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COVID-19 is one of the deadly diseases that affected the global health system. It is difficult 

to diagnose COVID-19, as it shows the symptoms of the common cold. Therefore, effective 

screening techniques play a significant role in the timely detection of this disease. Existing 

techniques such as real-time reverse transcriptase-polymerase chain reaction (RT-PCR), 

require a considerable amount of time for processing, typically taking up to 48 hours to 

produce results. This delay can be detrimental, as the virus can spread rapidly during this 

waiting period. X-ray images are also used for this purpose due to their accessibility, speed, 

non-invasiveness, cost-effectiveness, ability to visualize lung tissues, and rapid deploy 

ability. This research proposes a convolutional neural network (CNN) to detect COIVD-19 

based on chest X-ray images. The model's uniqueness lies in its ability to harness the power 

of convolutional layers for feature extraction without the need for complex segmentation 

techniques. The convolutional layers of the CNN filter slide across the input image, 

performing element-wise multiplication and accumulation to create feature maps. These 

maps highlight relevant patterns, edges, and textures present in the image. This can help in 

predicting the infection and its severity. With the proposed model an accuracy of 99% was 

achieved, and it attempts to balance computational efficiency and accuracy. Further, a web 

interface is developed so that users can use this model to obtain easy and accurate 

predictions. The proposed model aims to reduce the workload of healthcare workers and 

provide timely results to a patient so that further actions can be taken quickly. 
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1. INTRODUCTION

COVID-19 is a disease caused by the SARS-CoV-2 

coronavirus, first detected in Wuhan, China in December 2019. 

It quickly spread globally and was declared a pandemic by 

world health organization (WHO) in 2020. The virus is 

transmitted through close contact and there are now several 

variants worldwide. COVID-19 infection can enter the body 

through respiratory tracts, and attacks the human respiratory 

system, especially the lungs [1, 2]. Infections can range from 

mild to severe, like heart attack, respiratory failure, Pneumonia, 

and liver problems, causing death if not treated properly. 

The primary symptoms of COVID-19 include a sore throat, 

fever, cough, cold, body ache, breathing trouble, loss of smell 

and taste, congestion, fatigue, etc., that are similar to common 

cold. Some of the available diagnosis methods are the rapid 

antigen test [3], and the Reverse Transcription Polymerase 

Chain Reaction (RT-PCR) test [4, 5]. Further deep 

investigation can be done using computed tomography (CT) 

scans [6, 7], X-ray imaging [8] and serological tests [9]. RT-

PCR is widely used for detecting COVID-19, but it comes with 

certain limitations: 

1. It requires specialized equipment and trained personnel,

limiting its accessibility, especially in remote or resource-

constrained areas.  

2. The process is time-consuming, often taking hours to

deliver results, which hampers timely patient management in 

critical situations.  

3. Additionally, false negatives can occur due to variations

in sample collection, handling, or low viral load, leading to 

potential misdiagnosis and disease transmission. 

Indeed, CT scans offer enhanced image details that aid 

medical professionals in identifying infections and 

abnormalities. However, their benefits must be weighed 
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against significant concerns. CT scans involve radiation 

exposure, potentially posing risks to patient safety. Moreover, 

the resource-intensive demands of CT scans, including the 

need for specialized equipment and trained personnel, can 

limit accessibility. Additionally, the excessive costs associated 

with CT scans can hinder widespread adoption. Therefore, 

accurate and early detection of the virus in the human body is 

a significant challenge for medical practitioners. Advanced 

technologies like machine learning algorithms can help 

healthcare workers to detect COVID-19 in its initial stage. 

This can stop the fast spread of the virus. Numerous deep 

learning models, including deep convolutional networks [10-

12], have been proposed to address COVID-19 detection using 

images. However, these models rely heavily on extensive 

datasets for training, which can introduce certain drawbacks, 

such as overfitting, lack of interpretability, uncertain outcomes, 

biases in data, concerns about generalization to different 

scenarios, etc. 

This research focuses on applying machine learning, 

particularly Convolutional Neural Networks (CNNs), to 

COVID-19 detection using chest X-ray images. X-ray imaging, 

being non-invasive and widely available, offers an opportunity 

to screen patients and triage cases based on severity rapidly. 

The CNN model's ability to learn complex image features and 

patterns makes it an asset in identifying COVID-19-specific 

abnormalities. By leveraging this technology, the research 

aims to contribute to developing a robust and efficient 

diagnostic tool that can facilitate early detection, aid 

healthcare practitioners in making informed decisions, and 

improve patient outcomes. 

The significant contributions of this paper include: 

1. The design and implementation of a CNN model for 

COVID-19 detection using chest X-ray images.  

2. The model's efficacy in classifying images as 

COVID-positive or COVID-negative is evaluated 

extensively, demonstrating its potential for accurate 

diagnostics.  

3. The model highlights the infected area in an X-ray 

image, which helps the medical staff identify the 

severity of the patient's condition. 

4. Furthermore, the paper introduces a user-friendly 

web interface that enhances accessibility, ensuring 

that the proposed model can be adopted across 

various healthcare settings.  

Furthermore, the paper is presented in 4 sections. Section 2 

presents the literature review. The implementation 

methodology is described in Section 3. The comparison study 

and results are discussed in Section 4. 

 

 

2. LITERATURE REVIEW 

 

Many researchers have proposed artificial intelligence, deep 

learning, and machine learning-based detection mechanisms 

to help the medical community in the early detection of 

COVID-19. Such systems can decrease the spread rate of 

COVID-19. These systems are built by creating intelligent 

models using coronavirus datasets like blood reports, X-rays, 

CT scans, RT-PCR tests, and clinical reports. This section 

presents the COVID-19 predictions based on the work 

proposed by different authors. 

COVID-19 disease was predicted using urine and blood 

samples and RT-PCR reports as a dataset [13, 14]. The model 

was trained on distinctive features extracted from samples. 

Various machine learning algorithms like Random Forest (RF), 

K-nearest neighbour (KNN), Logistic Regression (LR), 

Support Vector Machine (SVM), extreme gradient boosting 

(XGB), Deep Forest algorithms, Extra Tree Classifier (ETC) 

were used to predict the COVID-19, its severity, and prognosis. 

The proposed models were trained and tested using 450 

COVID-19 patients' data. These models were successful in 

estimating the risk of developing further severe symptoms in 

patients. The models built using ETC and KNN have achieved 

a maximum accuracy of 98.77%. One common issue in 

research papers is a limited sample size, which can affect the 

generalization of the findings. If data is insufficient, then 

models may give biased and skewed results.  

COVID-19 image classification was done using pre-trained 

deep Convolutional Neural Networks like ResNet and 

MobileNet. The models were trained using 7592 X-ray and CT 

scan images sourced from the ImageNet datasets. The research 

used fine-tuned hyperparameters and weights on networks. 

These models are designed to resolve the gradient vanishing 

problem. The COVID-19 X-ray images were classified into 

three categories: viral Pneumonia, tuberculosis, and bacterial 

Pneumonia using MobileNet. The CT scan images were 

classified into non-COVID and COVID-19 using a modified 

version of ResNet. The modified version of the MobileNet 

model has achieved an accuracy of 99.6%, which is the highest 

among all models. The system's drawback lies in that as the 

problem complexity increases [15], the architectural 

complexity also rises, leading to a slowdown in the model's 

performance [15]. 

Using chest X-rays images, a CNN was implemented to 

identify COVID-19 disease. A total of 6,342 images were used 

to train the model. Hyperparameter tuning was done to 

generalize the model during the validation phase. Some pre-

trained networks, like ResNet, etc., were used to build the 

model and compared with CNN, and it was found that the 

model had performed well with an accuracy of 96.74%. Apart 

from this, a web-based application was built for users. As this 

model was trained using low-resolution images, this can cause 

the CNN model to miss key features crucial to the model. 

Therefore, the miss classification rate is higher, leading to less 

accuracy [16]. 

COVID-19 disease was also identified using the feature 

fusion method. The research gathered a total of 4099 COVID-

19 chest X-rays from Kaggle. Among these, 3278 X-rays were 

used in the training set, and the remaining 821 X-rays 

constituted the validation (test) set. The dataset comprises 

images of both COVID-19 patients and healthy individuals. 

This diversity in the dataset allows for training and evaluating 

the model's performance on different cases and helps to ensure 

its robustness in distinguishing between COVID-19 and 

healthy chest X-rays. In this architecture, each network was 

built using three fully connected layers. Fusion methods used 

in this proposed work were effective in detecting COVID-19 

images.  

The Fusion method architecture's accuracy was achieved by 

combining pre-trained CNN networks such as VGG19, 

InceptionResNetV2, Xception, ResNet152, and DenseNet201. 

This fusion approach resulted in an impressive accuracy of 

96%, highlighting the effectiveness of leveraging multiple pre-

trained networks to enhance the model's performance in 

detecting COVID-19 images. Despite its success, potential 

drawbacks include increased computational complexity, 

challenges in interpretability, and a higher risk of overfitting, 

demanding careful consideration in real-world applications 
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[17]. 

Raspberry Pi microcontroller embedded with the Linux 

operating system was used to diagnose the coronavirus disease. 

The local binary pattern (LBP) and multi-channel fractional-

order Legendre-Fourier moments (MFrLFMs) algorithms 

were used in this approach to extract global and local features 

from CT scans and X-ray images. This research utilized 1,696 

X-ray images and 2,842 CT scan images, consisting of COVID 

and non-COVID lung images, as part of their dataset. This 

system works in four steps: 1. extracting local features of the 

image; 2. extracting the image global features 3. Identifying 

the most important features by combining local and global 

features 4. Applying the binary classifier to specific features 

to determine whether the input images contain coronaviruses. 

The advantages of this system are low cost, less computational 

power, and memory. However, limitations such as small 

sample size, model complexity, hardware constraints, lack of 

external validation, and ethical considerations should be 

considered when interpreting the results and practical 

implications of the study. Further research and improvements 

are needed to enhance the model's performance and clinical 

relevance [18]. 

A deep neural network-based automated computer-aided 

diagnostic (CAD) system was implemented to identify 

COVID-19 disease. The system was modeled using the 

ImageNet dataset of normal, COVID-19, and Pneumonia chest 

X-ray images. The proposed algorithm was evaluated using a 

dataset of 860 images comprising 260 COVID-19 cases, 300 

healthy cases, and 300 pneumonia cases. These images were 

used to investigate the algorithm's performance in 

differentiating between COVID-19, healthy, and pneumonia 

cases. The work trained the fifteen pre-trained CNN models to 

find a suitable model. A transfer learning technique was 

applied to COVID-19 X-ray images for feature extraction and 

classification. The VGG19 model achieves the highest 

classification accuracy of 89.3%. Such systems were prone to 

low performance in the case of low-contrast images [19].  

COVID-19 disease was detected using deep learning-based 

CovidNet architecture. The architecture accepts greyscale 

images. In this study, the model was trained using 1266 chest 

X-ray images. Among these, 321 chest X-ray images were 

from COVID-19-positive patients, 500 were from patients 

with Pneumonia, and 445 were from healthy individuals. The 

image features are visualized with the help of occlusion 

sensitivity maps. Further, this model has fed the extracted 

features to classification classifiers such as SVM, FR, and 

KNN. On top of this, the Bayesian optimization approach was 

used to optimize the classifiers. The model was able to achieve 

96.84% accuracy. This architecture has some disadvantages: 1. 

increasing the complexity by employing so many methods 2. 

The use of fewer training datasets may affect performance 

three due to complex structures increasing in time complexity 

[20]. 

COVID-19 was detected using an automated deep-learning 

model. The study used a chest X-ray images dataset of 10,192 

healthy and 3616 COVID-19 patients. The initial X-ray 

images dataset was augmented and balanced to increase the 

sample size to 26,000 healthy and 26,000 COVID-19. The pre-

trained CNN models like MobileNetV2, DenseNet, 

EfficientNetB7, VGG16, VGG19, ResNet101, InceptionV3, 

NFNet, ResNet50, GoogLeNet, and AlexNet were modified to 

build classification models. MobileNetV2 was able to obtain a 

higher accuracy of 97%. Data augmentation in this system 

may lead to high prediction errors, slow the training process, 

and model overfitting [21]. 

A Chest X-ray image-based deep learning approach was 

used to identify and analyze COVID-19 disease. Pre-trained 

networks like ResNet, Xception, and InceptionV3 were used 

and analyzed for accuracy. The model was trained with a chest 

X-ray image dataset size of 6432. These images were collected 

from Kaggle, which is an open-source dataset repository. Of 

these three networks, Xception has the highest accuracy of 

97.97%. This model was created only for research purposes 

and did not implement its deep learning network [22]. 

We concluded from the research that early detection of 

COVID-19 is necessary for doctors to treat patients effectively. 

Considering this as a significant contribution, the proposed 

research has developed a customized deep-learning approach 

to detect COVID-19 disease in the initial stage. 

 

 

3. MODEL ARCHITECTURE 

 

The proposed architecture uses CNN to build the model. 

The high-level design of the study is shown in Figure 1. CNN 

is a deep learning-based algorithm that accepts images as input. 

The network assigns biases and learnable weights to the 

objects in the images. As a result, images in CNN can be 

distinguished from one another. The architecture of the CNN 

is similar to how neurons are connected in the human brain. 

CNN needs less time for image preprocessing as compared to 

other classification methods. CNN effectively captures 

temporal and spatial relationships in an image using 

appropriate filters. The architecture performs a better fit to the 

image dataset because of the reduced number of parameters 

involved and the reusability of weights. The kernel or filter, 

part of CNN, is involved in convolution operations and is 

usually denoted by the letter 'K’. The image that CNN accepts 

has the dimensions:  

 

𝐼𝑚𝑎𝑔𝑒 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝐵𝑟𝑒𝑎𝑑𝑡ℎ ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙  

(1) 

 

The convolution used in the model is mathematically 

represented by an asterisk (*) sign. The expression used to 

represent convolution is as follows: 

 

𝑍 = 𝑋 × 𝑓 (2) 

 

where, ‘f’ is the filter and ‘X’ is an input image used in CNN. 
 

 
 

Figure 1. High-level architecture of the proposed system 

 

Less weighted features of images, such as edges, color, 

gradient orientation, etc., are captured by ConvLayer, the first 

layer in CNN. The spatial size of the convolved feature of the 

image is reduced with the help of the pooling layer. This is 

necessary to process the data through dimensionality reduction 

to lower the computational power. In general, two types of 

pooling are used: maximum and average. Maximum pooling 

returns the maximum value from the kernel-covered portion of 

the image. Average pooling produces the average of all the 

values from the kernel-covered portion of the image. The fully 

connected layer identifies the non-linear combinations of the 

high-level features of the image. These features represent the 
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output of the convolutional layer. 

The proposed model consists of three convolution layers. In 

each layer, the Rectified Linear Activation Unit (ReLU) 

activation function and max pooling are applied. The model is 

kept light to make it easy for low-space systems to run 

efficiently. The following mathematical equation represents 

the ReLu function:  

 

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (3) 

 

where, 'x' is the input value. Thus, the output is in the range 

from 0 to infinity. The RELU activation function, is used in 

this model, as it is less computationally intensive. Another 

important property of ReLU is sparsity. This property outputs 

true zero values for negative input. Further, the network holds 

one or more true zero values at the hidden layer. 

When it comes to a deep learning algorithm, a couple of 

hyperparameters need to be set correctly. The loss function is 

one among them. The model can be improved during training 

by optimizing the loss or cost. A model should always output 

the minimum loss. The model performance is better when 

there is minimum loss. The model loss is measured using the 

cross-entropy loss function. One of the objectives of the 

proposed model is to make the output as near as possible to the 

desired output, i.e., the truth value. To reduce the cross-

entropy loss, the model weights are iteratively adjusted during 

training. In this way, our model kept learning, resulting in a 

trained model. Cross-entropy is represented using the 

following equation: 

 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖
𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒
𝑖=1 × 𝑙𝑜𝑔(𝑦�̂�)  (4) 

 

where, �̂�𝑖  is the ith output scalar value, and 𝑦𝑖  is its 

corresponding target. The number of output scalar values is 

used to represent the output size of the model. This loss is used 

to distinguish two discrete probability distributions from each 

other. Here 𝑦𝑖  presents the probability of occurrence of an 

event. If the sum of all 𝑦𝑖  is 1, then exactly one event has 

occurred. As distribution gets closer, the model loss will 

become less, and the minus sign represents the value. 

 

 

4. METHODOLOGY  

 

Data is the most critical element when solving problems 

using Deep Learning. The data used in this study consisted of 

image data (Lung-Xray) from both COVID-positive and 

COVID-negative patients. The dataset was collected from two 

sources, Kaggle [23] and Github [24], resulting in a total of 

2940 images. Of these, 1576 images were COVID-negative, 

and 1364 were COVID-19-positive, as depicted in Figure 2. 

These images were utilized to train the model, and the dataset 

comprised grayscale lung images of both normal individuals 

and COVID patients.  
Before training the model, data augmentation and 

enhancing techniques were applied to the original dataset. 

Image augmentations, including horizontal flip, rotation, 

width shift, and height shift, were applied to all the extracted 

data from the original dataset. Data augmentation is carried out 

using Python, and parameters are shown in Table 1. 

 

Table 1. Data augmentation details 

 
Augmentation Parameters Value 

Rescale 1/255 

Rotation range 30 

Width shift 0.1 

Height shift 0.1 

Horizontal Flipp “yes” 

  
(a) 

  
(b) 

 

Figure 2. (a) Non-COVID (b) COVID X-ray images 
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Figure 3. Proposed deep learning model architecture 

After the augmentation, the data points used were 8216, 

consisting of positive and negative values. Further, histogram 

equalization was applied on dataset using the OpenCV library. 
Each data point is of the size (100, 100, and 1). The set is 

further shuffled and partitioned into validation and training 

sets. A total of 511,650 trainable parameters are used in the 

model. 

The model is accessible using a web interface programmed 

using TensorFlow. Flask is used to create a web interface. 

Flask is a lightweight web framework for Python, which 

allows you to create a web application to serve your model's 

predictions. The model consists of three convolutional layers, 

with filters 128, 32, and 16, each with filter size 3×3. This 

helps in extracting features from the X-ray image. The most 

interesting part of this system is the activation map that is 

obtained after detection, which suggests the parts of the lungs 

in the image that are affected. This can help in predicting the 

infection and its severity. 

As shown in Figure 3, the model is a sequential 

convolutional network. The input layer, with an input image 

of the dimensions (100, 100, and 1), is the first layer in the 

proposed approach. A convolutional layer, the next layer that 

applies a (3×3) kernel and stride value of one, is used to extract 

features from the input. The convolutional connections 

involve applying convolutional operations to input data using 

learnable filters (kernels). These filters slide over the input 

data, and the convolution operation calculates dot products 

between the filter and local patches of the input. This process 

generates feature maps that capture different features in the 

input. Neurons in the feature maps are connected to a specific 

receptive field in the input. The result of the preceding layer is 

then forwarded to the next convolutional layer. All 

convolutional layers in this model use the result of the 

previous layer as input. Before input can be passed to the next 

convolutional layer, max-pooling is applied, which down-

samples the results of the previous layer. In our model, we 

apply the (3×3) filter and extract features using 32 

convolutional units in the 2nd convolutional layer. The spatial 

information to the image is added using padding. A default 

padding value is used in this model. 

Then the result is passed into the dense layers by applying 

the maximum pooling and flattening. The flattening layer 

converts the multidimensional convolutional layer output to a 

one-dimensional output that is called a dense layer. The 

proposed work used two dense layers. The first dense layer 

comprises 128 neurons, and the second has 64 neurons. The 

number of dense layers has been determined after the 

hyperparameter tuning of the model. The Adam optimizer is 

used to maintain the adaptive learning rate in the model. In this 

architecture, the convolutional and max-pooling layers extract 

hierarchical features from the input data, and the fully 

connected layers make the final classification decision at the 

end. The dropout layers introduce regularization to prevent 

overfitting. The architecture concludes with the output layer, 

which produces class probabilities for the two classes of the 

binary classification problem. 

The model was trained using 20 epochs; for every epoch, 

model loss, accuracy, and validation loss were calculated. The 

softmax activation function is applied in the output layer to 

predict whether the input image was of a COVID-positive or 

COVID-negative patient. Finally, the computational 

efficiency of the model is measured using: FLOPs (Floating 

Point Operations), parameters, memory usage, and inference 

time. 

4.1 Experimental setup 

The tools and technologies used in the creation of the 

models are Visual Studio Code by Microsoft as our primary 

Integrated Development Environment (IDE). The entire 

project is programmed in the Python language. The main deep 

learning frameworks used are TensorFlow with the Keras API, 

Pandas, NumPy, sklearn, pickle, and matplotlib. Further, to 

include the web-based features in the system, we created the 

User Interface (UI) using the FLASK library. The dataset is a 

collection of COVID-positive and COVID-negative chest X-

ray images. The total data points collected were 5216. 

4.2 Model evaluation 

Standard metrics such as accuracy, F1-score, specificity, 

recall, and sensitivity are used to measure the model 

performance. For evaluation, we need four very important 

values from our predictions. True positives (TP) are the 

COVID-positive images that were correctly predicted as 

COVID positives. True negatives (TN) are COVID-negative 
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images that were correctly identified as COVID-negative. The 

COVID-negative images that were incorrectly identified to be 

COVID-positive are called False Positive (FP) and false 

negatives (FN) are COVID-positive samples that were 

incorrectly predicted to be COVID-negative. 

Accuracy defines the number of class labels identified 

correctly and is presented using the following equation:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝑇𝑃)/(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (5) 

 

Specificity is the metric used to monitor true negative 

predictions made by the model. It is the relationship between 

the true negative predictions given by the model and the total 

number of negative assessments. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁) (6) 

 

The sensitivity of the model measures the true positive 

predictions. The metric presents the ratio of true positive 

assessments to the number of correct negative and false 

positive assessments.  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝐹𝑁 + 𝑇𝑃) (7) 

 

The F1 score is used to present the harmonic mean of 

precision and recall. The F1 score will reach to maximum 

when precision becomes equal to recall. The purpose of using 

an F1 score is to maintain the balance between precision and 

recall. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝐸𝐶𝐴𝐿𝐿×𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁+𝑅𝐸𝐶𝐴𝐿𝐿
  (8) 

 

Computational efficiency for the proposed model is 

measured using the following metrics: 

1. Floating Point Operations (FLOPs): This metric 

helps to understand the computational workload of the model 

using the following equation: 

For each convolutional layer: 

The number of FLOPs per output pixel = (filter size) × 

(filter size) × (input channels) 

Total FLOPs for the layer = (number of output channels) × 

(output height) × (output width) × (FLOPs per output pixel) 

For each fully connected layer: 

The number of FLOPs = (input size) × (output size) 

2. Parameters: This refers to the learnable weights and 

bias of the model. It is given below: 

For each convolutional layer: 

The number of parameters = (filter size) × (filter size) × 

(input channels) × (output channels) + (output channels) 

For each fully connected layer: 

The number of parameters = (input size) × (output size) + 

(output size) 

3. Memory: This specifies the amount of memory 

required to store the parameters. This is measured in terms of 

MB. 

4. Inference time: This is the time required to complete 

the training. The proposed model required 20 epochs to 

complete the training as follows: 

Time required= Time required for one epoch × total no. of 

epochs. 

 

 

5. RESULTS AND DISCUSSION 

 

The model's accuracy on the validation set is 97.51 percent, 

as shown in Figure 4. The training and testing accuracy trends 

are increasing in the same trend that shows us that there is no 

over or underfitting of the model on the data. The graph also 

shows that the model has saturated after eight epochs. The 

accuracy graph also shows that it has not over-learned the data 

it was trained on and has comparable skills on both the 

validation and training datasets. 

 

 
 

Figure 4. Accuracy of the model during validation 

 

Figure 5 shows the trend in which the loss of the model is 

decreasing. The loss is 0.05 on the validation set. The loss 

graph further shows the model has comparable performance 

on both training and validation datasets. If these plots start to 

depart consistently, it might be an indicator to stop training the 

model. 

 

 
 

Figure 5. Model loss during training and validation 

 

Table 2. Model evaluation scores 

 
Model Evaluation Metrics Precision Recall F1-Score Specificity Sensitivity Support Accuracy 

0 (Negative) 1.00 0.99 0.99 0.99 -- 3491 -- 

1 (Positive) 0.97 0.99 0.98 -- 0.97 3491 -- 

Accuracy -- -- -- -- -- 4694 0.99 

Macro Average 0.99 0.99 0.99 -- -- 4694 -- 

Weighted Average 0.99 0.99 0.99 -- -- 4694 -- 
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Following are the metrics that help us evaluate the model in 

a better way. These are the performance scores of the model 

and are calculated using metrics such as true negatives, false 

negatives, true positives, and false positives. You can see no 

class imbalance between the two of our classes (negative and 

positive). The accuracy of the model is good. The recall and 

precision values are shown in Table 2. The overall testing loss 

and accuracy are 0.058 and 0.975, respectively. 

Figure 6 shows the confusion matrix, which is calculated 

using 522 testing data points.  

 

 
 

Figure 6. Model performance using the confusion matrix 

 

Table 3 shows the FLOPs and parameters in each layer of 

the proposed model. 

 

Table 3. Computational efficiency parameters and their 

values 

 
Layer No. of FLOPs No. of Parameters 

Conv2D 3,556,864 1280 

Conv2D_1 3,810,816 73,792 

Conv2D_2 1,746,880 18,464 

Dense_1 8,192 8,256 

Dense_2 128 130 

 

Therefore, the proposed model used 9,532,480 FLOPs and 

510,650 parameters for training. The total memory usage 

includes parameters, activations, and some overhead for model 

structure trained using 32-bit single precision float value. For 

simplicity, we will assume 1 MB for other overhead: Total 

Memory Usage = 2.04 MB (Parameters) + 4.80 MB 

(Activations) + 1 MB (Overhead) =7.84 MB. 

 

 
 

Figure 7. COVID-19 infection severity shown by the model 

A special technique is used to print out the model attention 

supporting the model prediction, which is represented in 

Figure 7. It represents what pixels in the predictions are made, 

which help the doctor better understand the patient's severity 

before going for any major tests in the case of a positive patient. 

In the picture above, the indicator bar on the left gives us the 

idea that the brighter the pixel, the greater the impact on the 

model prediction. 

 

 
 

Figure 8. Web-based UI of the model 

 

Table 4. Training summary of the model 

 

Layer (Type) Output Shape Param # 

conv2d (Conv2D) (None, 98, 98, 128) 1280 

activation (Activation) (None, 98, 98, 128) 0 

max_pooling2d 

(MaxPooling2D) 

(None, 49, 49, 128) 0 

conv2d_1 (Conv2D) (None, 47, 47, 64) 73792 

activation_1 

(Activation) 

(None, 47, 47, 64) 0 

max_pooling2d_1 

(MaxPooling2) 

(None, 23, 23, 64) 0 

conv2d_2 (Conv2D) (None, 21, 21, 32) 18464 

activation_2 

(Activation) 

(None, 21, 21, 32) 0 

max_pooling2d_2 

(MaxPooling2) 

(None, 10, 10, 32) 0 

flatten (Flatten) (None, 3200) 0 

dropout (Dropout) (None, 3200) 0 

dense (Dense) (None, 128) 409728 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 64) 8256 

dropout_2 (Dropout) (None, 64) 0 

dense_2 (Dense) (None, 2) 130 
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Table 5. State-of-art comparative analysis with the proposed system 

 

Ref. 
Technique/Methods/ Datasets Accuracy Precision Specificity Sensitivity 

F1- 

Score 

[24] Technique: 

1. SVM 

2. KNN 

3. RF 

 

98.14% 

88.89% 

96.29% 

 

95% 

1% 

1% 

 

-- 

 

 

-- 

 

 

95% 

74% 

98% 

[25] Technique: Transfer learning using 

ResNet50, DenseNet-121, ResNet18, and 

SqueezeNet 

Dataset size: 5000 images of Chest X-ray. 

-- -- 90% 98% -- 

[26] Methods: Convolutional Neural Networks 

and transfer learning 

Dataset: 4292 pneumonia-infected (1502 

viral and 2790 bacterial), 1583 normal, 225 

COVID-19-infected preprocessed and 

original public X-ray images 

98.50% -- 99.18% 93.84% -- 

[27] Method: Transfer learning-DenseNet20 

Dataset: 8644 X-ray images 

92.19% -- -- -- -- 

[28] Technique: CVDNet –Deep CNN.  

Dataset size: Chest X-ray images 

containing 219 COVID-19, 1341 normal, 

and 1345 viral pneumonia. 

97.20% for detecting 

COVID-19 and 96.69% for 

three-class classification: 

COVID-19, normal and viral 

pneumonia. 

-- -- -- -- 

[29] Technique: parallel-dilated convolutional 

neural network  

Dataset: 2905 chest X-ray images 

96.58% 96.58% -- 96.59% 96.59% 

[30] Method: ML, DL and CNN 

Dataset: 392 chest X-ray images 

classification accuracy: 

96.43% and validation 

accuracy: 98.33% 

-- -- -- -- 

[31] Method: Deep CNN 98.062% -- -- -- -- 

Proposed 

work 

Method: Deep CNN 

Dataset: 2940 X-ray images 

99% 1 99% 97% 99% 

 

A simple, easy-to-use user interface (UI) is created. Figure 

8 shows the UI. After selecting an appropriate X-ray image 

from the computer and clicking on the predict button, the user 

can check the infected areas by clicking the check infections 

button. Table 4 shows a training summary of the model. 

Table 5 describes the state-of-art comparison analysis of the 

proposed work. Compared to other proposed techniques, our 

CNN model has given better classification accuracy in 

detecting COVID-positive and COVID-19-negative X-ray 

images. The performance of the current work is compared with 

those of other proposed approaches in terms of accuracy, recall, 

specificity, sensitivity, and F1-Score. The transfer learning 

techniques are used in most of the studies to detect COVID-19 

using X-ray images [25-27]. Pre-trained transfer learning 

networks like ResNet50, DenseNet-121, ResNet18, 

SqueezeNet, VGG16, VGG19, InceptionV3, MobileNet-V2, 

and DenseNet201 are used to build the models. In all these 

cases, model accuracy was above 90%, which is very good, 

but the goal is to meet the accuracy level near 100%. In 

summary, our suggested approach has a substantially greater 

prediction success rate than the models of individuals. 

 

 

6. CONCLUSIONS 

 

The proposed CNN model offers significant advantages 

over the existing strategies for COVID-19 diagnosis. It 

achieves a remarkable accuracy of 99%, surpassing many 

existing models, leading to more reliable results with reduced 

false positives and false negatives. The model's key 

differentiators lie in its lightweight design, optimized data 

augmentation, and hyperparameters. The model accelerates 

training and inference by employing convolutional layers for 

efficient feature extraction without complex segmentation, 

contributing to faster diagnosis. Moreover, its interpretability 

through activation maps aids medical practitioners in 

understanding disease severity and making informed decisions. 

Overall, the model's accuracy enhancement, architectural 

optimizations, and improved interpretability makes it a 

practical and advanced solution for accurate and timely 

COVID-19 diagnosis. 

Future research can focus on external validation across 

multiple datasets. The model efficiency can be further 

improved using transfer learning and multimodal integration. 

Collaboration with medical experts, regulatory bodies, and 

healthcare institutions is required to ensure the model's 

robustness and generalizability. The deployment of the 

proposed CNN model involves challenges like data quality 

and diversity, clinical validation, interpretable predictions, 

ethical and privacy concerns, hardware limitations, integration 

with clinical workflows, regulatory approvals, human-

machine collaboration, scalability, bias mitigation, resource 

constraints, cost considerations, user training and acceptance, 

and long-term sustainability. 
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