input 𝑥 ∈ ℝ𝑏×𝑐×𝑤×ℎ  undergoes the focus layer to 

obtain �̂� ∈ ℝ𝑏×4𝑐×
𝑤

2
×
ℎ

2, where the channel count is quadrupled 

compared to the original RGB three-channel mode. The final 

result �̂�  is a feature map with twice the down-sampling 

without losing information, as depicted in Figure 3. 

 

 
(a) Structure of the focus module 

 
(b) Illustration of image segmentation 

 

Figure 3. Process of the focus module 

 

After this image is subjected to another convolution 

operation, it results in 𝑦 ∈ ℝ𝑏×𝑐′×
𝑤

2
×
ℎ

2 , as depicted in Figure 3. 

The formula for this process is as follows: 

 

( ) ( ), ' '
1

ˆ *
C

c c c c
c

y f x W b
=

 
= + 

 
  (5) 

 

The input feature map comprises c input channels 
(�̂�1: �̂�2: �̂�3: … : �̂�𝑐) and c' output channels (𝑦1: 𝑦2: 𝑦3: … : 𝑦𝑐′). 
The weight parameters of this CONV layer have the shape 

[filter_height, filter_width, in_channels, out_channels], 

denoted by 𝑊(𝑐,𝑐′) ∈ ℝ𝑟×𝑟×𝑐×𝑐′ . Here, f represents the 

activation function, and 𝑏𝑐′  is the bias term for the output 

feature maps of the same size. 

The output 𝑦 undergoes several CSP1_X and CSP2_X 

layers. The structure of CSP1_X is illustrated in Figure 4, and 

the corresponding formula is as follows: 

 

( )1 ,
1

*
C

cc c
c

y f y W b 

=

 
= + 

 
  

2
ˆ CBL( )y y=  

(6) 

( ) ( ) ( )( )2 2 2 2
ˆ ˆ ˆ ˆRes Res Res

X

y y y y = ∣ ‖ ‖  

( )2 2 ,
1

ˆ *
C

cc c
c

y f y W b 



=

 
= + 

 
  

 

 
 

Figure 4. Schematic diagram of submodule construction 

 

The Convolutional Block Layer (CBL) sums over all input 

channels, multiplying each channel by the corresponding 

weights and adding biases. The formula for feature extraction 

using the Res (Residual) method is as follows: 

 

( ),
1

CBL( ) ReLU BN *
C

cc c
c

y y W b 

=

  
= +  

  
  

Res( ) CBL(CBL( ))y y y= +  

(7) 

 

The CBL structure consists of three network layers: 

Convolution (Conv), Batch Normalization, and Leaky ReLU. 

In CSP1_X, we go through several CBL structures and 

concatenate residuals to obtain the final output �̂�. CSP2_X is 

similar to CSP1_X, but the Res part is replaced with 2X CBL 

structures. The formulas are as follows: 

 

( )1 ,
1

*
C

cc c
c

y f y W b 

=

 
= + 

 
  

2
ˆ CBL( )y y=  

( ) ( ) ( )( )2 2 2 2

2

ˆ ˆ ˆ ˆCBL CBL | | CBL

X

y y y y = ∣  

(8) 

 

( )2 2 ,
1

ˆ *
C

cc c
c

y f y W b 



=

 
= + 

 
  

( )( )1 2
ˆ ReLU BNy y y= ‖  

(9) 

 

 
 

Figure 5. SPP module illustration 

 

As shown in Figure 5, SPP performs max pooling on each 

feature map using three different sizes of pooling kernels to 

obtain predetermined feature map sizes. Finally, all feature 

maps are flattened into feature vectors and fused. 
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3.3 Neck module 

 

The Neck network is a crucial component in object 

detection algorithms, responsible for further optimizing and 

fusing features extracted by the backbone network to better 

adapt to the requirements of object detection tasks, as 

illustrated in Figure 6. The FPN is a top-down process that 

transfers and fuses high-level feature information through 

upsampling to obtain feature maps for prediction, allowing the 

network to perform object detection at multiple scales. In the 

bottom-up stage, images are input into the backbone network, 

and features with different scales of information are extracted 

using CSP1_X, CSP2_X, and Conv. In the top-down stage, the 

feature maps obtained at higher levels are transmitted to the 

lower levels through upsampling, enriching the semantic 

information in the lower-level feature maps. Finally, in the 

Lateral Connection process, the features obtained by 

upsampling the higher-level feature maps are fused with the 

lower-level feature maps, and the fusion can be a simple 

addition or a 1×1 convolution. After fusion, a fused feature 

map is generated at each scale, forming a feature pyramid. 

This feature pyramid contains semantic information at 

different scales, enabling the model to detect objects at 

different scales. Although FPN has already integrated shallow 

features once, it still cannot achieve satisfactory segmentation 

results. Therefore, PAN is introduced, enhancing the network's 

perception of multi-scale information through a mechanism 

that fuses features along both lateral and contextual paths. 

 

 
 

Figure 6. FPN-PAN structure 

 

As shown in Figure 6, it involves downsampling N2 (N2 

and P2 are the same feature map, so N2 already contains a 

considerable amount of low-level features). The downsampled 

feature map is then fused with P3 to obtain N3. Therefore, N3 

contains more low-level features than P3, and this pattern 

continues for N4, N5, and so forth. 

 

3.4 Head module 

 

The model has three main loss functions: Classification 

Loss (cls_loss), responsible for determining whether the 

classification of anchor boxes matches the annotations; 

Localization Loss (box_loss), which measures the error 

between predicted boxes and annotated boxes (GIoU); and 

Confidence Loss (obj_loss), which calculates the network's 

confidence. Binary cross-entropy loss functions are employed 

for both classification and localization losses, as represented 

by the following formulas: 

 

 
1

ln (1 )ln(1 )C y a y a
n

= − + − −  (10) 

 

where, x represents the sample, y represents the label, a 

represents the predicted output, and n represents the total 

number of samples. The confidence loss calculation adopts the 

CIOU_Loss as the bounding box loss function, and the 

formula is as follows: 

 

( )2

Lass 2

,
CIOU IOU

gtb b
v

c


= − −  (11) 

 

where, IOU is the intersection over union between the 

predicted box and the ground truth box. 𝜌2(𝑏, 𝑏𝑔𝑡) represents 

the Euclidean| distance between the center points of the 

predicted box and the ground truth box. c denotes the diagonal 

distance of the minimum closed region that can 

simultaneously contain the predicted box and the ground truth 

box. 

 

1

v

IOU v
 =

− +
 

2

2

4
arctan arctan

gt

gt

w w
v

hh

    
= −        

 

(12) 

 

where, wgt and hgt are the width and height of the ground truth 

bounding box, and w and h are the width and height of the 

predicted bounding box. Additionally, the output end of the 

Head module adopts sigmoid as the activation function, 

addressing the issue of slow weight updates in the loss 

function. 

 

3.5 Classifier module 

 

The differentiation in the ratios of duration, frequency, and 

kill effectiveness in aiming between normal players and those 

suspected of cheating is analyzed. Data standards are 

quantified to ascertain the usage of cheats by a player. The 

calculation of the duration of effective aiming is conducted by 

recognizing the period during which the player aims and 

maintains the target within sight. The duration ratio is 

subsequently calculated by dividing the duration of effective 

aiming by the total operational time of the aiming mechanism. 

The formula is delineated as follows: 

 

t
T

A

T g

T
 =  (13) 

 

where, TA represents the total time with the sight open, 

calculated by the continuous duration of the aiming action 

detected through target recognition. The ratio of effective 

aiming instances is the number of times effective aiming 

occurs divided by the total number of times the sight is open. 

 

t
N

A

N g

N
 =  (14) 
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The ratio of scoped kills is the quotient of the number of 

kills and the number of times the sight is opened. 

 

K
K

A

N

N
 =  (15) 

 

In the process of normal player behavior, there is ineffective 

scoping, i.e., situations where there is no one in sight. However, 

for cheating players, the ratios of effective scoping 

occurrences (𝛽𝑁)  and effective scoping duration (𝛽𝑇)  are 

significantly higher than those of normal players, and the 

scoped kill ratio (𝛽𝐾)  is also higher. By quantifying and 

statistically analyzing the differences in these three indicators 

between normal players and cheaters, we can classify whether 

cheating is involved. 

 

 

4. EXPERIMENT 

 

4.1 Datasets 

 

Our dataset consists of videos collected from online FPS 

games provided by a network company, ensuring privacy 

protection. Frames from the videos were processed and cut 

into numerous images, and the self-made dataset was created 

through preprocessing and labeling, resulting in training, 

testing, and validation sets. The basic statistics of the dataset 

are summarized in Table 2. 

 

Table 2. Basic statistics of the dataset 

 
Dataset Size #Sample 

Train 640×640 2115 

Valid 640×640 200 

Test 640×640 100 

 

4.2 Experiment settings 

 

The experiment runs on a device equipped with an NVIDIA 

Tesla T4 16GB GPU. In this experiment, the model undergoes 

training for 100 epochs with a batch size of 16, and the images 

are resized to 640×640 pixels. Multi-scale training is applied, 

treating the dataset as a single category. The SGD optimizer 

and synchronized batch normalization are utilized. A quarter-

sized data loader is employed, and a cosine learning rate 

scheduler is used. Label smoothing is set to 0.0, and early 

stopping waits for 100 epochs. 

 

4.3 Evaluation metrics 

 

Three common metrics are employed for evaluation, 

including precision, recall, and F1 score. Additionally, a 

confusion matrix is plotted to illustrate the correct recognition 

scenarios (see Table 3). 

 

Table 3. Different recognition scenarios 

 
Total Population 

(P+N) 
Positive (PP) Negative (NN) 

Positive (P) 
True Positive 

(TP) 

False Negative 

(FN) 

Negative (N) 
False Positive 

(FP) 

True Negative 

(TN) 

 

1. Precision 

 

( )

TP
P

TP FP
=

+
 (16) 

 

Therefore, P (Precision) refers to the proportion of correctly 

predicted positive samples (TP) among all samples predicted 

as positive TP+FP. An increase in P indicates that the model's 

judgments of "predicted positive" are more reliable, meaning 

that the model more accurately identifies positive instances. 

 

2. Recall 

 

( )

TP
R

TP FN
=

+
 (17) 

 

Recall, starting from true positive labels, calculates the 

proportion of correctly predicted positive samples (TP) among 

all true positive samples (TP+FN). A higher recall is desirable 

as it indicates that the model makes fewer false negatives and 

has a lower probability of missing actual positive instances. 

 

3. F1-Score 

 

( )2

2

1 ( )P R
F

P R






+  
=

 +
 (18) 

 

When β=1, the term is referred to as the F1-Score, which 

assigns equal importance to Recall and Precision, 

amalgamating these two metrics into a singular measure. 

 

 
(a) Precision curve 

 
(b) Recall curve 
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(c) Precision-recall curve 

 
(d) F1-Score curve 

 

Figure 7. Evaluation metrics on the dataset 

 

4.4 Experiment result 

 

As shown in Figure 7, it can be observed that P is 1.00, 

indicating that when the model predicts a sample as a positive 

class, there is a 100% probability of being correct. This 

suggests that the model has high confidence when predicting 

positive classes. 

R is 0.82, indicating that the model successfully identified 

82% of actual positive samples, implying that the model is 

effective in capturing most positive instances in the dataset. 

The P-R index of 0.729 mAP@0.5 means that the area under 

the Precision-Recall curve is 0.729, and the mean average 

precision at IOU 0.5 is 0.729. This indicates that the model 

performs relatively well in binary classification, maintaining 

high precision and recall simultaneously under certain 

thresholds. 

The F1-Score of 0.63, being the harmonic mean of precision 

and recall, provides a comprehensive evaluation of the model's 

ability to balance false positives and false negatives. 

As shown in Figure 8, the labels and predictions of batch 0 

in the validation dataset exhibit a high level of synchronization, 

confirming our outstanding performance in the process of 

recognizing the dataset. Figure 9 shows the box_loss, cls_loss, 

and dfl_loss on the training and validation sets. The box_loss 

calculates the error between the predicted box and the 

annotated box using Complete Intersection over Union (CIoU). 

The cls_loss computes whether the anchor box and its 

corresponding classification are correct, while the dfl_loss 

represents the distribution focal loss. 

mAP50(B) stands for Mean Average Precision at IoU 0.50 

for Large Objects, and its formula is as follows: 

 

1

1 N

i

i

mAP AP
N =

=   (19) 

 

 
(a) Label results of the validation dataset 

 
(b) Prediction results of the validation dataset 

 

Figure 8. Visualization comparison of batch 0 labels and 

predictions in the validation dataset 

 

APi refers to the area under the Precision-Recall curve for 

class i, AP50 signifies that the IoU value is set to 50%, and 

AP50-95 indicates that the IoU values range from 50% to 95%. 

The calculation involves taking the mean of the AP values at 

these IoU levels. 

Looking at the convergence curves of the loss functions on 

the validation set: (1) Box loss, val_loss, and dfl_loss exhibit 

a trend of initially decreasing and then increasing. Their 

minimum values appear before training for 50 epochs, 
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suggesting a potential overfitting issue. To address this, it may 

be beneficial to adjust the learning rate accordingly. (2) 

Precision fluctuates between 0.5 and 0.8, indicating substantial 

variability in the model's accuracy. This instability could be 

attributed to uneven data distribution, and improvements may 

be achieved by adjusting weights and thresholds. (3) Recall 

and mAP50 remain relatively stable, maintaining around 0.7. 

This indicates that the model provides comprehensive 

coverage of positive samples when identifying targets. (4) 

mAP50-95 also shows relative stability, hovering around 0.40 

with slight fluctuations. This suggests that the model exhibits 

good robustness and consistent performance on the dataset. 

 

 
 

Figure 9. Loss function convergence curve 

 

Figure 10 shows the confusion matrix during the prediction 

process. Each row of this confusion matrix corresponds to the 

true class, and each column corresponds to the predicted class. 

Each element in the matrix indicates the percentage of samples 

belonging to a specific class in the total samples when the 

model predicts that class. 

 

 
 

Figure 10. Confusion matrix 

 

This helps understand the model's classification accuracy 

for each class and identifies classes that are prone to confusion. 

Analyzing this confusion matrix allows insights into the 

model's performance on individual classes and reveals which 

classes are more likely to be confused. In the graph, it is 

evident that the confusion probability for the "ADS" class is 

relatively low, indicating high prediction accuracy. On the 

other hand, there is a higher confusion probability between the 

"head" class and the "person" class, possibly due to difficulties 

in calculating the effective aiming duration and the number of 

effective aiming instances. 

 

 

5. CONCLUSION 

 

In this study, deep learning visual algorithms were 

integrated to identify cheating in FPS games, leading to the 

acquisition of a series of quantifiable player metrics, such as 

effective aiming duration, through training on key labels. 

Comprehensive analyses and visualizations of the target 

detection results were conducted, leading to the conclusion 

that the model exhibits exceptional performance on crucial 

labels (such as ADS and nameplate), demonstrating high 

accuracy. The convergence curves for precision, recall, and 

F1-Score also indicated favorable performance, providing a 

reliable basis for subsequent calculations of metrics like 

effective aiming duration. 

Nevertheless, limitations were observed, including notable 

fluctuations in the precision convergence curve, which suggest 

issues such as overfitting and potential for improvement in the 

recognition rate of the "head" label. Future research directions 

will be aimed at addressing these challenges to further enhance 

the model's performance. Efforts will be dedicated to finer 

parameter tuning, with an exploration of more suitable 

learning rates and adjustment parameters to mitigate model 

fluctuations and overfitting. To improve recognition of the 

head label, the introduction of advanced target detection 

techniques or adjustments to network structures will be 
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considered to better capture features in the head region. 

Moreover, the ongoing optimization of the dataset, with the 

incorporation of more gaming scenarios and cheat variations, 

is aimed at enhancing the model's robustness. 
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