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The intricate and restricted movements of joints form the core of pedestrian gait 

characteristics, with these traits externally reflected through the overall and synchronized 

gait movements. Thus, identifying features of such coordinated motions significantly boosts 

the discriminative effectiveness of gait analysis. Addressing this, we have introduced a novel 

gait feature mining approach that amalgamates multi-semantic information, effectively 

utilizing the combined strengths of silhouette and skeleton data through a meticulously 

designed dual-branch network. This network aims to isolate coordinated constraint features 

from these distinct modalities. To derive the coordinated constraint features from silhouette 

data, we crafted a silhouette posture graph, which employs 2D skeleton data to navigate 

through the silhouette's obscured portions, alongside a specialized local micro-motion 

constraint module. This module's integration of feature maps allows for the detailed 

extraction of features indicative of limb coordination. Concurrently, for the nuanced 

extraction of joint motion constraints, we developed a global motion graph convolution 

operator. This operator layers the motion constraint relations of physically separate joints 

onto the human skeleton graph's adjacency matrix, facilitating a comprehensive capture of 

both local and overarching limb motion constraints. Furthermore, a constraint attention 

module has been innovated to dynamically emphasize significant coordinated motions 

within the feature channels, thus enriching the representation of pivotal coordinated motions. 

This advanced network underwent thorough training and validation on the CASIA-B 

dataset. The ensuing experimental outcomes affirm the method's efficacy, demonstrating 

commendable recognition accuracy and remarkable stability across varying viewing angles 

and dynamic walking conditions. 
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1. INTRODUCTION

Compared to traditional biometric recognition technologies, 

gait recognition offers unparalleled advantages, primarily due 

to its independence from subject cooperation and effective 

applicability in long-range scenarios. This technique has 

extensive applications across various domains, including 

public safety, medical research [1, 2], and crime prevention [3, 

4]. The variability in walking conditions and environmental 

factors, combined with the inherently nonrigid nature of 

pedestrian motion, tends to amplify the interclass distance of 

the same individual, thereby affecting gait recognition 

performance. Gait, a complex coordination of bodily joints 

and bones, is intricately defined by the interactions between 

joints (such as elbows and knees) and the specific movements 

of limbs (including knees and hip joints). The extraction of 

these relational features plays a crucial role in identifying 

unique and distinctive gait characteristics, thereby enhancing 

the precision of gait analysis. 

To acquire robust pedestrian gait features, researchers have 

developed sophisticated models that provide an abstract 

representation of gait. These models capitalize on the 

advanced nonlinear feature modeling capabilities of deep 

learning and extract identifiable characteristics crucial for gait 

recognition. Currently, the most effective methods are based 

on silhouette-based methods [5-8] and skeleton-based 

methods [9-11]. Both strategies integrate dynamic attributes of 

gait, concentrating on temporal variations within 

comprehensive spatial information and thereby substantially 

enhancing the precision of gait recognition. Silhouette-based 

methods extract binary images of human contours from video 

data and craft convolutional neural network (CNN) models 

that are proficient in delineating the intricate spatiotemporal 

characteristics of these contours. Notable examples include 

GaitSet [5], which aggressively discerns the positional 

interrelationships of unordered contours, and GaitPart [12], 

which concentrates on the movement dynamics of specific 

body segments. These approaches, by attentively focusing on 

spatial variances in human form, have achieved state-of-the-

art performance in gait recognition. Nevertheless, gait 

silhouette images, despite effectively conveying spatial 

motion information, are susceptible to environmental 

influences in dynamic settings and fail to capture 

spatiotemporal information about joint constraints during limb 

self-occlusion [13]. With the advancements in human pose 

estimation methods [14, 15], researchers have been able to 

directly acquire joint coordinates from videos, efficiently 

encoding these coordinates into human skeleton graphs. By 
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utilizing the node feature aggregation capability of graph 

convolution networks (GCNs), these methods capture the 

spatiotemporal motion features of gait. For instance, the 

ResGCN [9] aggregates features of physical structure-

connected joints using a GCN in the spatial domain and 

employs CNNs for temporal aggregation of joint movement. 

These innovative methods greatly mitigate the impact of 

various impediments, such as physical obstructions, lighting 

discrepancies, and viewpoint variations, on gait recognition 

accuracy. However, skeletal data, despite their informative 

nature, do not fully encompass the external characteristics of 

the human form. 

Considering that silhouette data provide rich spatial post 

information and skeleton data captures joint motion dynamics, 

researchers have strategically combined these two modal 

datasets to harness their complementary advantages. For 

example, Wang and Chen [16] employed a dual-branch 

network to explore feature mining methods across these 

modalities. This method constructs a fully connected graph to 

aggregate features of non-physically connected joints. 

However, such full connectivity can weaken the features of 

coordinated movements in key joints. Nonetheless, there is a 

need for further research into the extraction of coordinated 

limb movement features from silhouette images. Gait, 

inherently, is an orchestration of the entire body's movement. 

It includes the linked movements of adjacent joints, like 

elbows and wrists, to articulate local human motion, as well as 

the interactions between physically disconnected joints, such 

as elbows and knees, to represent global gait movement. This 

comprehensive movement mirrors the coordination and 

coherence of human motion. The identification and extraction 

of these intricate relationships are crucial in augmenting the 

discriminatory power of gait features. 

This study delves into the articulation of motion constraint 

relationships between limbs across various modalities, 

introducing a gait constraint feature mining method that 

amalgamates multisemantic information. This approach 

highlights the synchronicity of motion across the human body, 

both globally and locally, by formulating a global motion 

adjacency matrix that delineates the coordinated movements 

of physically disconnected joints. The core contributions of 

this paper are outlined as follows: 

(1) To distill synergistic motion features from contour data, 

we devised contour posture maps, employing skeletal data to 

steer the limb movements within the contour. A local micro-

motion constraint module was crafted to synthesize the 

movements of body segments in a sequential manner, 

capturing the collaborative motion features of two parts over a 

specified duration. 

(2) A constrained motion graph convolutional operator was 

designed, capturing both the local motion of joints and the 

collaborative movement of distal joints within an adjacency 

matrix. This operator adeptly extracts the local dependency 

features of joints alongside the global dependency features of 

distal joints, ensuring a comprehensive representation of 

motion. 

(3) We established a dual-branch gait constraint feature 

mining network, which leverages attention mechanisms to 

amplify the key synergistic motion features. This network 

achieved commendable recognition rates on the CASIA-B 

database, showcasing enhanced recognition stability across 

wide-ranging viewpoints and variable walking conditions. 

 

 

2. RELATED WORKS 

 

Gait recognition methods can be broadly categorized into 

appearance-based methods [5-7, 17-19] and model-based 

methods [9-11, 20, 21], differentiated by the underlying gait 

feature description models employed. Both the silhouette-

based method of the former and the skeleton-based methods of 

the latter achieve favorable recognition results because of the 

focus on temporal variations in gait. 

Silhouette-based methods first extract pedestrian silhouettes 

from videos to construct a gait silhouette graph. It fully 

expresses the motion characteristics of the human silhouette in 

two dimensions. Researchers such as Thapar et al. [22], Li et 

al. [23], and Wolf et al. [24] have effectively addressed the 

extraction of spatiotemporal gait features by employing long 

short-term memory (LSTM) networks and 3D-CNNs. 

Furthermore, Chao et al. [5] attempted to input unordered sets 

of gait silhouette graphs into the GaitSet network, 

automatically learning the spatial motion and positional 

relationships of gait. Fan et al. [12] focused on the motion 

characteristics of different body parts, designed the GaitPart 

network and used the micromotion capture module (MCM) to 

model local micromotion features, thereby obtaining 

spatiotemporal motion features of different parts. Hou et al. 

[25] constructed the gait lateral network (GLN) to learn 

distinctive, compact feature representations from silhouettes. 

Then, they merged features extracted at different stages at the 

silhouette level and set level using a feature pyramid in a top-

down and lateral connection fusion approach. Although these 

methods can model the spatial information of humans in the 

temporal dimension, in complex scenes, gait silhouette graphs 

might introduce irrelevant information. Moreover, when the 

body self-occludes, the motion information between limbs is 

weakened, limiting further enhancement of the performance of 

these methods. Interventionary studies involving animals or 

humans and other studies that require ethical approval must 

list the authority that provided approval and the corresponding 

ethical approval code. 

Skeleton-based methods employ human pose estimators to 

directly estimate two-dimensional or three-dimensional joint 

coordinates from images or videos, effectively minimizing 

external environmental influences. For example, Liao et al. [20] 

and Qi et al. [21] innovatively encoded interlimb motion 

relationships into pseudoimages and developed networks such 

as PoseGait and LC-POSEGAIT for gait feature modeling. 

However, given the holistic nature of human motion, studies 

often fail to fully capture the intricate motion dependencies 

and constraints among limbs. In recent years, GCNs have 

emerged as potent tools for feature modeling in non-Euclidean 

space data. As an effective feature extractor for graph-

structured data, a GCN excels in aggregating features from 

neighboring nodes, thus enabling efficient feature 

transmission. Scholars have built GCN-based networks to 

directly feature-model human skeleton graphs. These methods 

lead to substantial improvements in recognition rates over 

methods that extract features from manually crafted 

pseudoimages. Yan et al. [26] initially designed the ST-GCN 

for feature modeling of human skeleton graphs. Inspired by 

these previous works, Teepe et al. [9] proposed the ResGCN 

network. This network, comprising each residual block of the 

GCN and CNN, adeptly aggregates joint features across both 

spatial and temporal dimensions. To solve the problem of 

weight bias due to the aggregation of long-range joint features, 

Hasan et al. [27] proposed a GCN with multiscale feature 
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aggregation technology. This approach involves creating 

adjacency matrices for varying distance hops, effectively 

reducing bias in feature aggregation. 

Utilizing different modal data, such as deep sensors and 

videos, for gait recognition can enhance recognition 

performance [28]. Li et al. [29] combined the advantages of 

silhouettes and posture heatmaps to construct ensemble 

transformer modules, modeling motion patterns across 

different time scales. Wang and Chen [16] constructed a dual-

branch neural network model for feature-model silhouette and 

skeleton data. Peng et al. [30] proposed the BiFusion network 

to mine the complementary cues of skeletons and contours. 

This method constructs skeletal graphs at three scales-joints, 

limbs, and torso-based on the inherent hierarchical semantics 

of human joints within the skeleton. 

Although scholars have explored multimodal gait feature 

mining methods, further strengthening the expression of gait 

features through holistic human motion and interactive 

constraint features between limbs is possible. Therefore, this 

study combines the expressive advantages of multimodal gait 

data to mine constraint features between joints, aiming to 

obtain a discriminative gait feature representation. 

 

 

3. JOINT MOTION CONSTRAINTS FEATURE 

EXTRACTION METHODS 

 

To obtain the motion information of obscured parts in gait 

silhouette graphs, we leverage the advantage of skeleton 

graphs by superimposing two-dimensional human posts onto 

silhouette images, thus achieving a comprehensive 

representation of limb motion and shape information. 

 

3.1 Multimodal data construction 

 

To obtain the motion information of obscured parts in gait 

silhouette graphs, we leverage the advantage of skeleton 

graphs by superimposing two-dimensional human posts onto 

silhouette images, thus achieving a comprehensive 

representation of limb motion and shape information. As 

shown in Figure 1, the left side shows the video sequence of 

subject 004-bg-01-054 from the CASIA-B dataset, the middle 

side shows the gait silhouette and 2D skeleton graphs, and the 

right side shows the combined silhouette post graph 𝐺𝑠𝑗. It is 

evident from the figure that the spatial motion information of 

the occluded right arm of the pedestrian in motion can be 

reproduced using the skeleton graph. 

For the human skeleton graph, the sequence of human 

skeleton graphs obtained from three-dimensional post 

estimation clearly expresses the spatial position changes of 

joints. Additionally, pedestrian motion speed and body sway 

are also typical features of gait. Compared to single-semantic 

gait description data, multiangle feature descriptions can more 

richly express gait characteristics in three-dimensional space. 

Here, the motion speed and body sway characteristics are 

abstractly described based on the three-dimensional 

coordinates of the joints. The human skeleton graph is denoted 

as, where the point set 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑁} represents N joint 

nodes, and the edge set 𝐸 = 𝐸𝑠 ∪ 𝐸𝑡 consists of spatial edges 

𝐸𝑠  and temporal edges 𝐸𝑡 . 𝐸𝑠 = {(𝑣𝑖 , 𝑣𝑗)| 𝑣𝑖 , 𝑣𝑗  ∈ 𝑉} 

represents the edges formed by bone connections between 

joints vi  and 𝑣𝑗 , and 𝐸𝑡 = {𝑣𝑖
𝑡 , 𝑣𝑖

𝑡+1)|𝑡, 𝑡 + 1 ∈ 𝑇} represents 

the temporal edge formed by joint vi  between frames 𝑡 and 

𝑡 + 1. 

The joint coordinate data of the skeleton graph are denoted 

as 𝐷𝑗 . The pedestrian's walking speed is described by the 

difference in joint coordinates between two frames, denoted as 

𝐷𝑑 , as shown in Eq. (1), where 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 , respectively 

represent the displacements of joint 𝑣𝑖 in the 𝑥, 𝑦, 𝑧 directions 

between adjacent frames. 

 

𝐷𝑑 = {(𝑎𝑡 , 𝑏𝑡, 𝑐𝑡)𝑖|𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇} (1) 

 

The degree of body sway is represented by the angle θ 

formed by the vector 𝑙𝐺𝑖, which is composed of joint 𝑣𝑖 and 

the center of gravity vG , with the normal vector n  of the 

coordinate plane denoted as 𝐷𝑎, as shown in Eq. (2), where 

𝜃𝑥
𝑡 , 𝜃𝑦

𝑡 , 𝜃𝑧
𝑡  represents the angles between vector 𝑙𝐺𝑖  and the 

three planes. 

 

 
 

Figure 1. Silhouette, skeleton, and silhouette post graphs of subject #004 (bg-01-054) in the CASIA-B dataset 
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{

𝐷𝑎 = {(𝜃𝑥
𝑡 , 𝜃𝑦

𝑡 , 𝜃𝑧
𝑡)|𝑖, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇}

𝜃𝑡 = cos−1 (
𝑙𝐺𝑖

�̅̅�̅ ∙ �̅�

|𝑙𝐺𝑖
�̅̅�̅| |�̅�|

)
 (2) 

 

A multisemantic dataset of joint motion relationships 𝐷 =
{𝐷𝑗 , 𝐷𝑑 , 𝐷𝑎} is constructed, resulting in the multimodal gait 

dataset 𝐷𝑔𝑎𝑖𝑡 = 𝐺𝑠𝑗 ∪ 𝐷. 

 

3.2 Gait constrained feature mining network 

 

To obtain unique abstract gait features from diverse 

semantic gait data, a dual-branch network is used to model 

features of two types of data according to their specific 

characteristics. The silhouette post graph 𝐺𝑠𝑗, as grid data with 

translational invariance, enables the convolutional kernels of 

CNNs to focus on local changes in the image. This approach 

effectively captures the features of crucial areas, harnessing 

the capacity of CNNs to model local features and track motion 

changes in humans. In contrast, the human skeleton graph 𝐺 

represents non-Euclidean space data and lacks translational 

invariance. A GCN synthesizes features from a node and its 

adjacent nodes, thereby generating novel features for the node 

and capturing the global information of the graph-structured 

data. Owing to the significant advantage of GCN networks in 

extracting features from graph-structured data, they are the 

preferred choice for modeling features of the human skeleton. 

 

Gait embodies a complex coordination of joints, bones, and 

muscle tissues, forming an integrated movement pattern. The 

identification of interactive constraint features between limbs 

and joints is crucial for improving feature distinction. 

Temporally, the significance of a particular body part or joint's 

movement fluctuates over different periods. Spatially, the 

interactions among joints vary due to movement constraints. 

Consequently, a novel approach involves designing a 

constraint attention module. This module implicitly assesses 

the movement significance of limbs and joints, thereby 

extracting significant features effectively. 

This study introduces the gait-constrained feature extraction 

network based on attention (Att-CFEN), as shown in Figure 2. 

The network comprises three primary components: the Limb 

Constraint Feature Extraction sub-Network (LCFEN), the 

Joint Constraint Feature Extraction sub-Network (JCFEN), 

and the Fusion Attention Module (FAM). The LCFEN and 

JCFEN are responsible for processing the silhouette posture 

graph and the human skeleton graph, respectively. These 

methods produce advanced limb constraint feature vectors YA 

and joint constraint feature vectors YB. Subsequently, the FAM 

integrates these feature vectors from both modalities through 

weighted fusion. This process evaluates the relative 

importance of different modal feature vectors, leading to gait 

classification outcomes via a fully connected layer. The 

feature modeling procedures for both branches are described 

in the following sections. 

 

 
 

Figure 2. Att-CFEN network framework diagram 

 

3.2.1 Limb constraint feature extraction 

For the silhouette post graph, the analysis extends beyond 

global motion information to include constrained movements 

between limbs (e.g., arms, legs, and combinations thereof), 

which are indicative of individual walking patterns. The 

Gaitpart model [12] demonstrates exceptional capability in 

capturing micro movements between limbs. Consequently, the 

LCFEN architecture, as shown in Figure 3, is grounded in the 

Gaitpart framework for effective feature modeling of these 

limb constraint micro movements. 

The input to the LCFEN is a contour posture map, whose 

features 𝑋𝐴
(0)

∈ ℝ𝐶×𝐻×𝑊  are a three-dimensional tensor with 

dimensions C  × 𝐻 × 𝑊 , where C represents the feature 

dimension, and 𝐻  and 𝑊  are the height and width of the 

feature map, respectively. The Global Feature Extractor (GFE) 

employs focal convolution for fine-grained spatial feature 

extraction, obtaining frame-level local spatial features 𝑋𝐴 . 

Horizontal Pooling (HP) first divides 𝑋𝐴(𝐹) horizontally into 𝑛 

parts, denoted as [ 𝑋𝐴(1) ,  𝑋𝐴(2), ⋯ , 𝑋𝐴(𝑛)] , where 𝑋𝐴(𝑖) ∈

ℝ
𝐶

𝑛
×𝐻×𝑊

, segmenting the body into 𝑛 local regions. Besides 

extracting frame-level features for each part, it also performs 

frame-level feature fusion, combining the frame-level features 

of body parts to obtain fused part features. Then, it fuses part 

features with frame-level features to achieve limb synergistic 

motion features. 
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Figure 3. Structure of the LCFEN 

 

Specifically, the method merges the motion frames of the 

front and back halves of two body parts at a step size. Let the 

fusion step size be 𝑚, meaning the 𝑖-th part is fused with the 

(𝑖 + 𝑚)-th part; the fusion scale is set to 2, indicating that the 

second half of the feature map of the 𝑖-th part swaps places 

with the second half of the feature map of the (𝑖 + 𝑚)-th part, 

as shown in Eq. (3). The fused feature maps of 𝑛 parts are 

denoted as [�̃�𝐴(1), �̃�𝐴(2), ⋯ , �̃�𝐴(𝑛)]. 

 

�̃�𝐴(𝑖) = [𝑥𝐴(𝑖)]𝑗 ⊕ [𝑥𝐴(𝑖+𝑚)]
𝑘

(𝑗 ∈ (1,
𝑐

2𝑛
) , 𝑘

∈ (
𝑐

2𝑛
+ 1, 𝑐)) 

(3) 

 

The constrained micromotion capture module (CMCM) 

transforms the fused features [�̃�𝐴(1), �̃�𝐴(2), ⋯ , �̃�𝐴(𝑛)] into limb 

constraint features [ ỸA(1) ,  ỸA(2), ⋯ , ỸA(n)] . Subsequently, 

these features are integrated into a comprehensive global 

constraint feature ỸA, as detailed in Eq. (4). 

 

�̃�𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(�̃�𝐴(1), �̃�𝐴(2), ⋯ , �̃�𝐴(𝑛)) (4) 

 

To obtain significant constraint features of body parts, the 

limb constraint attention module (LCAM) is integrated into 

the system. The LCAM evaluates constraint features across 

various channels, emphasizing key gait characteristics and 

thereby augmenting the distinctiveness of gait features. 

Utilizing channel attention, LCAM assesses the feature maps. 

Its structural design is illustrated within the dashed box in 

Figure 4. The LCAM executes a one-dimensional convolution 

on the feature channels. This process begins with a global 

average pooling that condenses ỸA into a 1 × 1 × C vector, as 

shown in Eq. (5). 

 

𝑓1(�̃�𝐴) =
1

𝑊 × 𝐻
∑  

𝑊

𝑗=1

∑  

𝐻

𝑘=1

�̃�𝐴(𝑗, 𝑘) (5) 

 

The vector resulting from the LCAM is then processed 

through two fully connected layers, FC1 and FC2. The first 

layer, FC1, reduces the dimensionality from C channels to C/r 

channels, enhancing computational efficiency, where r  is a 

predefined positive integer. FC2 then maps this reduced 

dimensionality back to C  channels. Following this, the 

Softmax function is applied to derive the weight Wt for each 

channel. These weights are then elementwise multiplied by ỸA 

to produce the weighted feature map YA, as depicted in Eq. (6). 

Consequently, the HCFEN ultimately outputs a feature set YA 

that accurately represents the coordinated movements of the 

human body's limbs. 

 

{
𝑊𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶2 (𝐹𝐶1 (𝑓1(�̃�𝐴))))

𝑌A = 𝑊𝑡 ⊗ ỸA

 (6) 

 

3.2.2 Joint constraint feature extraction 

For physically connected joints, such as the shoulder and 

elbow joints, they can express the local motion of limbs, 

manifesting as constrained motion relationships between 

joints. Conversely, physically unconnected joints, such as the 

elbow and knee joints, can reflect the coordination of gait, 

exhibiting synergistic motion relationships between them. In 

traditional Graph Convolutional Networks (GCNs), node 

features are aggregated based on the encoding of the adjacency 

matrix, which typically encodes only the nodes that are 

connected. This approach can lead to the attenuation of 

features for distal joints due to the weighted bias in the 

conventional graph convolution operators. Therefore, to 

aggregate the features of physically unconnected joints onto 

their interacting joints effectively, a new method encodes the 

constraint relationship between joints as �̃�𝑖,𝑗, according to Eq. 

(7), where 𝐸𝑢  represents the constraint edges between 

physically unconnected joints. This method establishes 

connectivity edges between symmetrical limbs' joints, such as 

the elbow, wrist, knee, and ankle joints, directly expressing 

their constrained motion relationships. 

 

�̃�𝑖,𝑗 = {
1,   (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸𝑠 ∪ 𝐸𝑢

0，(𝑣𝑖 , 𝑣𝑗) ∉ 𝐸𝑠 ∪ 𝐸𝑢

 (7) 

 

All constraint relationships form the adjacency matrix, 

named the global motion adjacency matrix �̃� = [�̃�𝑖,𝑗] ∈ ℝ𝑁×𝑀, 

where N and M represent the number of joints and spatial 

edges, respectively. The GCN processes spatial features of 

nodes based on the encoding of �̃�, as detailed in Eq. (8). In this 

context, D is the degree matrix of Ã, �̂� is the inverse matrix of 

the joint degree matrix D, 𝐻(𝑙) denotes the feature of the 𝑙-th 

layer, σ  is the activation function, and 𝑊(𝑙)  represents the 

parameter matrix of the l-th layer. The temporal feature 
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aggregation for joints is conducted according to Eq. (9), where 

fi is the feature of the 𝑖-th joint and 𝑇 signifies the aggregation 

time. 

 

𝐻(𝑙+1) = 𝜎[�̂�−
1
2�̃��̂�−

1
2𝐻(𝑙)𝑊(𝑙)] (8) 

 

Inspired by the ST-GCN action recognition network, the 

Joint Constraint Feature Extraction subnetwork (JCFEN) is 

designed to model the constraint features of joints, as depicted 

in Figure 4. This network processes the multisemantic dataset 

D, constructed in Section 3, with its input features represented 

as 𝑋𝐵(1)
(0)

, 𝑋𝐵(2)
(0)

, 𝑋𝐵(3)
(0)

∈ ℝ𝐶×𝑇×𝐾 . Here, 𝐶  is the joint feature 

dimension, 𝑇 is the number of frames, and 𝐾 is the number of 

joints. JCFEN employs nine spatiotemporal feature 

aggregation modules (STFAMs) with residual connections for 

skeletal feature modeling. Each STFAM consists of a spatial 

feature aggregation layer (SFAL) and a temporal feature 

aggregation layer (TFAL). In parallel with the LCFEN 

subnetwork, the Joint Constraint Attention Module (JCAM) is 

employed following the last three aggregation modules. The 

JCAM is instrumental in obtaining feature maps that highlight 

the spatiotemporal significance of joint movements, thus 

enhancing the representation of high-level semantic joint 

features. 

Within this subnetwork, three types of data are processed 

through six STFAMs, resulting in three sets of features 

𝑋𝐵(1)
(𝑖)

, 𝑋𝐵(2)
(𝑖)

, 𝑋𝐵(3)
(𝑖)

. These feature sets are subsequently 

combined to produce the joint fusion feature 𝑋𝐵
(𝑖)

. 

Subsequently, the JCAM refines these features to generate the 

weighted feature 𝑋𝐵
(𝑖+1)

. The structure of the JCAM module is 

illustrated in Figure 5. 

 

 
 

Figure 4. Structure of the JCFEN 

 

 
 

Figure 5. Structure of the JCAM
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The JCAM in this network emphasizes the significance of 

joint movement from temporal and spatial dimensions. It 

utilizes temporal constraint attention M1 and spatial constraint 

attention M2 to apply importance weighting to the feature map. 

M1 focuses on the spatial motion features of the joints over 

time by compressing the input joint motion feature map along 

the temporal dimension. This process yields temporal feature 

scoring for each joint within the feature channels. Conversely, 

M2 focuses on the coordinated motion features between joints 

by compressing the feature map along the spatial dimension. 

It compresses the feature maps along the spatial dimension to 

obtain the feature scores of motion frames, ultimately 

generating the joint constraint feature map X̃B
(i)

. The 

architectures of M1 and M2 align with the JCAM and are 

therefore not repeated here. The specific functions of these 

models are as follows. 

M1 averages the joint features in 𝑋𝐵
(𝑖)

 along the temporal 

dimension, expressed as 
1

𝑇
∑ 𝑋𝐵

(𝑖)𝑇
𝑡=1 , to capture the global 

context feature of each feature map. Subsequently, the fully 

connected layer FC4 remaps the tensor from FC3, from a 

dimension of C/r × K to C × K. The Softmax function is then 

employed to determine the weight Wt  of each joint. These 

weights are applied to 𝑋𝐵
(𝑖)

 to produce the feature map XB1

(i)
∈

RC×T×K  with joint weights. The implementation of M1 is 

detailed in Eq. (9). Here, σ represents the Softmax activation 

function. 

 

{
𝑊𝑡 = 𝜎(𝐹𝐶4(𝐹𝐶3(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋𝐵

(𝑖)
)) ∙ 𝑤1) ∙ 𝑤2)

𝑋𝐵1

(𝑖)
= 𝑋𝐵

(𝑖)
⊗ 𝑊𝑝

 (9) 

 

M2 processes the weighted feature map X̃B
(i)

 by averaging 

along dimension K , specifically calculating 
1

K
∑ X̃B

(i)K
k=1 , to 

assign frame-level weight scores. These data are then traversed 

through the fully connected layers FC5 and FC6, resulting in 

the determination of frame-level weights Wp. These weights 

are subsequently applied to �̃�𝐵
(𝑖)

 to produce the final 

spatiotemporal weighted feature map XB2

(i)
. The operational 

methodology of M2, encompassing this entire process, is 

shown in Eq. (10). 

 

{
𝑊𝑃 = 𝜎(𝐹𝐶6(𝐹𝐶5(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋𝐵

(𝑖)
)) ∙ 𝑤3) ∙ 𝑤4)

𝑋𝐵2

(𝑖)
= 𝑋𝐵

(𝑖)
⊗ 𝑊𝑝

 (10) 

 

Then, XB1

(i)
 and XB2

(i)
 are combined through the ⊕operation 

to obtain the spatiotemporal weighted feature map of joint 

constraints, X̃B
(i)

, as shown in Eq. (11). 

 

�̃�𝐵
(𝑖)

= 𝑋𝐵1

(𝑖)
⊕ 𝑋𝐵2

(𝑖)
 (11) 

 

3.2.3 Fusion feature modeling 

Once the subnetworks LCFEN and JCFEN generate the 

feature vectors YA ∈ ℝC×H×W and YB ∈ ℝC×T×K, respectively, 

representing constraints between limbs and joints, the 

subsequent phase of the Att-CFEN network (illustrated in 

Figure 3) employs the FAM. The role of the FAM is to 

evaluate the contributions of these two modal features. This 

evaluation involves pooling operations on both types of 

constraint vectors to condense the feature channel dimensions 

and assign scores to the resultant feature maps. The role of the 

FAM is to evaluate the contributions of these two modal 

features. This evaluation involves pooling operations on both 

types of constraint vectors to condense the feature channel 

dimensions and assign scores to the resultant feature maps. 

While the attention modules in the preceding branches use 

average pooling to capture the global features of the maps, the 

FAM incorporates both maximum pooling and average 

pooling. This dual approach enables the FAM to concentrate 

on features from varying perspectives: Maxpool targets the 

most significant features of the map, whereas Avgpool focuses 

on the global features. Following these pooling operations, a 

1×1×2C dimensional feature vector X′ is created, as detailed 

in Eq. (12). This vector is then processed through two fully 

connected layers to produce a fusion weight matrix W , 

calculated similarly to the method outlined in Eq. (11), where 

W and X′ yield a weighted feature map. 

 
𝑋′ = (𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑌𝐴) ⊕ 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑌𝐴)) ⊕ (𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑌𝐵)

⊕ 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑌𝐵)) 
(12) 

 
Thus, the FAM outputs the weighted feature map of the two 

modalities combined. After passing through the pooling layer 

and the fully connected layer, the dimension reduction and 

one-dimensional linear transformation of the fused weighted 

features are completed, and pedestrian feature classification is 

performed using the Softmax function. 

 

 

4. EXPERIMENTS AND ANALYSIS 

 

This study implemented network training on the publicly 

available gait dataset CASIA-B and devised three experiments 

to assess the efficacy of the Att-CFEN network. The first 

experiment involved a statistical analysis of the recognition 

rates achieved by the new method, and compared with 

benchmark techniques in pose estimation to evaluate its 

performance. In the second experiment, ablation studies were 

conducted to evaluate the contribution of the constraint 

attention module in accentuating significant features. Finally, 

the third experiment focused on examining the role of 

multisemantic data in enriching gait feature representation. 

 

4.1 Experimental datasets 

 

The CASIA-B multiview gait dataset contains 124 

pedestrians, each recorded under three walking conditions: 

walking with a bag (BG), wearing a coat (CL), and walking 

normally (NM). These were recorded from 11 angles, ranging 

from 0° to 180°, yielding a total of 124×10×11 video clips for 

each participant. The 2D coordinates of pedestrian joints were 

extracted from these videos using the HRNet algorithm and 

subsequently transformed into 3D coordinates. For network 

training, the dataset included all ten walking states from 

pedestrians #001 to #074. The gallery set utilized the nm01-04 

data of pedestrians #075 to #124. Moreover, the probe set 

included NM05-06, BG01-02, and CL01-02 data from 

pedestrians #075 to #124, providing a comprehensive range of 

gait patterns for evaluation.
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4.2 Experimental analysis 

 

4.2.1 Recognition rate analysis 

The recognition rates of the Att-CFEN network on the 

CASIA-B dataset were subjected to a thorough statistical 

analysis, as detailed in Table 1. This analysis computed the 

average recognition rates for the NM, BG, and CL walking 

states across 11 angles. These rates were subsequently 

contrasted with several established methods: PoseGait [20] for 

pose estimation, Gaitgraph [9] and GaitGraph2 [31] for graph 

convolution, GaitSet [5] for gait silhouette analysis, method 

[16] and BiFusion [30] for multimodal. The findings, as 

presented in the table, indicate that the average recognition 

rates of Att-CFEN under the three conditions were 93.0%, 

87.2%, and 82.5%, respectively, surpassing those of the 

compared methods. The recognition rate under the CL 

condition was lower than that under the other two conditions, 

which was primarily attributed to the impact of a coat on the 

pedestrian's silhouette. This factor adversely affects the pose 

estimation accuracy, thereby diminishing the recognition 

performance. Compared to the PoseGait method, the Att-

CFEN network employs a more precise HRnet for pose 

estimation and utilizes a GCN to discern motion constraint 

relationships between joints. This approach, coupled with the 

analysis of human form characteristics, leads to a significant 

improvement in recognition rates. In contrast to GaitGraph and 

GaitGraph2, the Att-CFEN method not only uses three-

dimensional joint coordinates but also integrates additional 

features such as joint centroid offset angles and joint 

displacements. This approach enriches the expression of joint 

motion characteristics, enabling the network to model gait 

features from multiple perspectives. Additionally, the 

application of spatiotemporal attention mechanisms 

effectively highlights key motion features, amplifies crucial 

gait characteristics, and minimizes irrelevant factors, thereby 

markedly enhancing feature discrimination. 

While GaitSet achieves higher recognition rates under NM 

conditions than does the Att-CFEN method, the latter 

outperforms GaitSet under CL conditions by a significant 

margin of 12.1 percentage points. For example, GaitSet's 

recognition rate at a 0° angle drops from 90.8% (NM) to 61.4% 

(CL), a substantial decrease of nearly 30 percentage points; a 

similar trend is observed at a 180° angle. However, the Att-

CFEN demonstrated remarkable stability under various 

walking conditions (BG, CL), with only a 2.2% reduction in 

the average recognition rate. This demonstrates the robustness 

of the Att-CFEN in terms of recognition performance. The 

average recognition rate of Att-CFEN is slightly lower than 

that of methods presented in the study by Teepe et al. [9]. This 

discrepancy is attributed to the estimation of human skeleton 

joint coordinates, which initially involves two-dimensional 

posture estimation before transitioning to three-dimensional 

estimation, introducing potential data inaccuracies. Despite 

this, Att-CFEN maintains comparable recognition rates at 

extreme viewing angles (0° and 180°) relative to other angles. 

This consistency suggests that the incorporation of three-

dimensional coordinates effectively mitigates the impact of 

varying shooting angles on gait recognition, demonstrating the 

method's adaptability to different observational perspectives. 

Compared to the multimodal BiFusion [30] method, the 

method presented in this paper achieves an average 

recognition rate of 86.5%, which is lower than that of the 

BiFusion method. However, under the CL walking condition, 

the difference between the highest and lowest recognition rates 

from different viewpoints is 5.4% for our method, compared 

to 8.2% for the BiFusion method. The reason for this is that 

our method employs three-dimensional joint coordinates, 

which offer better viewpoint robustness. However, due to 

biases introduced by two stages of pose estimation, the 

average recognition rate of our method is lower than that of 

the BiFusion method.

 

Table 1. Average recognition rates (%) on the CASIA-B dataset 

 

Probe 
Gallery: NM01-04（#075-#124） 

0º 18º 36º 54º 72º 90º 108º 126º 144º 162º 180º Mean 

NM 

05-06 

PoseGait [20] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7 

GaitGraph [9] 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7 

GaitGraph2 [31] 78.5 82.9 85.8 85.6 83.1 81.5 84.3 83.2 84.2 81.6 71.8 82.0 

GaitSet [5] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0 

Multimodal [16] 97.0 97.9 98.4 98.3 97.2 97.3 98.2 98.4 98.3 98.1 96.0 97.7 

BiFusion [30] 98.0 99.1 99.5 99.3 98.7 97.5 98.5 99.1 99.6 99.5 96.8 98.7 

Att-CFEN 92.1 92.5 93.2 93.8 92.7 92.9 94.3 94.4 93.7 93.6 90.1 93.0 

BG 

01-02 

PoseGait [20] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5 

GaitGraph [9] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8 

GaitGraph2 [31] 69.9 75.9 78.1 79.3 71.4 71.7 74.3 76.2 73.2 73.4 61.7 73.2 

GaitSet [5] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2 

Multimodal [16] 91.9 94.6 96.4 94.3 94.4 91.6 94.1 95.4 95.5 93.9 89.5 93.8 

BiFusion [30] 95.8 97.9 98.2 97.6 94.4 91.6 93.9 96.6 98.5 98.3 93.1 96.0 

Att-CFEN 85.2 86.6 89.8 86.6 87.5 85.8 85.3 89.1 89.9 90.2 83.5 87.2 

CL 

01-02 

PoseGait [20] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0 

GaitGraph [9] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3 

GaitGraph2 [31] 57.1 61.1 68.9 66.0 67.8 65.4 68.1 67.2 63.7 63.6 50.4 63.6 

GaitSet [5] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4 

Multimodal [16] 87.4 96.0 97.0 94.6 94.0 90.1 91.5 94.1 93.8 92.6 88.5 92.7 

BiFusion [30] 88.7 93.9 95.6 93.8 91.4 89.4 92.3 93.8 94.2 93.7 86.2 92.1 

Att-CFEN 78.6 81.4 83.5 83.1 84.0 83.2 83.1 84.4 84.0 82.7 79.0 82.5 

 

4.2.2 Ablation study 

To assess the effectiveness of the dual branches of the 

fusion network in multimodal feature extraction and to 

evaluate the impact of the constraint attention mechanism in 

enhancing key gait features, an ablation study was conducted. 

This experiment involved a sequential analysis: initially 
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examining the performance of each network branch 

independently and then evaluating the network's performance 

with the addition of attention modules, as detailed in Table 2. 

The specific configurations of the experiment were as follows: 

Experiment ① involved the LCFEN subnetwork operating 

without the LCAM. 

Experiment ② exclusively utilized only the JCFEN criteria. 

Experiment ③  employed the JCFEN subnetwork, which 

sans the JCAM. 

Experiment ④  operated solely with the LCFEN 

subnetwork. 

Experiment ⑤ involved the Att-CFEN network, omitting 

the FAM. 

 

Table 2. Ablation study on the CASIA-B dataset 

 

Experimental Modules 
Recognition Rate（%） 

NM BG CL Mean 

Experiment ① 89.2 84.7 68.6 80.8 

Experiment ② 91.5 85.2 70.1 82.3 

Experiment ③ 87.3 73.8 67.3 76.1 

Experiment ④ 89.0 74.5 68.7 77.4 

Experiment ⑤ 91.8 85.3 80.8 86.0 

Att-CFEN 93.0 87.2 82.5 87.6 

 

These configurations were methodically designed to isolate 

and understand the contributions of each component within the 

network, thereby elucidating their individual and collective 

impacts on overall gait feature recognition performance. 

The results from the ablation study on the CASIA-B dataset, 

presented in Table 2, offer insightful findings. The recognition 

rates for Experiments ②  (JCFEN only), ④  (LCFEN only), 

and the complete Att-CFEN network are 82.3%, 77.4%, and 

87.6%, respectively. These outcomes clearly indicate that the 

Att-CFEN delivers superior overall performance. By 

integrating both joint motion dependencies and human form 

features, Att-CFEN uses multimodal and multisemantic data 

to enrich the representation of high-level gait features. This 

integration results in a notable increase in the recognition rate 

by 5.3% and 10.2%, respectively, compared to using the 

individual feature extraction branches in isolation, 

underscoring the value of multimodal fusion in enhancing gait 

feature representation. A comparison among Experiments ①-

④ reveals the added value of attention mechanisms. In these 

setups, the attention mechanisms automatically assign weights 

to the feature maps, concentrating on distinctive movements 

and amplifying the representation of significant features. This 

enhancement leads to improved recognition rates of 1.5% and 

1.3%, respectively. 

Furthermore, contrasting Experiment ⑤ with the full Att-

CFEN network highlights the efficacy of the FAM. This 

module's role in allocating weights to high-level features from 

the two modalities results in a 1.6% increase in the recognition 

rate compared to Experiment ⑤. This finding underscores the 

importance of differentiating modal data, as they convey 

unique information. Appropriately weighting these features 

during fusion enhances the overall recognition rate, 

emphasizing the significance of nuanced feature integration in 

multimodal gait analysis. 

 

 

4.2.3 Multi-Semantic data performance evaluation 

For the JCFEN subnetwork, the input data encompass joint 

coordinates, walking speed, and body sway metrics. To assess 

how effectively multisemantic data can represent gait features, 

experiments utilizing various combinations of input data were 

conducted. The specifics of these combinations, as outlined in 

Figure 6, are as follows: Combination 1 incorporates silhouette 

post graphs alongside 3D joint coordinate data. Combination 

2 integrated silhouette posture graphs, 3D joint coordinates, 

joint displacement, and body sway data. These combinations 

were strategically chosen to explore the incremental value 

each type of data brings to gait feature expression, thereby 

shedding light on the utility of multisemantic data in 

enhancing the accuracy and robustness of gait analysis. 

 

 
 

Figure 6. Recognition rate of multisemantic data 

 

In Figure 6, regardless of the walking condition, 

Combination 2 had the highest recognition rate, indicating that 

multisemantic data comprehensively express pedestrian gait 

characteristics from different perspectives, enriching the 

underlying data features. This allows the Att-CFEN network 

to focus on different gait characteristics, achieving the best 

performance. 

 

 

5. CONCLUSION 

 

The intricate coordination of human joints, bones, and 

muscles forms the foundation of a pedestrian's gait, 

characterized by interdependent movements among joints and 

limbs that create an integrated motion pattern. This paper 

introduces the Att-CFEN model, a gait-constrained feature 

mining model equipped with a fusion attention mechanism, 

focusing on the comprehensive motion constraints between 

joints. The model begins by addressing the characteristics of 

the silhouette and skeleton data. A silhouette posture graph is 

formulated, which, in conjunction with the human skeleton 

graph, delineates pedestrian gait from two distinct 

perspectives: motion dependency and handcraft features. To 

capture the interactive constraints between limbs, local 

combination graphs depicting limb movement are constructed. 

The LCFEN subnetwork then abstractly models these limb 

movements. Similarly, for joint interactions, a constraint 

adjacency matrix is developed to aggregate the features of 

joints and their interacting counterparts, with the JCFEN 

subnetwork modeling these constraint features. To refine the 

feature extraction process, the LCAM, JCAM, and FAM 

attention modules are integrated into the two subnetworks and 
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the multimodal feature fusion stage. These modules play a 

pivotal role in identifying critical high-level semantic features, 

calculating the weights of feature maps, and ultimately 

extracting advanced gait features for pedestrian gait 

recognition from video data. The efficacy of the proposed Att-

CFEN model was rigorously tested using the publicly 

available CASIA-B dataset. The experimental results 

demonstrated that the Att-CFEN model notably enhances gait 

recognition rates, confirming its effectiveness in complex gait 

analysis and recognition tasks. 
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