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In electrical grid management, the integration of deep learning and digital twin technology 

constitutes a pivotal component of contemporary power network systems. The foundation 

of the intelligent digital electrical grid rests upon the meticulous collection of edge facility 

information, necessitating rapid and precise identification of electric power facilities for 

both civilian and military utilization within digital grid systems. This study introduces a 

novel object detection methodology tailored for a diverse array of electric power facilities, 

leveraging a re-parameterized Mask Region-based Convolutional Neural Network (Mask R-

CNN) augmented by transfer learning techniques. A multi-scale dataset of electric facilities 

was developed, facilitating the training and testing of the proposed model on images 

featuring manually annotated electric power facilities. These facilities are categorized into 

two distinct groups based on target scale, encompassing utility poles, transformers, 

insulators, cross arms, and wire clips. To enhance the efficiency of bounding region 

localization, the Mean Shift (MS) algorithm was employed to adjust the size of anchors 

within the Region Proposal Network (RPN), thereby streamlining the detection process. 

Experimental outcomes reveal that, in comparison to the original model, the re-

parameterized Mask R-CNN (Rep-Mask R-CNN) demonstrates a 6.17% increase in mean 

Average Precision (AP) and a 33% reduction in inference time. Equipped with a geolocation 

module, Unmanned Aerial Vehicles (UAVs) deploying this model can achieve 

comprehensive digital base map management, encompassing geographic and equipment 

information, while also supporting visual display services within the digital electrical grid. 

This study underscores the potential of re-parameterized convolutional networks in 

enhancing the accuracy and efficiency of electric power facility detection, contributing 

significantly to the advancement of intelligent digital grid management systems. 
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1. INTRODUCTION

In recent years, the management and planning of electrical 

grids have increasingly relied on digital twin technology, 

marking a significant advancement in modern power network 

infrastructure. The role of electric power facilities is central to 

the functioning of electrical grids, with the smart management 

of these facilities being crucial for the development of digital 

and intelligent grid systems. Research in computer vision has 

primarily focused on the real-time detection, identification, 

and categorization of objects in images. Utilizing UAVs 

equipped with geolocation modules and advanced edge 

computing models enables the integration of geographical and 

equipment data management, enhancing digital mapping and 

visual services within digital electricity networks. Despite this, 

there remains a scarcity of research focused on the detection 

of objects within common power facility environments. 

Implementing object detection algorithms can greatly benefit 

digital electricity networks, including intelligent detection of 

facility faults and digitalized management of data collection 

systems. Figure 1 illustrates how data from on-site 

measurements, digital mapping, scene management, and 

digital twins are integrated to form a comprehensive, modern, 

digitally intelligent power network system. 

Conventional methods for object detection typically depend 

on pre-defined templates [1] or rely on geometrical shapes and 

prior knowledge [2, 3], while algorithms for object-based 

image analysis [4, 5] focus on segmenting and classifying 

objects. These traditional techniques often require manual data 

extraction, which complicates achieving precise detection 

results. Recent advancements in machine learning have led to 

the development of enhanced techniques for feature extraction 

from images [6, 7], including support vector machines (SVM), 

AdaBoost, and decision trees. These approaches are capable 

of identifying statistical characteristics such as the gray-level 

run length matrix (GLRLM) [8], histogram of oriented 

gradients (HOG) [9], bag of words (BOW) [10], local binary 

pattern [11], DCT coefficients [12], scale-invariant feature 

transform (SIFT) [13], and the deformable part model (DPM) 

[14]. The advent of deep learning algorithms, especially those 

based on CNN [15], has significantly advanced object 

detection, enabling the analysis of large datasets without the 
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need for pre-existing templates and facilitating the recognition 

of complex patterns. 

Deep learning's efficacy has been underscored by the 

success of CNN in tasks such as image classification, detection, 

and recognition, leading to the proposal of several high-

performance deep network models like AlexNet [16], 

GoogleNet [17], and VGGNet [18], known for their 

straightforward yet deep structures. ResNet [19] introduced a 

novel residual structure, addressing the learning degradation 

issue present in very deep networks by simplifying the model's 

internal framework. Subsequent developments have 

introduced complex neural networks featuring skip 

connections and multi-branch architectures, which excel at 

feature extraction and are widely applied in computer vision. 

However, these increasingly complex structures can lead to 

unnecessary computational demands and reduced efficiency 

and interpretability. RepVGG [20], a simpler model that 

forgoes complex connections for a streamlined approach, 

matches ResNet's performance with faster inference times 

through the Rep-Conv-Block method, reflecting a shift 

towards models that balance accuracy with lightweight, rapid 

processing. 

 

 
 

Figure 1. The relationship between on-site measurement data, digital mapping, scene management, and digital twin bases 

 

The advancement of deep learning frameworks has 

significantly contributed to the evolution of methods for target 

detection. These algorithms are broadly categorized into one-

stage and two-stage models. In one-stage models, object 

detection is achieved through direct regression of the target 

box, with default boxes pre-set based on the feature map. This 

category includes models like YOLO [21], SSD [22], and 

subsequent enhancements such as YOLOv3 [23] with its 

upsampling layer and layer-skipping concatenation, as well as 

YOLOv4 [24] and YOLOv5 [25], which incorporate various 

advanced techniques like expanding the receptive field, e.g., 

SPP-Net [26], RFB-Net [27], and attention mechanisms [28, 

29], and YOLOx [30] that refine the prediction branch and 

candidate box approach. The two-stage models, initiated by R-

CNN [31], pre-generate candidate regions through Selective 

Search before performing feature extraction. Building on this, 

Fast R-CNN [32] and Faster R-CNN [33] were developed to 

address the slow detection speed of candidate boxes, high 

training costs, and inefficiencies in the R-CNN by employing 

the RPN [34] and Feature Pyramid Network (FPN) [35] for 

enhanced feature fusion across different layers. Mask R-CNN 

[36] introduced a distinct binary mask branch for separate 

prediction, and improvements in alignment issues were made 

in Faster R-CNN with the adoption of RoIAlign over 

RoIPooling. 

Mask R-CNN has demonstrated remarkable success in 

object detection, leading to the development of numerous 

enhanced versions. Innovations include the use of a non-

quantization rounding pooling layer [37] to tackle issues 

related to the fixed count of interpolated pixels, and the 

creation of an improved ResNet-FPN [38] designed for 

preprocessing synthetically altered images. Beyond 

modifications to the architecture, further enhancements [39] 

have been made to optimize Mask R-CNN's loss function, 

refine the dimensional output of RoIs [40], and incorporate 

transfer learning strategies to improve performance on datasets 

with limited samples. Additionally, Mask R-CNN has been 

adapted to include RoIWarping [41] for better feature mapping, 

and a Light-Head subnet has been introduced to reduce the 

model's complexity. The development of Cascade R-CNN [42] 

employs a multi-stage cascading architecture and revises the 

IoU thresholding approach to enhance feature utilization. 

This paper explores the identification of electric energy 

facilities by tailoring the Mask R-CNN model to a manually 

curated facility dataset for multi-scale object detection. Our 

contributions include creating a comprehensive dataset of 

electric energy facilities, segmenting this dataset by facility 

scale to enhance detection across different sizes, and 

implementing a Rep-Mask R-CNN model with innovations in 

model structure, such as adaptive anchors in RPN, a recursive 

FPN structure, and a re-parameterized backbone. Additionally, 

we employ transfer learning to address small dataset 

convergence challenges, achieving effective training 

outcomes by leveraging weights from larger datasets for 

objects of varying sizes and numbers. 

 

 

2. RELATED WORKS 

 

Traditional object detection algorithms are broadly 

categorized into one-stage and two-stage methods. One-stage 

methods directly analyze images to produce detection 

outcomes, while two-stage methods initially extract candidate 

frames from the image, followed by a refinement process to 

finalize the detection points based on these candidate areas. 

Typically, two-stage methods achieve higher precision and 

perform better across various public datasets, albeit at the cost 

of increased computational demands and resource usage. The 

pioneering two-stage approach, RCNN, tackles the detection 

challenge through four main steps: 

(1) Creating candidate regions from an input image; 

(2) Extracting features from these regions using a deep 

network; 

(3) Classifying these features into categories using a feature 

classifier (initially binary-SVM); 

(4) Adjusting the positions of candidate boxes with 
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regressors. 

R-CNN paved the way for its successors, Fast R-CNN and 

Faster R-CNN, which improved upon the original by 

incorporating advancements in region-based networks. Fast R-

CNN was introduced by Ross Girshick in 2015, enhancing 

over R-CNN, and Faster R-CNN further refined this by using 

anchors of specific scales and proportions, along with more 

sophisticated feature extraction methods like the FPN. 

Mask R-CNN, an evolution of Faster R-CNN, significantly 

boosts performance by optimizing two-stage operations. It 

distinguishes itself through a refined multi-scale detection 

approach and RoI processing technique. Unlike Faster R-CNN, 

which primarily outputs the final layer, Mask R-CNN utilizes 

FPN to generate multi-scale feature maps for RPN RoI 

extraction. It introduces RoIAlign, replacing RoI pooling, to 

standardize RoIs' sizes, which are then processed for bounding 

box regression and classification predictions. An additional 

convolution layer post-RoIAlign facilitates mask prediction. 

Essentially, Mask R-CNN extends Faster R-CNN by 

incorporating the ResNet-FPN module and a segmentation 

branch for masks. The advent of multi-scale pooling layers in 

mainstream detection methods aims to extract both semantic 

and spatial details more effectively. The FPN's architecture, 

combining bottom-up, lateral, and top-down connections, 

integrates features across all levels to handle images 

containing objects of varying sizes simultaneously. 

In Faster R-CNN, the RoIPooling step could lead to 

misalignment issues, where candidate boxes might shift from 

their intended positions. Mask R-CNN addresses this with the 

RoIAlign layer, which maintains fractional components 

through bilinear interpolation, avoiding the rounding off that 

occurs in RoIPooling. RoIAlign meticulously interpolates 

within subdivided regions, using the center points for floating-

point coordinate sampling, thus ensuring more precise 

candidate box alignment. RoIWarp, an alternative approach, 

pre-empts feature map warping before pooling, opting for 

quantization followed by nonlinear interpolation, differing 

from the dual processes in RoIPooling and RoIAlign. By 

minimizing the sample points traversed, both RoIAlign and 

RoIWarp offer improved outcomes compared to RoIPooling, 

prompting further innovations in pooling operations like 

PSRoIPooling and PSRoIAlign [43]. 
 

 

3. METHODOLOGY 
 

In this study, we delve into the unique challenges of 

detecting electric energy facilities, characterized by their 

strong class homogeneity, significant variations across scenes, 

and size disparities among targets. To address these challenges, 

we enhance and tailor our dataset model accordingly. To 

ensure robust generalization capabilities, we compile a 

comprehensive dataset of electrical power facilities using web 

scraping and on-site photography. These images are 

meticulously labeled by hand, with each being classified and 

annotated with accurate bounding boxes and masks according 

to scale. This meticulous preparation enhances the model's 

ability to detect facilities of varying sizes with greater 

precision, especially when identifying smaller objects within 

large-scale images. To better match the anchor sizes to the 

actual dimensions of the targets, instead of defaulting to the 

conventional anchor ratios of 1:1, 1:2, and 2:1 for bounding 

box regression, we adapt the MS clustering algorithm. The 

process of our modified MS clustering algorithm is as follows: 

(1) Take the ratio of length to width of all ground truth boxes 

as the basis for clustering to initialize the sample space; (2) 

Initially determine a central point, and calculate vectors from 

all points to this central point within a specified step distance; 

(3) Compute the mean of all vectors within the space to find a 

mean offset value; (4) Shift the central point to this mean offset 

location; (5) Continue shifting the central point until it meets 

specific criteria. 

The above process can be summarized in a mathematical 

form as follows: 

 

𝑀(𝑝) =
1

𝐾
∑ (𝑝𝑖 − 𝑝)

𝑝𝑖∈𝑆ℎ

, (1) 

 

𝑝𝑡+1 = 𝑀(𝑝𝑡) + 𝑝𝑡 , (2) 

 

𝑝𝑖
∗ = 𝑎𝑟𝑔𝑝 min 𝑀(𝑝𝑖), (3) 

 

where, 𝑝𝑖  represents all points in the sample space, 𝑀 

represents the mean error, after several iterations, the result 𝑝∗ 

is the clustering result, which is the final choice of anchor ratio 

in RPN that best fits our current dataset.  

A key enhancement within Mask R-CNN is the integration 

of the FPN. Opting for ResNet as its foundational architecture, 

FPN incorporates residual elements and skip connections, 

leveraging the strengths of ResNet's design. However, given 

the inherently complex nature of this two-stage model, we 

opted for a re-parameterized approach to simplify the 

architecture. This strategy avoids the need for the intricate skip 

connections and multi-branch configurations found in models 

like ResNet or the Inception modules, despite their proven 

efficacy in boosting model performance. 
 

 
 

Figure 2. The method for combining a 3×3 convolution layer 

with a BN layer and calculating a tensor that performs like an 

identity operation to achieve similar fusion 
 

In our deployment, we employ a model reconstruction 

strategy using re-parameterized layers. This approach differs 

from RepVGG's architecture, which typically includes a 

parallel arrangement of a 3×3 convolution layer and a 1×1 

convolution layer, combined with the original data through 

summation. Instead, our design incorporates two parallel 3×3 

convolution layers along with an identity path that includes a 

BN layer. These three paths are then summed together, 

ultimately integrating them into a single block for streamlined 

processing. We achieved this design via three steps, as follows: 

First, we decouple the triple frame group and combine them 

as one block. We fuse the 3x3 convolution layer and BN layer 

as follows: 
 

𝑟𝑒𝑝(𝑥) = 𝛾(𝑊(𝑥) + (𝑥 − 𝜇))𝜎−1 + 𝑏𝑖𝑎𝑠, (4) 

 

where, tensor x is the input, and the fusion result is calculated 

with convolution weight W and other convolution layer 

parameters. In Figure 2, the methodology for integrating the 
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3x3 convolution layer with the Batch Normalization (BN) 

layer is depicted, along with the approach for calculating a 

tensor that performs an equivalent identity operation to 

facilitate a similar fusion. 

Subsequent to the vertical and horizontal merging processes, 

zero-padding is utilized to adjust the 1x1 convolution layer and 

the identity layer to a 3×3 format. These adjusted layers are 

then amalgamated with our redesigned 3×3 layer, resulting in 

two distinct module sequences: the 3×3-1×1 combined block 

and the 3×3-identity combined block. 

 

𝑀(3,1,0) = 𝑟𝑒𝑝(𝑀(𝑖) ∗ (𝑊(3) + 𝑊(1) + 1), 𝜇, 𝜎, 𝛾, 𝛽), (5) 

 

And our re-parameterized convolution block replaces the 

1×1 layer with 3×3 layers as follows: 

 

𝑀(3,3,0) = 𝑟𝑒𝑝(𝑀(𝑖) ∗ (𝑊(3)1 + 𝑊(3)2 + 1), 𝜇, 𝜎, 𝛾, 𝛽), (6) 

where, 𝜇, 𝜎, 𝛾, 𝛽  represent the parameters in convolution 

layers, 𝑀(𝑖)  denotes the input tensor, 𝑀(3,3,0)  and 

𝑀(3,1,0) denote the outputs of the Rep Convolution block layer 

and the original Rep block, the weights of 3×3 layers, 𝑊(3)1 

is differ from 𝑊(3)2  to get different results from the 3×3 

convolution operation. Following the layering of modules with 

analogous structures, an adaptive average pooling layer is 

introduced to adjust the output size based on the input 

parameters. Consequently, the output from our layered feature 

mapping operation, facilitated by Rep-RPANet, serves as the 

input for the subsequent module. 

Ultimately, Figure 3 illustrates the entire re-

parameterization procedure of the Rep-Convolution-block, 

transitioning from a three-branch architecture to a Conv-BN 

setup, and thereafter converting to a unified layer structure, 

culminating in the model's reconstruction. 

 

 
 

Figure 3. The re-parameterization of the Rep-Conv block involves transitioning from a three-branch architecture to a Conv-BN 

setup, eventually consolidating into a single-layer structure 

 

The widespread adoption of the FPN framework is 

attributed to its superior capability in extracting features from 

objects across multiple scales [44]. Enhancements to the 

original FPN, such as cascade FPN, up-sample FPN, and 

recursive FPN [45], have been developed to further refine its 

performance. Despite the ability of a traditional FPN to extract 

features at multiple levels, it typically relies on the output from 

the k-th layer alone for RoI computations. The k is obtained as 

follows: 

 

𝑘 = ⌊𝑘0 + log2(√𝑤ℎ) − log2 𝐻⌋, (7) 

 

where, w and h denote the width and height of the input image, 

respectively, with H typically set to 224. This is because large-

scale RoIs are better extracted from low-resolution feature 

maps to enhance the detection of larger targets, whereas small-

scale RoIs benefit from high-resolution feature maps for 

improved detection of smaller targets. Addressing the 

challenge of potentially losing low-level feature information 

with this distribution approach, we integrate low-level features 

with high-level features. Specifically, we introduce the 

RPANet by incorporating side connections within the FPN 

framework. This enhances the integration of multi-scale 

features at various levels. Furthermore, a two-level recursive 

structure is added to facilitate a second cycle of feature fusion. 

In this model, let n represent the number of recursion epochs, 

𝐶𝑖
(𝑛)

 the output of the i-th stage of the model backbone (e.g., 

our Rep-blocks), 𝑃𝑖
(𝑛)

 the output of each layer in the top-

bottom feature fusion path employing down-sampling to 

match the feature map sizes, and 𝑁𝑖
(𝑛)

 the output of each layer 

in the bottom-top feature fusion path using up-sampling to 

equalize the feature map sizes. The sum of these outputs serves 

as the input for the next recursion epoch or as the final outputs 

of RPANet. Should the n-th epoch be the final one, the 

complete model structure of RPANet is illustrated in Figure 4. 

 

 
 

Figure 4. The structure of RPANet 

 

 

4. EXPERIMENTS AND DISCUSSION 

 

We compiled a dataset of electric power facilities through 

manual efforts, sourcing images from the internet and direct 

photography. The images are either originally 1024x728 or 

resized to this dimension, and subsequently zero-padded to 
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achieve a uniform size of 1024x1024. The dataset is 

categorized based on the scale of the power facilities; it 

includes larger objects like "telegraph poles" and 

"transformers," and smaller objects such as "insulators," "wire 

clips," and "cross arms," totaling 150 images for larger objects 

and 100 for smaller objects, culminating in a dataset of 250 

images. Table 1 outlines the detailed distribution of the dataset, 

and Figure 5 presents a selection of these images, each marked 

with ground truth bounding boxes. For this project, our 

model's training and testing were conducted on Tensorflow 

1.13 and Keras 2.2.4, utilizing an Ubuntu 20.04 system 

equipped with an NVIDIA GeForce RTX 2080 Ti graphics 

card and an Intel i9-9900K processor. The training process 

involved 25 epochs for the model's head layers and another 25 

epochs for the entire model, with learning rates set at 1e-3 for 

the head layers and 1e-2 for the full model layers. 

 

Tabel 1. Each target was classified as either "Large" or 

"Small" based on size 

 

Label Name Number of Objects Group Mean H/W  

UtilityPole 240 Large 4.1 

Transformer 40 Large 1.2 

Insulator 940 Small 0.8 

WireClip 177 Small 0.8 

CrossArm 207 Small 0.5 

 

Several tests were conducted to assess the effectiveness of 

our suggested model. Initially, we juxtaposed our model 

against the original Mask R-CNN, Mask R-CNN integrated 

with Rep-blocks, SSD, YOLOv3-SPP, and YOLOv5x, aiming 

to gauge its performance on the dataset of power energy 

facilities, as depicted in Figure 6. 

 

 
 

Figure 5. Images in dataset manually annotated with ground 

truth bounding boxes 

 

In Figure 6, our model achieves the highest average mAP at 

88.62%, surpassing YOLOv5, a notable and efficacious 

single-stage model, and significantly outperforming 

traditional models. Detecting small targets remains a challenge 

within object detection tasks. While YOLOv5x demonstrates 

commendable performance in identifying larger targets, its 

accuracy diminishes with small and overlapping targets, 

leading to a 10.71% decrease in mAP. The escalation in model 

complexity could further decelerate inference speeds. 

Nonetheless, in comparison to more complex models, our 

model maintains a quicker operational speed, striking an 

optimal balance between detection efficacy and processing 

velocity. 

Secondly, by conducting experiments with ResNet50, 

ResNet101, RepVGG, and Rep-Conv-Blocks (our model) as 

backbones, we assess their impact on mAP, illustrated in 

Figure 7. This includes an evaluation of the benefits derived 

from utilizing re-parameterized operations. Among these, the 

model equipped with Rep-Conv-Blocks achieves the highest 

mAP at an IoU threshold of 0.5, registering 6.05% higher than 

ResNet50 and 4.29% higher than ResNet101. Moreover, it 

exhibits a 33% improvement in speed over ResNet50 and a 

35% advantage over ResNet101. This demonstrates that Mask 

R-CNN, when employing Rep-Conv-Blocks as its backbone, 

outperforms traditional Mask R-CNN configurations using 

ResNet in both inference speed and recognition capabilities. 

Additionally, RepVGG, when used as a backbone, achieves 

commendable inference speeds post-deployment but suffers a 

9.5% loss in mAP. This performance discrepancy suggests that 

the feature extraction capacity of the 1×1 convolution layer 

falls short compared to the 3×3 convolution layer. To address 

this, we substitute the 1×1 convolution layer in RepVGG with 

a newly devised 3×3 convolution layer to enhance feature 

extraction, culminating in the design of Rep-Conv-Blocks. 

 

 
 

Figure 6. The experimental results including SSD, Mask 

RCNN, YOLOv3-SPP, YOLOv5x, and our model 

 

 
 

Figure 7. The outcomes from testing various model 

backbones in our experiments 

 

Lastly, we evaluate the influence of the RPANet and various 

pooling layers on the model's efficacy. The findings indicate 

that in the absence of RPANet, while a simpler FPN may 

achieve quicker inference speeds, it experiences a 3.6% 

reduction in mAP due to its inferior capability for feature 

fusion relative to RPANet. This substantiates RPANet's 

contribution to enhancing the model's recognition 

performance through improved feature extraction capabilities. 

 

 

5. CONCLUSION 

 

The primary focus of this study is on the intelligent 

detection and identification of specific electric power facilities, 

crucial for on-site data measurement and management. In our 

research, we analyze the pros and cons of various architectural 

models for detection and introduce a Rep-Mask RCNN model 

equipped with RPANet, aimed at identifying electrical power 

facilities. In our proposed model, we utilize Rep-Conv blocks 

as the backbone with varied convolutional layer structures, 

replace the traditional FPN with RPANet, and strike a balance 
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between computational efficiency and detection precision. 

Additionally, we constructed a dataset of electric power 

facilities from scratch, conducted anchor clustering, 

segmented the data according to the scale of target boxes, and 

applied transfer learning techniques to optimize detection 

outcomes across different target sizes. The experimental 

outcomes demonstrate that our Rep-Mask RCNN model not 

only achieves a high inference speed but also maintains robust 

capabilities in box detection and classification. Looking ahead, 

our future endeavors will focus on two main areas: firstly, 

expanding our dataset with more images captured under 

various conditions such as different lighting, weather, and 

shooting angles to enhance the model's generalizability; and 

secondly, addressing challenges associated with the Rep-Conv 

blocks backbone, such as the initial training issue of 

substantial loss, despite its effective performance 

enhancements. Our forthcoming work will explore refining the 

model structure, potentially incorporating attention 

mechanisms and transformer architectures, to further elevate 

detection performance and accelerate inference speeds. 
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