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Predicting the mechanical properties of rocks is a critical technical issue in the fields of 

geological engineering design, disaster prevention, and resource exploration. Traditional 

macroscopic physical experimental methods face many limitations in analyzing rock 

mechanical properties, struggling to meet the current demands for efficiency, low cost, and 

microscopic level analysis. This study is based on image processing technology, aiming to 

improve the accuracy and efficiency of predicting rock mechanical properties through the 

quantitative analysis of high-resolution microscopic images of rocks. Although the 

application of image processing technology in the field of rock mechanics has made some 

progress, existing methods still face challenges in accuracy and automation when 

segmenting microscopic images of rocks. Considering these shortcomings, this paper 

proposes a novel rock microscopic image segmentation strategy that combines the minimum 

threshold method, Laplacian histogram method, and maximum interclass variance method. 

Additionally, this study explores methods for extracting microscopic structural parameters 

of rocks and analyzes the relationship between these parameters and rock mechanical 

properties. The results indicate that the proposed methods effectively improve the accuracy 

of identifying microscopic structures of rocks, thereby enhancing the understanding of rock 

mechanical behavior, which has substantial significance for scientific decision-making in 

geological engineering. 
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1. INTRODUCTION

The accurate prediction of rock mechanical properties is of 

great importance for the design of geological engineering, 

disaster prevention, petroleum exploration, and other fields [1-

3]. Traditional analyses of rock mechanical properties rely on 

macroscopic physical experiments, which are often time-

consuming, costly, and unable to reveal details at the 

microscopic level [4-7]. The microstructure of rocks, such as 

the size, distribution, and shape of grains and pores, directly 

affects their macroscopic mechanical behavior. Therefore, 

studying the microstructure of rocks through image processing 

technology has become a new research trend [8, 9]. 

In recent years, with the rapid development of image 

processing technology, quantitative analysis of rock 

microstructures using high-resolution images has become 

feasible [10]. This method can provide more detailed 

microscopic information than traditional experiments, and 

predict the mechanical properties of rocks at a lower cost and 

faster speed [11-15]. The application of rock microscopic 

image processing technology has improved the accuracy of 

analysis, providing a more scientific basis for decision-making 

in geological engineering, which is of great significance for 

ensuring engineering safety and improving resource 

development efficiency. 

However, existing image processing methods still have 

shortcomings in the accuracy and efficiency of rock 

microscopic image segmentation. Many traditional methods 

struggle with the fuzzy boundaries and complex backgrounds 

in rock microscopic images, leading to inaccurate 

segmentation results that may affect subsequent predictions of 

mechanical properties [16-19]. Furthermore, the extraction of 

parameters of rock microstructures often lacks effective 

automation tools, limiting the capability for large-scale data 

processing and analysis, thereby affecting the construction and 

optimization of prediction models [20-24]. 

The main research content of this paper revolves around two 

aspects. Firstly, to more accurately segment rock microscopic 

images, this paper introduces the minimum threshold method 

and the Laplacian histogram method to preliminarily segment 

the basic structure of the rock, and further utilizes the 

maximum interclass variance method to refine the 

segmentation of the rock's internal microstructure. Secondly, 

this paper studies in-depth the extraction of rock microscopic 

structure parameters, such as particle size, total particle area, 

and dimensions, and explores the relationship between these 

structural parameters and rock mechanical properties. 

Through these two parts of research, this paper not only 

improves the accuracy and efficiency of rock microscopic 

image analysis but also provides new theoretical bases and 

technical means for understanding and predicting rock 

mechanical behavior, demonstrating significant innovation 

and practical value. 
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2. SEGMENTATION OF ROCK MICROSCOPIC 

IMAGES FOR PREDICTING MECHANICAL 

PROPERTIES 

 

Figure 1 shows the technical roadmap of this research. This 

paper first studies the segmentation of rock microscopic 

images for predicting mechanical properties. The minimum 

threshold method, commonly used for image segmentation, is 

based on selecting a threshold value to divide the image pixels 

into target and background, which is simple and requires low 

computational effort. Due to the complexity of rock 

microstructures, the minimum threshold method can serve as 

a preliminary segmentation means to quickly delineate general 

areas, providing a basis for subsequent finer analysis. The 

maximum interclass variance method (also known as the Otsu 

method) is an adaptive image segmentation method that 

automatically calculates the optimal threshold by a statistical 

method to maximize the variance between the two categories 

(target and background) after segmentation. In the processing 

of rock microscopic images, the maximum interclass variance 

method can precisely separate different components of the 

rock, especially when the boundaries of rock particles are not 

very clear. 

 

 
 

Figure 1. Technical roadmap of this research 

 

2.1 Basic structure segmentation of rocks 

 

For the implementation of the minimum threshold method 

in rock microscopic image segmentation, the first step is to 

convert the rock microscopic images to grayscale, extract the 

grayscale histogram, and analyze its distribution. Then, using 

the minimum threshold method to process the grayscale 

histogram, and calculate the optimal threshold. This value 

should maximally differentiate the rock microstructure from 

the non-structural background. To enhance the segmentation 

effect of microstructures, the Laplacian histogram method can 

be further applied to intensify details. This method uses the 

Laplace operator to highlight the edges of the image, making 

the micro-fine structures within the rock, such as cracks and 

pores, more apparent. Assume the threshold is φ, the average 

gray level distribution of the object is represented by α, the 

background average gray level is represented by x, and the 

standard deviation of the normal distribution probability 

density w(c) is represented by e. Calculate α and x, then 

calculate e. Compare e with the threshold φ, and if φ ≤ e, then 

increase the value. Repeat the operation until φ > e. The 

probability distribution functions are represented by O(e) and 

o(e), with a schematic diagram shown in Figure 2, and the 

derivation formula is as follows: 
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Figure 2. Schematic diagram of the probability density 

function 

 

The Laplacian histogram method enhances the parts with 

sharp grayscale changes through the second derivative of the 

image, which usually corresponds to the edges or cracks in the 

rock structure. The result of the second derivative is to reduce 

the grayscale values in smoother areas, while producing high 

values in high-frequency details, such as edges and textures. 

After taking the absolute value, the constructed grayscale 

histogram exhibits a distinct bimodal characteristic in edge 

areas, making the possibly inconspicuous details of rock 
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structures prominent. Combined with the minimum threshold 

method, effective segmentation of rock edge features can be 

achieved. By analyzing the bimodal distribution of the 

Laplacian histogram and calculating the optimal threshold, the 

minimum threshold method can automatically differentiate the 

basic structure of the rock from the background. When the 

image contrast is high, traditional global threshold methods 

may not effectively segment all key features, whereas the 

combination of local feature enhancement with the Laplacian 

histogram and global analysis with the minimum threshold 

method can achieve more accurate and robust segmentation 

results. 

In digital image processing, an image is essentially a 

discrete data structure composed of a finite set of pixel points, 

rather than a continuous entity. Each pixel point has one or 

more corresponding numerical values that represent different 

colors or grayscale levels. Therefore, unlike traditional 

continuous functions, digital images cannot directly apply 

calculus operations from the continuous domain, such as 

differentiation and integration. When segmenting the basic 

structure of rocks, the Laplacian histogram method involves 

the second derivative of the image, which is clearly defined in 

continuous mathematics. However, in discrete image 

processing, it is necessary to introduce discrete forms of 

differential operators to approximate the effects of continuous 

differentiation. 

Specifically, let the image grayscale levels be 1 to l, and the 

number of pixels with grayscale value e be v, the total number 

of pixels can be calculated by the following formula: 

 

1

l

ee
V v

=
=  (3) 

 

The following formula calculates the probability of each 

grayscale level: 
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e
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Then, the image is divided into foreground and background, 

corresponding to X1={1~j} and X2={j+1~l}. Assuming the 

entire image's average grayscale value is represented by 

i=∑l
e=1oe, the following formulas calculate the probabilities of 

the two parts: 
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The average of the sums of the two groups of average 

grayscale values can be calculated by the following formula: 

 

2

x 


+
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If e≤ε1, then continue the above calculations until e>ε, at 

which point e equals the sought threshold φ. 

 

2.2 Microstructure segmentation within rocks 

 

The maximum interclass variance method (also known as 

the Otsu method) is used in image processing for automatic 

threshold selection. Its main advantage is the effective 

differentiation between the foreground and background in an 

image, making it particularly suitable for distinguishing 

microstructures within rocks. This method determines the 

optimal threshold by maximizing the variance between the 

foreground and background, thereby achieving precise 

segmentation of rock structures. Specifically, first, the color 

rock image is converted to a grayscale image for easier 

processing. Then, all possible thresholds are calculated for the 

entire image and the interclass variance is computed for each 

threshold, and the threshold that maximizes the interclass 

variance is selected as the final segmentation threshold. 

Finally, apply this threshold to binarize the grayscale image, 

thus obtaining the segmented microstructure image of the rock. 

Firstly, to measure the distinction between foreground and 

background under different thresholds, it is necessary to 

calculate the average grayscale value for each area in the 

image. In rock image processing, this paper divides the areas 

into foreground (the microstructures of the rock) and 

background. For each possible threshold, the image is divided 

into two parts, and the sum of the pixel values for each part is 

divided by the number of pixels to obtain the average 

grayscale values for the foreground and background under that 

threshold. Assume the number of pixels with grayscale value 

u is represented by v, the range of grayscale levels by 

D=(0,1,2,…,M-1), and the total number of pixels by V=∑M-

1
u=0vu, with the grayscale threshold represented by S, and the 

probability of each grayscale occurring represented by Ou, 

where Ou=vu/V. The image is divided into two regions, X and 

Y, with the probabilities of occurrence being OX and OY, where 

OX=∑S
u=0Ou, OY=∑M-1

u=S+1Ou. The following formulas 

calculate the average grayscale values γX and γY of regions X 

and Y: 
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Then, to provide a measure of the dispersion of pixel 

grayscale values within each area, further understanding how 

different thresholds will affect the separation effect of rock 

microstructure from the background, variance for each area is 

calculated, that is, the average of the squares of the differences 

between each pixel's grayscale value and the average grayscale 

value of that area. The following formulas calculate the 

variances δ2
X and δ2

Y of regions X and Y: 
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The calculation of the overall average grayscale involves 

calculating the average grayscale value for the entire image. 

This is done by summing all pixel grayscale values and 

dividing by the total number of pixels. The following formula 

gives the calculation for the overall average grayscale: 

 
1

0

M
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=
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Interclass variance refers to the size of the difference 

between the average grayscale values of the foreground and 

background. For each possible threshold, calculate the average 

grayscale values of the foreground and background, then 

square the difference between these two averages. The larger 

this value, the more distinct the separation between foreground 

and background. Thus, the threshold point with the maximum 

interclass variance is considered the ideal segmentation point. 

The interclass variance for regions X and Y can be calculated 

by the following formula: 
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Intraclass variance refers to the average of the squares of the 

differences between each pixel's grayscale value and the 

average grayscale value of that area within the same region. 

The calculation of intraclass variance indicates the similarity 

among pixels within the same area (foreground or 

background). The smaller the intraclass variance, the more 

consistent the pixel grayscale values within the same area, 

indicating higher homogeneity of that area. The intraclass 

variance for regions X and Y can be calculated by the following 

formula: 
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After calculating the intraclass and interclass variances for 

all possible thresholds, the total variance of the image can be 

computed, which measures the dispersion of all pixel 

grayscale values across the entire image. The total variance is 

a fixed value, not changing with the threshold. In the 

maximum interclass variance method, the interclass variance 

is maximized while keeping the total variance constant. 

Therefore, when the interclass variance is maximized, it means 

the differentiation between the foreground and background is 

maximized, and the consistency within each area is also 

ensured. The interclass variance coefficient is represented by 

σδ2
j, with the corresponding optimal value represented by SMAX, 

the following formula gives the calculation for the total 

variance: 

 
2 2 2

T k w  = +  (17) 

 

Once the basic structure and microstructure of the rock are 

successfully segmented using the maximum interclass 

variance method, these segmentation results are further used 

to predict the mechanical properties of the rock. This usually 

involves quantifying the segmentation results and extracting 

key features, such as porosity, crack density, particle size 

distribution, and shape parameters. These features are closely 

related to the mechanical behavior of the rock, thus 

establishing the relationship between microstructural features 

and macroscopic mechanical properties. 

 

 

3. EXTRACTION OF ROCK MICROSTRUCTURAL 

PARAMETERS AND ANALYSIS OF MECHANICAL 

PROPERTIES 

 

3.1 Parameters of rock microstructural feature particles 

 

The area calculation of rock microstructural particles is 

based on the pixel counting method in image processing 

technology. In the segmented binary image, particles are 

identified as the foreground, while the matrix or background 

constitutes the other parts. By counting the number of 

foreground pixels representing particles and combining this 

with the image resolution, i.e., the actual area represented by 

each pixel, the actual area of each particle can be obtained. 

This paper defines the area ratio as the percentage of the 

area occupied by a specific particle or group of particles in the 

entire rock cross-section or analysis area. This can be 

calculated by comparing the area of individual particles with 

the total area of the rock cross-section. The area ratio is very 

important for characterizing the uniformity of the rock 

microstructure and the distribution of particles. For example, 

particles with a high area ratio may indicate that they play a 

more significant supporting role in the rock, which could 

affect the rock's fracture strength and deformation behavior. 

Assuming the total area occupied by the region of interest in 

the image is represented by TVu, and the total area of the image 

by TS, the formula for calculating the area ratio is as follows:  

 

Vu
X

S

T
T

T
=  (18) 

 

Particle size refers to the size of individual particles in the 

rock microstructure, which can be calculated by directly 

measuring the maximum span of particles in two-dimensional 

images or based on the method of equivalent circle diameter. 

The equivalent circle diameter is the diameter of a circle with 

the same area as the particle, and this parameter is commonly 

used in rock mechanics to describe the particle size 

distribution. Particle size distribution is a key parameter 

because it affects the contact relationship between particles, 

the pore structure, and the overall mechanical performance of 

the rock. Statistical analysis of particle size distribution can 

predict the strength and deformation characteristics of the rock. 

Assuming the particle area and perimeter are represented by T 

and M, respectively, the formula for calculating particle size is 

as follows: 

 

4T
f

M
=  (19) 

 

3.2 Rock micro-image connected domain labeling and 

feature parameter calculation 

 

In the study of extracting rock microstructural feature 

parameters, the first step is to batch read the rock's microscopic 

image dataset through automated scripts and apply the image 

segmentation method proposed in this paper to differentiate 

the various feature areas of the rock. Subsequently, 

binarization processing is performed, which converts the 
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segmented image into an image containing only two colors, 

typically representing the area of interest, the rock particles, in 

white, and the background or non-analyzed areas in black. 

Afterward, connected region labeling is implemented via 

image processing software, assigning a unique identifier to 

each independent rock particle area for ease of subsequent 

analysis. Finally, these connected regions are quantified using 

image analysis tools, calculating their total area, size, and 

other morphological parameters. 

In predicting and analyzing rock mechanical properties, 

particle size is one of the key parameters affecting rock 

behavior. The size, shape, and distribution of rock particles 

directly influence its macroscopic mechanical performance, 

such as strength, deformation, and fracture characteristics. 

Therefore, accurately identifying and measuring the particle 

size of each rock particle is crucial for understanding and 

predicting rock behavior. This paper uses an 8-connected 

region sequential labeling method to precisely segment each 

independent rock particle in the image and analyze them 

individually. 

The first step involves the algorithm traversing every pixel 

in the image, checking if each pixel point A already has a label 

number. This is part of the initialization process, ensuring each 

particle can be identified and tracked. 

In the second step, if pixel point A is not labeled, its 

neighborhood pixels are checked. In an 8-connected domain, 

a pixel's neighborhood includes its surrounding 8 pixels. The 

algorithm decides A's label number based on the labels of 

neighboring pixels. If there are no labeled surrounding pixels, 

A is assigned a new label number and records this label in the 

equivalence table; if there is one label number in the 

neighborhood, A is assigned this same label number; if there 

are multiple different label numbers, these labels are recorded 

in the equivalence table for subsequent processing, and A is 

assigned any one of these labels. This step is crucial for the 

identification of rock particles, as it ensures that every particle 

in the image is correctly labeled and its particle size accurately 

measured. 

The third step requires the algorithm to re-traverse the 

image to correct the preliminary labeling results. In this step, 

based on the records in the equivalence table, labels with 

equivalent relationships are uniformly replaced with the 

smallest label number, ensuring all pixels in the same 

connected region have the same label number. Finally, 

displaying the label number at the centroid of each connected 

region provides an intuitive identification and location of rock 

particles for subsequent analysis, allowing for precise 

measurement and analysis of each particle's size. 

By separating rock particle areas from other areas through 

binary image processing technology, the pixel value of rock 

particle areas is set to 1, while that of other areas is set to 0. 

This processing highlights rock particle areas in white in the 

image, with other areas in black. To calculate the total area of 

rock particles, the algorithm traverses the entire image, 

counting the number of pixels in the white areas. Each pixel 

represents a specific area unit in the image; therefore, by 

summing the number of white pixels, the total area of rock 

particles can be calculated, with the formula as follows: 

 

( )
,

,
a b

X d a b


=   (20) 

 

The perimeter of the connected region is calculated using an 

8-connected chain code method, with the steps as follows: 

The first step requires the algorithm to start scanning from 

the top left corner of the binary image row by row to find the 

first boundary pixel of the rock particle area, denoted as t(0). 

This point marks the beginning of the contour tracking around 

the particle. At this point, initialize the number of horizontal 

boundary pixels VA, vertical boundary pixels VB, and the total 

boundary pixels V to 0, which will be used for calculating the 

particle's perimeter later. 

In the second step, starting from t(0), the algorithm 

determines the second boundary pixel t(1) following the order 

of the 8-connected neighborhood (i.e., right, right-down, down, 

left-down direction counterclockwise). Once t(1) is found, V, 

VA, and VB are updated based on its direction. If t(1) is in the 

horizontal direction of t(0), VA increases by 1; if in the vertical 

direction, VB increases by 1. At this point, the total boundary 

pixels V increase by 1. 

The third step involves starting from t(1) and continuing to 

search for the next boundary pixel t(2) in a counterclockwise 

direction. This step is an iterative process of boundary tracking, 

with V increasing by 1 with each found boundary pixel, 

accumulating the total number of boundary pixels. Meanwhile, 

record the current boundary pixel's index s for subsequent 

determination of whether a full contour trace has been 

completed. 

The fourth step requires the algorithm to determine whether 

the newly found boundary pixel t(s) is a horizontal or vertical 

boundary pixel each time a new boundary pixel t(s) is found. 

If it's in the horizontal direction, Va increases by 1; if in the 

vertical direction, Vb increases by 1. This step is necessary for 

later calculations of the particle's perimeter, as it distinguishes 

the distribution of boundary pixels in different directions. 

The fifth step repeats the above steps until the boundary 

tracking returns to the starting point t(0), indicating that a full 

contour trace of the particle has been completed. At this point, 

the number of odd connected codes VF, which is the total 

boundary pixels V minus the sum of the numbers of horizontal 

and vertical boundary pixels (VA + VB), can be calculated. 

The sixth step utilizes the available data to calculate the 

perimeter of the rock particle. The calculation formula is 

provided below. For non-circular irregular particles, the 

perimeter of the rock particle can be converted into an 

equivalent diameter, a measure of particle size, calculated 

using the particle size calculation formula. Assuming the 

number of even chain codes in the horizontal and vertical 

directions is represented by VA and VB, and the number of odd 

chain codes by VF, the calculation formula is as follows: 

 

2A B FM V V V= + +  (21) 

 

In this study, the results of connected region labeling can be 

used to differentiate and identify different particle areas in 

rock samples, while the calculated area and perimeter data of 

particle areas provide quantitative morphological 

characteristics of particles. By analyzing geometric 

parameters based on area and perimeter, such as shape factor, 

roundness, and smoothness, it's possible to infer the 

fragmentation and contact area of particles. These geometric 

parameters have a direct correlation with rock mechanical 

properties like compressive strength and elastic modulus. For 

example, smoother and more regularly shaped particles 

generally indicate better compressive capacity and higher 

overall stability. Through correlational analysis of these 

morphological characteristics with rock mechanical 

parameters, mathematical models can be established to predict 
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and analyze the mechanical behavior of untested rock samples, 

enabling effective prediction of rock mechanical properties. 

This method enhances analysis efficiency, reduces costs, and 

provides important information for understanding rock 

behavior in different engineering environments. 

 

 

4. RESULTS AND ANALYSIS 

 

Table 1. Comparison of MCR among different rock micro-

image segmentation methods 

 
Standard 

Deviation 
10 11 12 13 14 15 

CycleGAN 12.3256 13.2356 13.6895 13.2458 12.3698 12.5485 

GrabCut 0.5124 0.8215 1.2658 1.6789 2.1325 2.6985 

Proposed 

Segmentation 

Method 

0.0512 0.0721 0.0879 0.1236 0.1569 0.2215 

 

Table 2. Comparison of PSNR among different rock micro-

image segmentation methods 

 
Standard 

Deviation 
10 11 12 13 14 15 

CycleGAN 13.2658 13.5689 13.5684 13.2647 13.2658 13.1457 

GrabCut 28.2154 25.6987 24.5123 23.5689 21.4578 22.2369 

Proposed 

Segmentation 

Method 

37.8995 36.1245 36.5248 34.2658 32.4178 31.2658 

 

From Tables 1, 2, and 3, we can observe the performance of 

various rock micro-image segmentation methods under 

different standard deviations. The standard deviation 

represents the level of noise in the image, simulating different 

degrees of image quality variations encountered in actual 

situations. Across all three tables, the segmentation method 

proposed in this paper demonstrates significant superiority in 

three metrics measuring segmentation quality (MCR, PSNR, 

EPM). A lower MCR (Misclassification Rate) indicates a 

smaller proportion of misclassified pixels, a higher PSNR 

(Peak Signal-to-Noise Ratio) indicates better image quality, 

and a lower EPM (Error Pixel Mapping) indicates a smaller 

proportion of incorrectly segmented pixels. The values for 

MCR and EPM with the proposed method are significantly 

lower than those for CycleGAN and GrabCut, and its PSNR 

values are substantially higher than the other two methods. 

This indicates that the proposed method provides more 

accurate segmentation, maintaining robust performance even 

at higher noise levels. Analyzing the above experimental 

results, we can conclude that the rock micro-image 

segmentation method proposed in this paper significantly 

outperforms the CycleGAN and GrabCut methods in terms of 

noise resistance and segmentation accuracy. By combining the 

minimum threshold method and the Laplacian histogram 

method to preliminarily process the basic structure of the rock, 

and then using the maximum interclass variance method to 

refine the segmentation of the microstructure, the proposed 

method effectively enhances segmentation accuracy. Even 

under gradually increasing noise levels, the proposed method 

still maintains a lower misclassification rate and error pixel 

mapping, as well as a higher peak signal-to-noise ratio, 

emphasizing its effectiveness and practicality in rock micro-

image processing. 

 

Table 3. Comparison of EPM among different rock micro-

image segmentation methods 

 
Standard 

Deviation 
10 11 12 13 14 15 

CycleGAN 0.6235 0.6147 0.6258 0.6125 0.6235 0.5895 

GrabCut 0.9147 0.8795 0.8326 0.8145 0.7458 0.7156 

Proposed 

Segmentation 

Method 

37.9854 36.1245 35.6985 33.1245 32.5689 31.2547 

Table 4. Data comparison of porosity calculations for rock samples by different methods 

 
Rock Sample 

Number 

Morphological Analysis 

Method 

The Proposed 

Method 

Rock Sample 

Number 

Morphological Analysis 

Method 

The Proposed 

Method 

1 1.85 6.63 18 2.15 11.23 

2 1.69 7.12 19 2.23 12.15 

3 1.73 6.89 20 2.35 6.78 

4 1.82 6.89 21 4.56 8.23 

5 1.63 6.87 22 4.62 8.21 

6 1.67 6.78 23 1.57 7.78 

7 1.59 6.89 24 4.88 9.21 

8 1.71 6.45 25 2.12 8.12 

9 1.82 6.89 26 1.39 8.62 

10 1.71 6.32 27 2.14 6.78 

11 1.12 4.89 28 2.23 6.69 

12 0.94 4.32 29 1.65 8.69 

13 0.82 3.79 30 2.18 8.89 

14 0.81 3.76    

15 1.12 4.23    

16 1.23 5.23    

17 1.69 6.35    

 

Table 4 presents a comparison of porosity data for rock 

samples calculated by two different methods, covering 35 rock 

samples with different numbers. Comparing the porosity data 

obtained by the morphological analysis method and the 

proposed method, it is evident that the porosity calculated by 

the proposed method is generally higher than that obtained by 

the morphological analysis method. The porosity data 

calculated by the proposed method show larger values, 

meaning that the proposed method is more sensitive and 

precise in identifying and calculating pore spaces. Especially 

in samples with high porosity, the difference between the 

proposed method and the morphological analysis method is 

more pronounced, indicating that the proposed method has 

better resolution in rock samples with higher porosity. 
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From the comprehensive analysis of these data, we can 

conclude that the porosity calculation method proposed in this 

paper is more effective in extracting microstructural 

parameters, especially when dealing with samples with 

complex pore structures. The proposed method employs more 

advanced image analysis technology or introduces more 

detailed parameter considerations, thus providing more 

comprehensive and accurate porosity measurements. 
 

Table 5. Analysis results of rock porosity, maximum particle area, and particle size variance regression analysis 
 

 df SS MS F Significance F 

Regression Analysis 3 221.235 71.23458 31.15489 7.25468E-06 

Residuals 12 27.65415 2.356248   

Total 14 235.2356    

 Coeffcients Standard Deviation tStat P-value Lower95% 

Intercept 6.78546245 3.526345 1.887951 0.081457 -1.123257485 

Maximum Void Diameter -0.0087956 0.01526 -0.51264 0.612358 -0.044512568 

Particle Area 0.03624589 0.00658 5.523154 0.000124 0.021458579 

Particle Size -0.001236 0.000514 -2.64259 0.017895 -0.002315487 

Table 6. Regression statistical results of rock porosity with 

maximum particle area and particle size 

 
Regression Statistics  

Multiple R 0.92358795 

R Square 0.87451263 

Adjusted R Square 0.84521685 

Standard Error 1.53264859 

Observations 15 

 

From the variance analysis results in Table 5, it can be seen 

that the significance F value of the regression model is 

7.25468E-06, far less than the commonly used significance 

level of 0.05, indicating that the model's regression effect is 

significant, meaning at least one predictive variable in the 

model is effective for predicting rock porosity. Specifically, 

the P value for the maximum particle area is 0.000124, far less 

than 0.05, indicating a significant positive impact on porosity, 

while the P value for particle size is 0.017895, also less than 

0.05, indicating a significant negative impact on porosity. The 

P value for the maximum void diameter is higher, indicating 

its impact on porosity is not significant. Table 6 further reveals 

the regression statistical results, where the R Square value is 

0.8745, indicating that about 87.45% of the variation in 

porosity can be explained by the predictive variables in the 

model, showing strong explanatory power of the model. 

Integrating these analysis results, we can conclude that the 

rock microstructural parameter extraction method and porosity 

prediction model proposed in this paper are effective. The 

maximum particle area, as a positive influencing factor, has a 

significant correlation with rock porosity, and particle size, as 

a negative influencing factor, also has a significant correlation 

with porosity. These findings validate the complex 

relationship between microstructural parameters and rock 

mechanical properties, and emphasize the importance of these 

parameters in predicting and understanding rock porosity. 

Further, this paper analyzes the fractal characteristics of 

porosity using core samples and explores the relationship 

between the pore fractal dimension and rock mechanical 

properties. Comparing rock samples under core classification 

with their fractal dimensions in Figure 3, a consistency 

between them is found, indicating that fractal dimension can 

serve as an indicator to identify and differentiate the pore 

structure characteristics of different rock samples. However, 

the content of rock samples and fractal dimension do not show 

a simple positive correlation, indicating that rock sample 

content is not the sole factor controlling pore distribution. The 

development of pores in rocks is affected by multiple factors, 

such as mineral composition, rock genesis, stress conditions, 

etc. Moreover, when ignoring the precondition of rock sample 

classification, the relationship between rock sample content 

and fractal dimension has a low degree of linear fit, indicating 

no apparent correlation without considering specific rock 

sample conditions. From these experimental results, it can be 

concluded that the complexity of rock microstructure leads to 

the relationship between porosity and rock mechanical 

properties not being fully described by linearity or a single 

variable. Fractal dimension, as a quantitative indicator of pore 

structure complexity, shows a certain degree of correlation 

with rock mechanical properties under the context of rock 

samples, but this correlation is influenced by the combined 

effects of rock type, composition, and other factors affecting 

pore development. 

 

 
1) 

 
2) 

 

Figure 3. Relationship between different rock samples and 

fractal dimension 
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1) 

 
2) 

 

Figure 4. Relationship between rock sample porosity and 

elastic modulus 

 

In the experimental research of this paper, by meticulously 

extracting rock microstructural parameters such as particle 

size, particle size distribution, and total area, a discussion on 

the relationship between rock mechanical properties and 

microstructure was conducted. The experimental data in 

Figure 4 shows that there is a certain relationship between total 

porosity and the rock's elastic modulus. Specifically, before 

the experiment, the correlation coefficient R2 between total 

porosity and elastic modulus was only 0.0047, indicating 

almost no correlation. However, after the experiment, the 

correlation coefficient significantly increased to R2=0.455, 

suggesting the experimental process affected the rock 

microstructure, thereby altering its elastic modulus. This lower 

but significant correlation coefficient hints that although there 

is a correlation between porosity and elastic modulus, the total 

porosity of the rock is not the sole factor affecting the elastic 

modulus, and the rock's macroscopic stratification structure 

and other characteristics also contribute. 

Further analysis shows that rock porosity has a negative 

correlation with its elastic modulus: as porosity increases, the 

elastic modulus gradually decreases, which is reflected in the 

linear relationship in Figure 4-2. This negative correlation 

reveals an important mechanical behavior, that rocks with 

higher porosity exhibit more plastic characteristics under 

stress, reflecting a decrease in the rock's elastic capabilities. 

This finding is significant for predicting and analyzing the 

mechanical response of rock materials in engineering 

applications, emphasizing the need to comprehensively 

consider microstructural characteristics, especially porosity, 

when assessing the structural integrity and long-term stability 

of rock materials. 

  
1) 

 
2) 

 

Figure 5. Relationship between rock sample porosity and 

Poisson's ratio 

 

In this study, an in-depth analysis of rock microstructure, 

including particle size, total area, and dimensions, was 

performed, further exploring the relationship between these 

microstructural parameters and rock mechanical properties, 

particularly Poisson's ratio. By comparing changes in 

Poisson's ratio before and after the experiment, a significant 

impact of total porosity on Poisson's ratio was observed. The 

correlation coefficient for Poisson's ratio increased from 

R2=0.1079 to R2=0.2811 before and after the experiment, 

showing a clear upward trend. This indicates that, although the 

correlation coefficient is not high, the impact of total porosity 

on Poisson's ratio is significant during the experimental 

process. Importantly, it is recognized that porosity is just one 

of many influencing factors; rock's strain characteristics are 

not only affected by the internal pore structure but also closely 

related to the content and distribution of mineral components. 

Continuing to analyze the relationship between Poisson's 

ratio and porosity, experimental results revealed a key 

indicator of rock plastic characteristics: as porosity increases, 

Poisson's ratio also tends to rise, clearly demonstrated in 

Figure 5-2. A higher Poisson's ratio means the rock's lateral 

expansion capability under vertical compression is enhanced, 

indicating stronger plasticity of the rock. This trend is crucial 

for understanding the deformation behavior of rocks under 

stress. Therefore, it can be concluded that an increase in 

porosity leads to a rise in Poisson's ratio, thereby affecting the 

rock's plastic response. In predicting and analyzing rock 

mechanical properties, considering microstructural parameters 
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like porosity is indispensable for accurately predicting the 

behavior of rock in engineering applications. 

This paper has made significant progress in exploring the 

relationship between rock microstructure analysis and rock 

mechanical properties. Firstly, the research successfully 

preliminarily segmented the basic structure of rocks using the 

minimum threshold method and Laplacian histogram method, 

followed by a more refined subdivision of the rock's internal 

microstructure using the maximum interclass variance method, 

greatly improving the accuracy of rock micro-image 

segmentation. The effective combination of these methods not 

only enhanced the identification of rock microstructure but 

also laid a solid foundation for subsequent structural parameter 

extraction. 

 

 

5. CONCLUSION 

 

In terms of extracting rock microstructural parameters, this 

paper conducted a quantitative analysis of key parameters such 

as rock particle size, total particle area, and dimensions, 

systematically comparing these parameters with rock 

mechanical properties. The experimental results showed that 

there is a complex but identifiable correlation between rock 

sample porosity, maximum particle area, and particle size 

variance with mechanical properties of the rock such as elastic 

modulus and Poisson's ratio. Especially, the study revealed 

how changes in porosity affect the plastic and elastic response 

of rocks, providing a new perspective for understanding the 

deformation behavior of rocks under stress. 

Overall, this paper confirmed the feasibility of using 

detailed microstructural parameters to predict rock mechanical 

properties and provided an effective set of image segmentation 

and data analysis methods for such research. These findings 

are significant for the design and prediction of rock 

engineering, helping engineers better understand and address 

the behavior of rock materials in practical applications. 

Future research could further explore the relationship 

between the microstructure and mechanical properties of 

different types of rocks, especially their performance under 

various environmental conditions. Moreover, by integrating 

modern image processing technology and machine learning 

algorithms, the automation and accuracy of rock 

microstructural segmentation and parameter extraction can be 

further enhanced, thereby providing a more powerful tool for 

predicting rock mechanical properties. Simultaneously, a 

deeper understanding of multi-physics problems, such as 

complex fracture networks, pore structures, fluid flow, and 

stress-strain relationships within rocks, is also expected to be 

achieved through the research methods discussed in this paper. 
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