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Laryngeal Squamous Cell Carcinoma (LSCC) is a prevalent form of laryngeal cancer that 

originates from the mucosal surface of the larynx. The visual analysis of laryngeal tissue 

vascular patterns poses a significant challenge, as it heavily relies on the expertise and 

experience of medical practitioners. This paper proposes a dual approach for the early 

diagnosis of LSCC by employing a lightweight Deep Convolutional Neural Network (CNN) 

and statistical features. It further delves into feature visualization and interpretation of the 

proposed classification models. Methods: The initial step involves enhancing image quality 

through Contrast Limited Adaptive Histogram Equalization (CLAHE). In the first approach, 

we employ a modified SqueezeNet for classifying laryngeal tissues. In the second approach, 

we extract a combination of first-order statistical features – Percentile-25, Percentile-50, 

Percentile-75, Mean, and Standard Deviation of each RGB channel – and second-order 

statistical features such as Contrast, Energy, Homogeneity, and Correlation from the Gray-

Level Co-Occurrence Matrix (GLCM). These features are then classified using the Extreme 

Gradient Boosting (XGBoost) classification model. Results: The proposed models are 

trained and validated using an augmented publicly available dataset, prepared for both 

binary and multiclass classifications. The results indicate that the proposed models 

demonstrate exceptional accuracy and efficiency in classifying types of laryngeal cancer. 
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1. INTRODUCTION

Laryngeal cancer accounts for 30% of all head and neck 

cancers, typically developing in the larynx, an organ critical 

for speaking, breathing, and swallowing. The primary form of 

laryngeal cancer is squamous cell carcinoma, which originates 

in the epithelial cells of laryngeal tissues. Persistent hoarseness 

of voice that remains unabated after a few weeks is the most 

common symptom. If not addressed early, the cancerous cells 

can multiply, invading nearby tissues through blood vessels, 

ultimately leading to fatal outcomes. Early detection of 

laryngeal cancer is challenging due to the identical 

macroscopic appearance of the mucosal tissue vessels' 

microarchitecture, despite potential pathological variations. 

Therefore, an accurate assessment of the pathological nature 

of laryngeal tissues is crucial in determining appropriate 

treatment and prognostic outcomes. 

Recent meta-analyses have confirmed the effectiveness of 

narrow-band imaging (NBI) for diagnosing laryngeal cancer, 

demonstrating notable diagnostic accuracy and clinical 

applicability [1, 2]. NBI, a technique that utilizes short 

wavelengths (415 and 540 nm) of light, allows for the 

observation of the mucosal vascular pattern. Research [3] has 

demonstrated that NBI endoscopy can facilitate early and 

accurate detection of head and neck malignancies by 

examining the intrapapillary capillary loop (IPCL), 

characterized by elongated hypertrophic and dot-like vessels. 

NBI enhances the visibility of the mucosal surface's 

microvascular architecture through endoscopic imaging, 

aiding in the identification of early recurring cancer lesions [4]. 

A study [5] successfully classified vocal cord leukoplakia, 

characterized by the thickening and whitening of the epithelial 

layer, from NBI imaging. The changes in IPCL indicate the 

initial stage of cancerous tissue development, while changes 

in leukoplakia suggest precancerous tissues [6]. However, 

there is limited research on laryngeal tissue classification from 

NBI images for early cancer diagnosis. 

Initial computational methods for diagnosing early-stage 

squamous cell carcinoma were proposed, based on blood 

vessel segmentation and statistical characteristics such as 

tortuosity, thickness, and density [7]. Laryngeal disorders have 

been detected based on Histogram-Oriented Gradient (HOG) 

descriptors [8]. Recent studies have utilized Deep 

Convolutional Neural Networks (CNN) for laryngeal cancer 

detection [9-11]. A hybrid feature-based early squamous cell 

carcinoma detection model was proposed, leveraging Local 

Binary Pattern (LBP) and fine-tuned ResNet V2 pretrained 

CNN for feature extraction and multiclass One Against All 

SVM for classification [6]. An ensemble model based on the 

You-Only-Look-Once (YOLO) CNN was introduced to detect 

laryngeal squamous cell carcinoma (LSCC) in both white light 

(WL) and NBI laryngoscopies [12]. This model combined two 

effective models, YOLOv5s and YOLOv5m, with the Test 

Time Augmentation (TTA) technique to enhance detection 
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rates [13]. A novel Deep-Learning-Based Mask R-CNN 

Model was presented, which identified Laryngeal Cancer from 

CT images [14]. The Xception model was used to classify 

three classes: normal vocal folds, abnormal, and no finding 

from laryngoscopy images [15]. An early glottic cancer 

detection model was proposed, employing ensemble learning 

of Convolutional Neural Network classifiers based on voice 

and laryngeal imaging [16]. Faster R-CNN was utilized to 

differentiate between malignant and benign vocal lesions [17]. 

A Depth Domain Adaptive Network (DDANet) was proposed, 

which merges gradient CAM and guided attention for 

enhancing the effectiveness of classification and 

interpretability of tumors by incorporating the pathologist's 

experience at high magnification into the depth model [18]. A 

segmentation model was proposed for detecting laryngeal 

diseases [19]. 

Despite these advancements, there is a dearth of studies 

focusing on early-stage laryngeal cancer detection. To our 

knowledge, this study is the first to aim at developing a cost-

effective model with high predictive capabilities for early-

stage laryngeal cancer diagnosis. The main objectives of this 

study are: 

• To develop deep learning and feature-based models for 

early classification of LSCC using Narrow Band Imaging. 

• To propose and validate two cost-effective yet efficient 

models for the task at hand. The first model leverages a 

modified version of the smallest CNN, SqueezeNet, while the 

second model utilizes a combination of statistical features and 

the XGBoost classifier. 

• To perform feature engineering visualizations to interpret 

the predictions of our proposed models. 

• To compare the performance of the models for binary and 

multi-class classification of laryngeal images obtained using 

NBI. 

Other contributions of this work include: 

• Enhancement of image contrast to better understand the 

tissue patterns of laryngeal images. 

• Implementation of data augmentation techniques to 

improve the performance of deep learning models. 

• Execution of multiple experiments to test the robustness 

of the proposed methods for binary and multi-class 

classification. 

This research paper is structured as follows: Section 2 

outlines the methodologies of the proposed work. Section 3 

presents the results, along with discussions. Finally, Section 4 

provides the conclusion. 

 

 

2. METHODS 

 

The objective of this study is to provide two efficient and 

computationally simple models for laryngeal cancer detection. 

The method involves three important steps such as 

Preprocessing, Feature extraction and fusion and 

classification. The proposed classification framework is 

shown in Figure 1. 

 

2.1 Dataset 

 

Laryngeal dataset [20] is collected from 

https://zenodo.org/record/1003200. It consists of 1320 patches 

with different types of laryngeal tissue, including 

Hypertrophic tissue, Healthy tissue, IPCL-like tissue, and 

Leukoplakia tissue. These NBI image patches were produced 

from 33 NBI videos of 33 Squamous cell cancer patients. By 

carefully choosing 10 images from each video, a total of 330 

images were acquired. From every image, four patches of size 

100×100 pixels were cropped and therefore, a balanced 

distribution of 1320 patches were acquired. Few sample 

images from the dataset are depicted in Figure 2. Offline data 

augmentation was adopted to increase the dataset size. The 

settings for data augmentation are given in Table 1. For the 

evaluation of proposed method 30% of data used for testing 

and 70% of data used for training using CV partition method 

that defines a random partition on dataset. The Table 2 shows 

the data distribution after augmentation. 
 

 
 

Figure 1. Proposed methodology 
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Table 1. Augmented settings 

 
Data Augmentation Settings 

Rotation [-45 45] 

XShear [0 25] 

YShear [0 25] 

YReflection true 

XReflection true 

 

 
 

Figure 2. Each class is distinguished by a unique color 

outline: Blue: hypertrophic vessels tissue, Orange: normal 

tissue, Green: tissue with IPCL vessels, Black: leukoplakia 

tissue 

2.2 Preprocessing 

 

Before implementing an effective system, the laryngeal 

images are needs to be preprocessed to improve the sharpness 

of edges and local contrast effectively. We adopted CLAHE to 

improve image quality and then smoothen the resultant images 

using median filter. 

 

2.2.1 Contrast enhancement technique 

CLAHE is a significant method for enhancing digital 

images, particularly in medical imaging [21, 22] and provided 

better outcomes compared to Contrast Stretching (CS) 

Histogram Equalization (HE) [23, 24]. In two classes such as 

IPCL and HBV, the blood vessels pattern has more 

discrimination power, hence to understand blood vessels 

patterns in laryngeal tissue, the RGB images is concerted to 

L*a*b* color space. The L channel contains Lightness 

information hence the L channel of images is enhanced using 

CLAHE. The chosen clip limit for enhancing details of L 

channel is 0.006 and Num Tiles is 8×8, where the clip limit is 

the contrast factor that adjust the enhancement limit and the 

latter one is the number of rectangular regions that an images 

has to be partitioned for interpolation. The enhanced image 

still contains noise and is reduced using anisotropic filtering 

which significantly improves the image detail, reduces noise, 

and gets rid of false borders created by the CLAHE algorithm. 

An improved final image is generated by converting the 

L*a*b* color space image to RGB color space. 

 

Table 2. Data distribution before and after augmentation 

 
Before Augmentation After Data Augmentation 

 Binary Task Multiclass 

Healthy 330 Normal 5000 Healthy 5000 

Hypertrophic 330 Hypertrophic 5000 

Intra-papillary capillary 330 Abnormal 5000 Intra-papillary capillary 5000 

Leukoplakia 330 Leukoplakia 5000 

Total 1320 Total 1000 Total 20,000 

 

     
(A)                                                               (B) 

Figure 3. A. Traditional SqueezeNet architecture, B. Modified SqueezeNet 
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2.3 SqueezeNet 

 

The proposed method used pretrained SqueezeNet model, 

which is a smaller CNN with fewer parameters that might fit 

in computer memory and be communicated more readily 

across a computer network. The architecture of classical 

SqueezeNet is represented in Figure 3A. The first layer is the 

convolutional layer, conv1 which is followed by eight fire 

modules. In every fire module, there is squeeze convolutional 

layer with a single 1×1 filter. It passes to an expand layer, 

which is made up of a combination of 3×3 and 1×1 

convolutional filters. Configuration of the fire module is 

shown in Figure 3A. 

The reason behind the fire module configuration is to reduce 

the model size while retaining the prediction accuracy. The 

number of filters in each fire module steadily increases from 

the starting till end of the network. Max pooling is done with 

stride 2 after 4, 8 fire modules and convolutional 10 layer. Max 

pooling layers would not increase the model's size since they 

lack any trainable weights. Moreover, it tends to lessen the 

model's overfitting [25]. The convolutional layer at last results 

in large activation maps which improves classification 

accuracy.  
 

2.3.1 Modified SqueezeNet 

The modified SqueezeNet architecture is shown in Figure 

3B. In modified SqueezeNet, after every fire module, max 

pooling layer is added to avoid overfitting. In the last conv10 

layer the number of filters was set as 2 for binary task and 4 

for multiclass task. Batch Normalization [26] is a technique 

that normalizes the inputs of the layers by re-centering and re-

scaling, thereby it makes training of artificial neural networks 

more quickly and stable. This architecture improves the 

accuracy compare to the traditional architecture. Further the 

last classification layers in classical SqueezeNet are removed 

and fine-tuned according to our objective. The training options 

are given in Table 3. 

 

Table 3. Settings for training modified SqueezeNet model 

 
Solver SGDM 

Initial Learning Rate 0.01 

Validation Frequency 20iterations 

Max Epochs 15 

Mini Batch Size 15 

L2Regularization 0.0001 

 

2.4 Handcrafted features 

 

Handcrafted features refer to the features or characteristics 

extracted using the traditional machine learning approaches. 

There are several popular handcrafted feature extraction 

methods but, in our work, we utilized the features which are 

most important to discriminate cancer tissue patterns. The 

following is an overview of the extracted feature descriptors. 

 

2.4.1 Color features 

Color features are widely used visual features. The 

significant benefits of color features are the ability to convey 

visual content in images, the relative strength with which 

images may be distinguished from one another, independent 

of picture dimensions and orientations and reasonably 

resistant to background complexity [27]. We extracted the 

histogram statistical color information from each channel of 

RGB color space. The features like mean ( 𝜇 ), standard 

deviation (𝜎), 25% percentile, 50% percentile, 75% percentile 

of each channel are calculated. The equations and descriptions 

of all extracted features are given in Table 4. 

 

Table 4. First order statistical features 

 
Feature Description Formula 

Mean 

Measure of 

average color in 

image 

𝜇 =
1

𝑚
∑ 𝑋𝑗

𝑚

𝑗=1

 

Standard 

Deviation 

Provides a 

measurement of 

the distribution 

of grey level 

intensities in 

images 

𝜎 = √
1

𝑚
(∑(𝑋𝑗 − 𝜇)

2
𝑚

𝑗=1

) 

75th 

Percentile 

Give 75th 

percentile of 

image 

𝑃75 =  
75

100
(𝑛 + 1) 

 

50th 

Percentile 

Give 50th 

percentile of 

image 

𝑃50 =  
50

100
(𝑛 + 1) 

 

25th 

Percentile 

Give 25th 

percentile of 

image 
𝑃25 =  

25

100
(𝑛 + 1) 

 

where, m denotes the number of pixels in an image and 𝑋𝑗 

denotes the pixel j value of R, G and B channels. The total 

number of gray levels is denoted by n. Thus, we calculated 

totally fifteen statistical color characteristics from the images. 

 

 
Figure 4. Illustrations of GLCM 
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Table 5. Extracted GLCM features 
 

Feature Description Formula 

Contrast 

Calculate the intensity 

contrast of each pixel 

and its surrounding 

pixels 

∑ ∑ (𝑠 − 𝑡)2𝐶(𝑠 −𝑡𝑠

𝑡)  

Energy 

Determines the 

uniformity in 

neighborhood pixels 

intensity 

∑ ∑ 𝐶(𝑠, 𝑡)2
𝑡𝑠   

Homogeneity 

Evaluates the closeness 

between the distributed 

GLCM elements to 

diagonal element 

∑ ∑
𝐶(𝑠,𝑡)

1+(𝑠−𝑡)2𝑡𝑠   

Correlation 

Gives a measurement 

of how correlated each 

pixel is with each of its 

neighbors throughout 

the whole image 

∑
(𝑠−𝜇𝑠)(𝑡−𝜇𝑡)𝐶(𝑠,𝑡)

𝜎𝑠𝜎𝑡𝑠,𝑡
  

 

2.4.2 GLCM features 

The first-order statistics-generated features give details 

about the image's distribution of grey levels. The relative 

placements of the various grey levels within the image aren't 

made clear by them [28]. These attributes cannot determine if 

all low grey levels are grouped together or whether they are 

changed with high-value grey levels. Gray-level co-

occurrence matrix (GLCM) is a statistical technique that 

generates a symmetric matrix of relative distance 𝐶𝜃,𝑟(𝑠, 𝑡) 

and determines how frequently pairs of pixels (𝑠, 𝑡) with 

certain values and in a particular spatial relationship occur in 

an image. The co-occurrence matrix depends on two factors: 

the relative distance (d) between the pixels and the orientation 

of those pixels in relation to one another. The orientation is 

quantized into four directions, with 0 representing horizontal, 

45 representing diagonal, 90 representing vertical, and 135 

representing anti-diagonal.  

The extracted second order statistical features are given in 

Table 5. Figure 4 illustrates the different orientations of 

GLCM.  

 

2.4.3 Classification 

Boosting is an ensemble approach that aims to create a 

powerful learner by combining several weak classifiers. 

Initially a model is created using the training set of data. 

Following that, a second model is created in an effort to fix the 

errors in the previous one. Models are added in this manner 

until either the whole training data set is successfully predicted 

or the maximum number of models is added. One common 

approach for boosting is gradient boosting. Each predictor in 

gradient boosting corrects the mistake of its predecessor. 

XGBoost [29] is a popular machine learning algorithm that 

makes predictions by combining gradient boosting with a 

group of decision trees. Strong generalization capability, great 

expandability, and quick computation speed are benefits of the 

XGBoost algorithm [30]. It also reduces overfitting [31]. In 

our study we used number of estimators as 100 and max depth 

4. 

 

 

3. RESULTS AND DISCUSSIONS 

 

Several experiments were carried out in order to evaluate 

the performance and efficacy of our proposed model for 

laryngeal cancer image classification. We performed our 

experiments in MATLAB 2020a and Python in HPC system. 

Our proposed model was evaluated using following evaluation 

metrics. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)
 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

TP is the result occurs when the model accurately identifies 

the positive class. 

TN is the result occurs when the model accurately identifies 

the negative class. 

FP is the result occurs when the model wrongly identifies 

the positive class. 

FN is the result occurs when the model wrongly identifies 

the negative class. 

In this study two deep learning-based and handcrafted based 

approaches have been proposed for early-stage laryngeal 

cancer detection using NBI images with less training time and 

high prediction capability. In this section the obtained results 

were discussed. 

The aim of this study is to build a simple but efficient model. 

SqueezeNet is the smallest network that has fewer parameters, 

thereby it lessens computation time and memory requirements. 

Due to this reason SqueezeNet network was selected in this 

work. In approach 1, SqueezeNet architecture is modified to 

predict the type of images accurately. Though CNN can easily 

distinguish the structural features, but not much effective with 

the statistical textures. Therefore, in approach 2, first and 

second order statistical features are combined with to increase 

the prediction capability. Experiments, are validated using 

augmented publicly available dataset that has 10,000 images 

for binary classification and 20,000 images for multiclass 

classification. The proposed models have been tested for 

Multiclass and Binary classification.  

Before feature extraction, preprocessing step has been 

carried to enhance the quality of the images. For that, RGB 

images are converted to CIE lab color space and the luminance 

channel is enhanced to investigate the texture and structural 

information of blood vessels in tissues.  
 

3.1 Approach one for binary classification 
 

In this experiment binary classification using modified 

SqueezeNet has performed. The distribution of the dataset is 

shown in the Table 1. For this experiment, the images were 

partitioned into two classes as normal tissues and abnormal 

tissues. A greater understanding of the model's operation may 

be gained by visualizing the inner operation of how CNN 

learns to recognize various elements contained in images. In 

Figure 5 some sample images and their important features 

learned by SqueezeNet for making classification decision. 

Figure 6 illustrates the feature from different layers of 

SqueezeNet. It shows in earlier layer like fire 4 layer the 

network learned the horizontal and vertical lines, when it goes 

deeper specific features are learned.
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Figure 5. Visualization of CNN activations using grad CAM 

interpretability technique 

 

 
 

Figure 6. Visualization of features from different squeeze net 

layers 

 

Figure 7 depicts the accuracy and loss curves of training and 

validation data using modified squeeze net for binary 

classification. The blue and orange curves indicate the 

accuracy and loss curves of training data. The dotted curves 

indicate the accuracy and loss curves of validation data. The 

results obtained using modified Squeeze net for binary 

classification is given in Table 6. The obtained validation 

accuracy is 99.9% and testing accuracy is 99% in 15 epochs. 

The hyperparameter learning rate is chosen as 0.01. The 

prediction capability of model 1 for binary classification is 

shown using confusion matrix in Figure 8 and ROC curve in 

Figure 9. 

 

 
 

Figure 7. Training, validation accuracy and loss curves of 

modified SqueezeNet for binary classification 

 

Though, DL has grown in popularity and that computing 

power has been advancing the computation time is the critical 

consideration. The validation accuracy of modified Squeeze 

Net is approximately 3% higher than accuracy of traditional 

SqueezeNet. In case of computation time, the training time of 

modified SqueezeNet is slightly higher (approximately equal 

to 25 sec) than traditional SqueezeNet. 
 

 

 
 

Figure 8. Confusion matrix of approach 1 for binary 

classification 

 

 
 

Figure 9. ROC curve of approach 1 for binary classification 
 

Table 6. Comparison of traditional Squeeze net and Modified 

Squeeze net for binary classification 
 

CNN 
Training 

Accuracy 

Validation 

Accuracy 
Training Time 

Modified 

SqueezeNet 
99.9 99.7 16min 1sec 

SqueezeNet 97.05 96.6 15 min 35 sec 

 

3.2 Approach one for multiclass classification 

 

Multiclass classification of four different classes of 

laryngeal tissue is performed in this experiment. The images 

are equally distributed in each class. Data distribution is given 

in section 2. The hyperparameter settings is same as in binary 

classification task. The modified SqueezeNet has given its 

supreme results in multiclass task by giving validation 

accuracy of 99.1% and testing accuracy of 98.9%. The training 

and validation accuracy with classical and modified 

SqueezeNet for multiclass classification is shown in Table 7. 

In case of multiclass classification task, the validation 

accuracy of modified SqueezeNet is approximately 3.5% 

higher than the accuracy of traditional SqueezeNet. But in 
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terms of computational time, the training time of modified 

SqueezeNet is 3 sec more than the traditional SqueezeNet.  

The accuracy and loss curves for training and validation 

data is illustrated in Figure 10. 

Figure 11 and Figure 12 illustrate the prediction 

performance of model 1 in multiclass classification through 

confusion matrix and ROC curve respectively. By comparing 

the overall results of normal and traditional SqueezeNet for 

binary and multiclass classification, the performance of 

modified SqueezeNet is better than the traditional one. 

 

 
 

Figure 10. Accuracy and loss curves of modified Squeeze 

Net for Multiclass classification 

 

 
 

Figure 11. Confusion matrix of approach 1 for multiclass 

classification 

 

 
 

Figure 12. ROC curve of approach 1 for multiclass 

classification 

Table 7. Comparison of traditional SqueezeNet and Modified 

SqueezeNet for multiclass classification 
 

 
Training 

Accuracy 

Validation 

Accuracy 

Training 

Time 

Modified 

SqueezeNet 
99.8 99.1 43min 38 sec 

SqueezeNet 96.3 95.2 40min 33sec 

 

3.3 Approach two for binary classification 

 

The model 2 is based on Hybridized statistical features with 

XGBoost classifier. The images are partitioned into 70% for 

training and 30% for testing. The statistical features were 

extracted and fused to form optimal feature subset. Eventually 

classified with XGBoost classifier. Fifteen first order 

statistical features and sixteen second order statistical color 

features are extracted and integrated. The resultant 31 features 

are trained with XGBoost classifier and acquired the highest 

classification accuracy of 100% for binary classification. It is 

observed that performance of XGBoost classifier is very 

powerful compared to other ML classifiers. The individual 

features performance and hybrid feature performances with 

XGBoost has been calculated. All feature combinations have 

provided satisfactory results. The performance of hybrid 

statistical feature is equal to the hybrid deep and handcrafted 

features. Table 8 summarized the results for binary 

classification with different features and its confusion matrices 

of approach 2 using different features with XGBoost classifier 

are depicted in Figure 13(a)-Figure 13(g). 13(a) with only first 

order stats 13(b) with second order stats 13(c) fusion of first 

order and second order stats 13(d) with SqueezeNet features 

13(e) with SqueezeNet and first order stats 13(f) with Squeeze 

Net and second order stats 13(g) with fusion of first order, 

second order and SqueezeNet features. 

 

Table 8. Performance metrics of various features with 

XGBoost for binary classification 
 

Methods Accuracy Precision Recall F1-Score 

First order stats 99.9 100 100 100 

Second order 

stat 

98 98 98 98 

First +Second 

order stats 

100 100 100 100 

SqueezeNet 99.9 100 100 100 

Squeeze+ First 

order stats 

99.9 100 100 100 

Squeeze+ 

second order 

stats 

99.8 100 100 100 

Squeeze +first 

+second order 

stats 

99.9 100 100 100 

 

3.4 Approach two for multiclass classification 
 

The multiclass classification of four different types of 

laryngeal tissues using approach 2 is performed in this 

experiment. The confusion matrices for multiclass 

classification task using various feature combinations with 

XGBoost classifier are displayed in Figure 13(h)-13(n). Figure 

13(h) With only first order stats 13(i) with second order stats 

13(j) fusion of first order and second order stats 13(k) with 

SqueezeNet features 13(l) with SqueezeNet and first order 

stats 13(m) with SqueezeNet and second order stats 13(n) with 
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fusion of first order, second order and SqueezeNet features. 

The result shows the performance hybrid stats is slightly better 

than hybrid deep stats by giving classification accuracy of 

99.55%. Table 9 summarized the results for multiclass 

classification with different features and XGBoost classifier. 

From the results it is observed that the discrimination ability 

of stat features and SqueezeNet features in combination with 

XGBoost classifier is high. By comparing the confusion 

matrices, the performance of first order and second order 

statistics with XGBoost is superior to other methods. To 

interpret the handcrafted statistical features utilized in our 

model, Shapely Additive Explanations (SHAP) feature 

importance approach was carried out. This is an approach that 

helps to predict the contribution of every feature for making 

the predictions. 
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Figure 13. Confusion matrices of XGBoost classifier with 

various feature combinations 
 

Table 9. Performance metrics of various features with 

XGBoost for multiclass classification 

 
Methods Accuracy Precision Recall Recall 

First order stats 99.3 99 99 99 

Second order stats 85 86 86 86 

First+ Second 

order stats 

99.55 100 100 100 

SqueezeNet 98.63 99 99 99 

SqueezeNet + first 

order stats 

99.2 99 99 99 

SqueezeNet + 

second order stats 

98.9 99 99 99 

SqueezeNet + first 

+ second order 

stats 

99.5 100 100 100 

245



 

 
(a) 

 
(b) 

 

Figure 14. SHAP feature importance bar chart for multiclass 

(a) and Binary (b) classification 
 

The average of the absolute Shapley values is used to 

determine the importance of SHAP characteristics. According 

to the concept of SHAP feature significance, the most 

significant features are those with high absolute Shapley 

values. Figure 14 shows the most essential features for the 

trained XGBoost model that were chosen and ranked in 

accordance with their significance using the SHAP approach. 

Figure 14a illustrates the SHAP feature importance bar plot for 

binary classification and Figure 14b shows the summary bar 

plot for multiclass classification. In case of multiclass 

classification, 75th percentile of green channel feature has 

more importance in predicting the classes and energy at 0° 

orientation has less importance for multiclass predictions 

whereas, in binary classification case, the standard deviation 

of blue channel is the highest significant feature and contrast 

feature 135° orientation has less significance.  

 

 

4. CONCLUSION 

 

This study presented a deep transfer learning and statistical 

feature-based models for early-stage laryngeal cancer 

detection with less computational resources and high 

predication accuracy. In this study two computer-based 

models have been developed for the Laryngeal cancer image 

classification. The model one introduced a simplified version 

of SqueezeNet, which is the smallest pretrained CNN model 

that uses fewer parameters but still maintaining better 

accuracy with reduced training time compared to other 

pretrained models and acquired maximum classification 

accuracy of 99.7% for binary classification and 99.1% for 

multiclass classification. The model two utilized the hybrid 

statistical features in combination with XGBoost classifier and 

attained maximum classification accuracy of 100% and 

99.55% for binary and multiclass classification respectively.  

Through several experiments it has been observed that both 

models exhibit equal level of effectiveness. and their results 

show no statistically significant difference in their 

performance metrics. This indicates that they possess an 

equivalent level of effectiveness and are equally proficient in 

achieving the desired outcomes. As, SqueezeNet has limited 

layers, it might possess less expressive capability in 

comparison to deeper and more intricate CNN models. As a 

consequence, this could present challenges when handling 

complex and diverse datasets that require higher-level feature 

representations. In future, segmentation based on CNN will be 

incorporated to precise segmentation of the blood vessels in 

the tissues. 
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