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This study presents an advanced mathematical model that utilizes averaging methods 

to analyze the leaching process in hard porous soils. The model is predicated on the 

concept of a dimensionless pore diameter, a small parameter obtained by the ratio of 

the pore diameter to a characteristic length. This parameter serves as the foundation for 

a family of solutions within the model. The primary objective of this model is to 

investigate the limit of these solutions as the small parameter approaches zero. The 

mathematical framework employed involves a rigorous derivation of an averaged 

system of equations from the original set, accomplished by considering the limit as the 

parameter value diminishes. This method, while preferable for its precision, 

acknowledges the inherent challenges in justifying each step in complex nonlinear 

problems. Therefore, when stringent mathematical justification is unattainable, the 

solutions' postulated properties and the averaging rationale must be both physically and 

mathematically sound. This paper delineates the conditions under which such an 

averaging method is deemed physically reasonable for the mathematical model of the 

leaching process. The results underscore the efficacy of averaged models in simulating 

intricate chemical and physical phenomena within porous media. These models offer a 

balance between complexity and accuracy, proving crucial for informed decision-

making in industrial contexts. The significance of this research lies in its contribution 

to refining mathematical models for the optimization of rare metal leaching processes. 

Such advancements are pivotal in enhancing both efficiency and precision in industrial 

production and related research endeavors. 

Keywords: 

porous media, leaching, mathematical model, 

averaged model, small parameter, pore diameter 

1. INTRODUCTION

Leaching, a method characterized by the selective 

dissolution of minerals from rock through chemical reactions 

between a leach solution and ore, has gained prominence in 

the past quarter-century, noted for its cost-effectiveness and 

minimal environmental footprint. This technique, 

predominantly adopted in Eastern Europe, Central Asia, and 

the USA, plays a pivotal role in the extraction of valuable 

substances. The relevance of mathematical modeling in the 

leaching process lies in its capacity to precisely predict process 

outcomes and optimize parameters, thereby enhancing 

efficiency and cost-effectiveness in substance extraction. 

These models provide insightful comprehension of the 

underlying chemical and physical phenomena, which is 

indispensable for the evolution of current technologies and the 

development of new ones. 

Averaged mathematical models, particularly in the context 

of rare metal leaching, offer a pragmatic approach for process 

optimization and control. By focusing on average parameters, 

these models facilitate predictions of general trends and 

outcomes, a crucial aspect for decision-making in production 

settings. In scenarios involving complex chemical and 

physical processes, such models reduce computational 

demands and simplify analyses, without significantly 

compromising the integrity of the essential characteristics of 

the process. Despite their utility, it is crucial to acknowledge 

the limitations of averaged models in capturing the intricacies 

and heterogeneities of the leaching process, which may affect 

the precision of predictions in certain contexts. 

In the sphere of deformable porous media with double 

porosity, the application of averaged models has been 

instrumental [1]. These models adeptly segregate various 

mechanical-hydrodynamic effects, including peristaltic and 

shear deformation-induced flow. The introduction of new 

stresses in the deformation equation, attributable to cross 

effects and matrix relaxation, exemplifies the nuanced 

understanding afforded by such models. Their primary merit 

lies in the detailed portrayal of interactions within highly 

heterogeneous porous media, encompassing both mechanical 

and hydrodynamic factors. Consequently, averaged models 

emerge as formidable tools for analyzing and simulating 
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complex processes in deformable porous media, balancing 

accuracy and practical applicability. Continuing the 

exploration of averaged mathematical models in the context of 

leaching processes, Panfilov et al. [2] focused on numerical 

simulation within a multiscale fractured-porous medium. The 

essence of this model lies in the averaging of complex media 

parameters, such as porosity and hydraulic conductivity, 

thereby facilitating a more streamlined and efficient 

mathematical representation. This model is distinctive for its 

portrayal of single-phase flow in a weakly compressible fluid, 

employing integro-differential equations to compute the 

average pressure across various sections of the medium. 

An averaged model gains significance in the realm of highly 

dynamic processes. This model finds its application in 

scenarios like underground gas storage facilities, where 

alternating phases of gas injection and withdrawal occur. Such 

environments demand a model capable of adapting to rapid 

changes, making this averaged approach particularly relevant 

[3]. Bués and Panfilov [4] adopted a mathematical method to 

address the leaching of minerals. A differential equation with 

a delay element encapsulates the transportation of a dissolved 

substance through a porous medium. This approach is noted 

for its capacity to provide analytically robust solutions, 

effectively capturing the systems where current states are 

influenced by preceding conditions. In scenarios involving 

delayed decision impact, such as in leaching processes, this 

method offers a nuanced understanding of temporal 

dependencies. In-situ leaching (ISL) demonstrates clear 

advantages over traditional mining methods for non-ferrous 

metals. These advantages include mitigated changes in 

underground areas, reduced radiological contamination risk, 

optimized production delay time, and diminished energy 

consumption. This method underscores the progressive shift 

towards more sustainable and efficient mining practices [5]. 

The numerical analysis presented by Mukhanov et al. [6] 

delves into the leaching of non-ferrous metals, concluding that 

the overall resistance of the process is a combination of 

diffusion and chemical action resistances. It is highlighted that 

when one stage exhibits significantly higher resistance than 

others, it becomes the limiting factor for the process's 

progression. For instance, in cases where a solid product forms 

a dense layer on the surface of a dissolved mineral, such as 

uranium, diffusion through this layer becomes the rate-

limiting stage. Under these circumstances, the influence of 

leaching conditions on the rate is governed by the principles 

of internal diffusion. In the realm of ISL for uranium mining, 

mathematical modeling serves as an essential tool for 

accurately delineating the intricate physicochemical processes, 

including reaction dynamics and hydrodynamic transport [7]. 

Despite its efficacy in replicating the nuances of leaching, this 

method necessitates simplifications and case-specific settings, 

rendering its practical application challenging in the absence 

of supplementary experimental data. 

The research conducted by Simon et al. [8] underscores the 

need to consider various phenomena in numerical modeling, 

such as geochemical reactions, reaction kinetics, and the rate 

of hydrodynamic transfer relative to reaction kinetics. In this 

study, experiments were conducted to simulate leaching 

solutions and calibrate the pathways of geochemical reactions, 

along with their kinetic laws. This research provides insights 

into processes like colmatage (clogging due to sedimentation) 

and suffusion (erosion of fine material). Furthermore, a model 

was developed by Mints [9] to ascertain the concentration of 

solid suspensions in a fluid and the saturation density of a 

porous medium. This model facilitates a deeper understanding 

of the dynamics within the medium. The numerical modeling 

outcomes of several experimental studies provide a 

comprehensive view of the subject [10, 11]. 

Additionally, Khuzhaerov [12] addressed the scenarios 

where pores were not completely obstructed by the 

sedimentation of suspension particles. In the context of this 

model, the filtration of a multicomponent suspension is 

examined, focusing on the effects of colmatation and suffusion 

on each component, in relation to the concentration of other 

components. This analysis yields valuable insights into the 

interplay of various factors within the leaching process. The 

innovative approach proposed by De Silva and Ranjith [13] 

explores new methods of fracture stimulation. By injecting a 

modified silent crack mitigation agent (SCDA) into the target 

rock through an injection well, this study demonstrates an 

effective optimization technique. The simulation results reveal 

that multi-stage charging amplifies the fracture density of the 

target rock, thereby enhancing its permeability for fluid flow 

without necessitating additional injection wells. The research 

conducted by Van der Lee [14] highlights a crucial 

prerequisite for the application of mathematical modeling in 

the leaching process of non-ferrous metals: the permeability of 

these metals to the leaching fluid. This aspect is fundamental 

to the effectiveness of any mathematical model in simulating 

leaching processes. A numerical implementation of algorithms 

was presented by Zhumali and Reshetova [15], focusing on 

underground leaching in a two-dimensional framework. This 

study explores the positioning of soil leaching boundaries 

under varying parameter values within the differential 

equation system, alongside examining acid concentration at 

different temporal points. Such an analysis is vital for 

understanding the spatial and temporal dynamics of the 

leaching process. 

Mukhambetzhanov et al. [16] introduced a mathematical 

model that integrates the effects of capillary pressure and 

gravitational forces, constructed on a balanced monotonic 

finite-difference scheme. This approach is instrumental in 

capturing the nuanced interactions within the leaching process. 

Similarly, the effective numerical modeling proposed by 

Escandon-Panchana et al. [17] facilitates the accurate 

prediction of oil production productivity, with potential 

applicability to mineral extraction in porous media. These 

models underscore the adaptability and precision of 

mathematical modeling in diverse applications. Applied 

studies, such as the study conducted by Cohen et al. [18], 

demonstrate the practical utility of mathematical modeling in 

achieving desired production outcomes. Depending on the 

specific context, researchers can leverage both averaged and 

detailed models to yield a more accurate analysis of rare metal 

leaching processes. This flexibility in model selection allows 

for tailored approaches to suit various research and industrial 

requirements. Moreover, El Haroui et al. [19] delved into the 

thermal solution mixed convective flow around a vertical wall 

in a porous medium, elucidating the impact of free convection, 

medium permeability, and thermal conditions on heat and 

mass transfer. Such research underscores the significance of 

modeling diverse physical processes in porous media, 

contributing to a comprehensive understanding of these 

complex systems. 

The overarching aim of this study is to develop an improved 

mathematical model to optimize the leaching process of 

traditional metals, thereby enhancing efficiency and accuracy 

in both industrial production and academic research. The 
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application of this model, grounded in averaging methods, 

facilitates the analysis and simplification of complex chemical 

and physical processes in porous media. By preserving the 

main characteristics of these processes, the model ensures 

sufficient accuracy for critical production decision-making.  

 

 

2. MATHEMATICAL MODEL 
 

In this study, the acid leaching process of solid porous soil 

is examined, where acid, conveyed via a non-viscous and 

incompressible fluid, dissolves the soil and releases chemical 

reaction products into the fluid. The investigation focuses on a 

finite three-dimensional region, incorporating injection and 

production wells, as well as areas impervious to fluid. This 

region encompasses the pore space of the solid skeleton and 

its evolving boundary, which undergoes alteration over time 

due to the dissolution of the skeleton. This dynamic and 

indeterminate boundary characterizes a set of problems known 

as 'free boundary' problems. At the microscopic level, the 

model considers the geometry of the pores, describing the fluid 

movement and impurity transport within these pores. 

Conversely, at the macroscopic level, where dimensions are 

scaled to decimeters, the model indirectly accounts for the 

fluid movement and impurity transport. It presupposes the 

coexistence of fluid and solid components at each point in the 

medium. Typically, macroscopic models are formulated based 

on postulated equations that do not consider the dynamics at 

the interface between the pore space and the solid skeleton. To 

model fluid movement at the microscopic level, linear Stokes 

equations are employed for an incompressible fluid with low 

viscosity. These equations take into consideration the slow 

nature of the filtration process. Subsequently, an averaged 

microscopic model yields a macroscopic model with 

approximate parameters that reflect the initial microscopic 

characteristics. 

The foundational Eqs. (1)-(5) of this model, along with the 

corresponding boundary and initial conditions, are succinctly 

presented in dimensionless variables.  
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The fluid dynamics within the pore space 𝛺𝑓(𝑡) at 𝑡 > 0 is 

delineated by linear equations pertinent to the motion of an 

inviscid incompressible fluid.  

 

= ,T p
t




−


v
  

= 0v ， 

(1) 

 

where, 𝑝 is the fluid pressure, and 𝑣 is the velocity. 

At the critical 𝛤(𝑡) interface between the solid skeleton and 

the fluid, specific equations apply, incorporating variables 

such as the speed of the boundary 𝑉𝑛, normal to the external 

domain 𝛺𝑓(𝑡), and the normal component 𝑣𝑛 = 𝑣 ⋅ 𝑛  of the 

velocity vector 𝑛, the derivative 
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The boundaries 𝑆+  (with a reagent) and 𝑆−  (without 

reagent flow), representing injection and production wells, are 

defined by specific pressure conditions in the fluid. At these 

boundaries, distinct pressure parameters are set as 𝑝 =
𝑝±(𝑥, 𝑡), 𝑥 ∈ 𝑆±, 𝑡 > 0, reflecting the operational dynamics of 

the wells. 

 

( )= 0, =1,..., , = , , ,ic i n c c t S+ +x x  

= 0, , > 0.c S t−  n x  
(3) 

 

At a fluid-impermeable boundary 𝑆0 , another set of 

conditions is applied. 

 
0= 0, , > 0,S t v n x

0= 0, , > 0.c S t  n x  
(4) 

 

The model is further delineated by the establishment of 

initial conditions, characterized by 𝜒 = 1 in 𝛺𝑓(𝑡) and 𝜒 = 0 

in 𝛺𝑠(𝑡). 

 

( ) ( )( )0 0(0) = , ,0 = ,   x x  

( ) ( ) ( )0,0 = 0, ,0 = ,c cv x x x  

( ) ( ),0 = 0, =1,..., , 0 ,i fc i n x x  

(5) 

 

Central to all averaging methods is the assumption of a 

small parameter 𝜀0 > 0 in the original problem.  

In this case, the physical process under study corresponds 

to a relatively small value of 𝜀0 =
𝑙

𝐿
, with 𝑙 representing the 

average dimensionless pore diameter. In the mathematical 

model, the value of this small parameter is not fixed, allowing 

for the generation of a one-parameter family of solutions. 

These solutions depend on a single variable parameter, 

enabling the determination of their limit as the parameter 

approaches zero. The objective of averaging is to identify this 

limit within the corresponding averaged problem and replace 

the original solution, which corresponds to a specific value of 

the parameter, with an averaged (limit) solution. It is 

acknowledged that in complex nonlinear problems, strict 

justification of certain steps in the averaging process may not 

be feasible. However, if the postulated properties of the 

solutions and the rationale behind the averaging process are 

physically and mathematically sound, then the averaged 

system of equations is deemed physically reasonable. 

The methodology commences with a fundamental 

assumption regarding the structure of the pore space at the 

initial time.  
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It is posited that the characteristic function 𝜒0(𝑥, 𝑦) of the 

pore space is 1-periodic in the variable 𝑦, and the pore space 

𝛺𝑓(0)  denoted by this characteristic function forms a 

connected set. This assumption lays the groundwork for the 

subsequent analysis. 

Subsequently, the initial-boundary value problem, defined 

by Eqs. (1)-(5), is considered, with 𝜒0(𝑥) = 𝜒0
𝜀(𝑥) =

𝜒0 (𝑥,
𝑥

𝜀
). 

For this problem, let 𝑝𝜀(𝑥, 𝑡), 𝑐𝜀(𝑥, 𝑡), 𝑐𝑖
𝜀(𝑥, 𝑡), 𝑖 = 1, … , 𝑛 

and 𝜒𝜀(𝑥, 𝑡) . It is established that there exists a solution 

corresponding to the value 𝜀 > 0. The second key assumption 

pertains to the nature of the solution's dependence on the small 

parameter 𝜀. It is hypothesized: 
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( ) ( ) ( ), = , o , =1,..., ,i ic t c t i n +x x  (10) 

 
where, 𝑃(𝑥, 𝑦, 𝑡)  and 𝐶(𝑥, 𝑦, 𝑡)  are 1-periodic in y and are 

smooth functions. 

Eqs. (8)-(9) in this context demonstrate that differentiation 

of the relations by variable x is feasible.  
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3. RESULTS AND DISCUSSION 

 
The formulated assumptions, coupled with a 

straightforward mathematical fact proposed by Zhikov et al. 

[20], underpin the derivation of the averaged dynamic 

equation of motion for pressure 𝑝(𝑥, 𝑡).  Utilizing the 

representations (7) and (3) for solutions 𝑝𝜀(𝑥, 𝑡) and 𝜒𝜀(𝑥, 𝑡), 
the equation is written in the form of Eq. (7).  
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(12) 

 

This dynamic equation, integral in mathematical modeling, 

delineates changes in parameters such as pressure, temperature, 

substance concentration, or fluid flow velocity within the 

pores and cracks of porous materials over time. These 

equations are pivotal in describing processes like diffusion 

filtration or chemical reactions in porous media, encompassing 

soils and geological formations. 

For the purpose of analysis, functions of a specific form 

𝜓 = 𝜓(𝑥, 𝑡) are chosen as test functions. When approaching 

the limit for 𝜀 → 0 , the identity expressed in Eq. (13) is 

derived.  
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where, 𝑣(𝑥, 𝑡) = ∫ 𝑉(𝑥, 𝑦, 𝑡)𝑑𝑦, 𝑚(𝑥, 𝑡) ∫ 𝜒(𝑥, 𝑦, 𝑡)𝑑𝑦

𝑌𝑌
. The 

quantity 𝑣(𝑥, 𝑡) is appropriately termed as the velocity of the 

continuous medium, and 𝑚(𝑥, 𝑡)  as the porosity of the 

continuous medium. 

The method involves discarding derivatives of the test 

function through integration by parts. Additionally, leveraging 

the fact that the integral identity ∫ 𝜑 (
𝜕𝑎

𝜕𝑡
+ 𝛻 ⋅ 𝑢) 𝑑𝑥𝑑𝑡 = 0

𝛺𝑇
 

for arbitrary functions 𝜑 equates to the equation 
𝜕𝑎

𝜕𝑡
+ 𝛻 ⋅ 𝑢 =

0, the study progresses to the differential equation shown in 

Eq. (14). 
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where, 𝔸(𝑥, 𝑡) = 𝑚(𝑥, 𝑡)𝕀 + ∫ 𝛻𝑦𝑃(𝑥, 𝑦, 𝑡)𝑑𝑦

𝑌
. 

This phase of the analysis involves the reintegration of the 

integral identity. For this purpose, functions of the form 𝜓 =

𝜀𝛻 (𝜓0(𝑥, 𝑡)𝜓1 (
𝑥

𝜀
)) , where 𝜓1(𝑦)  is a smooth 1-periodic 

function in variable 𝑦. The progression to the limit for 𝜀 → 0 

yields the identity expressed in Eq. (15). 
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The initial stage of reintegration, conducted over variables 

(𝑥, 𝑡) , results in the identity ∫ 𝜒(𝑥, 𝑦, 𝑡)(∇𝑝 + 𝛻𝑦𝑃) ⋅
𝑌

𝛻𝑦𝜓1𝑑𝑦 = 0. Subsequently, a second reintegration over 

variable 𝑦 leads to the derivation of the differential equation 

𝛻 ⋅ 𝜒(𝛻𝑝 + 𝛻𝑦𝑃) = 0, 𝑦 ∈ 𝑌,  interpreted in the context of 

distribution theory. This equation is conceptualized as a 

periodic boundary value problem, featuring periodicity 

conditions for both the solution and its derivatives at the 

boundaries of the region, which coincide with the boundary 𝑌𝑓 
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of the unit cube 𝑌. 

 

( )= 0, , ,y fP Y t y x  (16) 

 

( ) ( )= 0, , ,yp P t +  n y x  (17) 

 

where, 𝑌𝑓(𝑥, 𝑡) = {𝑦 ∈ 𝑌: 𝜒(𝑥, 𝑦, 𝑡) = 1} , and 𝑛  is the unit 

normal vector to the unknown boundary 𝛾(𝑥, 𝑡)  in domain 

𝑌𝑓(𝑥, 𝑡). 

However, the boundary value problem defined by Eqs. (16) 

and (17) is not a closed system, as the boundary 𝛾(𝑥, 𝑡) is 

subject to temporal and spatial variations and requires 

determination. Assuming temporarily that the area 𝑌𝑓(𝑥, 𝑡) is 

known for all (𝑥, 𝑡) ∈ 𝛺𝑇 , the solution 𝑃(𝑥, 𝑦, 𝑡)  to this 

problem is represented by Eq. (18).  
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This formula integrates the standard basis (𝑒1, 𝑒2, 𝑒3) of a 

rectangular coordinate system with solutions 𝑃(𝑖), i=1,2,3… to 

the periodic boundary value problem detailed in Eqs. (19) and 

(20). 
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( ) ( )( ) = 0, , .i
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Considering a unit tensor, denoted as 𝕀, and a second-rank 

tensor 𝑎 ⊗ 𝑏  operating according to the rule (𝑎 ⊗ 𝑏) ⋅ 𝑐 =
𝑎(𝑏 ⋅ 𝑐), the following relation is established as shown in Eq. 

(21).  
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The derivation of the remaining averaged equations follows 

a similar methodology. Incorporating representations Eqs. (7)-

(10), the form changes as indicated in Eq. (22).  

 

( )

( )

, ,

, , = o .

f s
T

f

t
t

t dxdt


  



  




  
− 

 

 
+   

  


x

x

x
V x

 
(22) 

 

Functions of a specific form 𝜑 = 𝜑(𝑥, 𝑡) are chosen as test 

functions, and upon progressing to the limit for 𝜀 → 0  and 

subsequent reintegration, the result is captured in Eq. (23). 
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For 𝜑 = 𝜀𝜑0(𝑥, 𝑡)𝜑1 (
𝑥

𝜀
)  from Eq. (22), the microscopic 

continuity equation, as represented in Eq. (24), is deduced.  

 

= 0, .y Y  V y  (24) 

 
This equation is of paramount importance as it delineates 

the conservation of mass or energy at the microscopic level, 

accounting for the behavior of individual particles or elements 

within small volumes.  

To elucidate the macroscopic behavior of the reagent 

concentration, representations Eqs. (7)-(9) are employed, 

leading to the formation of the integral identity as depicted in 

Eq. (25). The concentration of the reactant is a crucial 

parameter, governing the distribution and quantity of 

chemicals in the pores. This aspect is instrumental in 

understanding and controlling various chemical processes like 

filtration, adsorption, and catalytic reactions within porous 

media. 
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Similar to the approach taken with the dynamic equation, 

the diffusion-convection equation and its initial condition are 

articulated in Eqs. (26) and (27).  
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( ) ( )0,0 = ,c cx x  (27) 

 
The diffusion-convection equation encapsulates the process 

of matter transfer, integrating the mechanisms of diffusion (the 

random distribution of particles) with convection (their 

movement under the influence of a flow). 

The progression to the limit in the same identity, utilizing 

test functions of a specified form 𝜉 = 𝜀𝜉0(𝑥, 𝑡)𝜉1 (
𝑥

𝜀
) , 

culminates in the microscopic equation of diffusion-

convection 𝛻𝜒 ⋅ (∇𝑐 + 𝛻𝑦𝐶) = 0, 𝑦 ∈ 𝑌. 

When examining the boundary value problem defined by 

Eqs. (16) and (17), it becomes evident, as denoted in Eq. (28), 

that certain conditions apply.  
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Consequently, Eq. (26) evolves into the finalized form of 
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the diffusion-convection equation for the concentration of the 

reagent, as expressed in Eq. (29). 
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In a parallel vein, the equations of diffusion-convection 

involving solid skeleton matter are deduced, following a 

similar methodology, and are depicted in Eq. (30).  
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The integral identity corresponding to representations Eqs. 

(7)-(9), as indicated in Eq. (31), reveals the most significant 

challenge in this context is the transition to the limit for 𝜀 → 0, 

particularly concerning the term  
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(31) 

 
Given that for 𝜓 = 𝜓(𝑥, 𝑡) , by virtue of Eq. (24), it is 

established that lim
𝜀→0

𝐼𝜀 = 𝐼 = ∫ 𝛺𝑇  𝜓𝑐𝑣𝑖−1(∫ 𝑉 ∇𝑦𝐶𝑑𝑦)𝑑𝑥𝑑𝑡
𝑌

 

and, ∫ 𝑉 ∇𝑦𝐶𝑑𝑦 = − ∫ 𝐶∇𝑦𝑉𝑑𝑦 = 0
𝑌𝑌

 𝐼 = 0. This finding is 

instrumental in progressing towards the derivation of the final 

boundary condition on the desired boundary 𝛾(𝑥, 𝑡)  of the 

domain 𝑌𝑓(𝑥, 𝑡). 

The third fundamental assumption, as articulated in Eq. (32), 

is recalled.  
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Utilizing representation Eq. (2), the function 𝑎 is chosen to 

be as defined in Eq. (33), and the specifications are outlined in 

Eq. (34) and 𝑛 represents the outer unit normal vector to the 

boundary 𝛾(𝑥, 𝑡). 
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As 𝜀  approaches zero, this leads to the integral identity 

shown in Eq. (35).  
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The subsequent conversion of the volume integral into a 

surface integral, followed by reintegration, results in the final 

boundary condition expressed in Eq. (36). This condition 

pertains to the value of the boundary (𝛾) velocity 𝑉𝜈  in the 

direction of the normal 𝜈  to this boundary and the initial 

condition detailed in Eq. (37). These conditions are pivotal for 

determining the position of the boundary 𝛾 for 𝑡 > 0. 
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( ) ( ) ( )( )0 0, ,0 = , ,0 = ( ) .   x y x y x x  (37) 

 
In the presented model, a small parameter, closely 

associated with the average dimensionless pore diameter in 

porous media, is identified as the cornerstone of the 

methodology. This parameter is instrumental in the process of 

averaging the system of equations, a critical component of the 

mathematical framework. Such averaging is pivotal for the 

generalization and simplification of the original mathematical 

model. It renders the model more practical for analytical and 

computational applications while preserving the essential 

properties and characteristics of the original process. This 

approach markedly reduces computational complexity, an 

aspect of paramount importance in dealing with intricate 

chemical-physical processes like leaching. A reduction in 

computational demand not only streamlines the calculation 

process but also enhances the model's applicability in diverse 

scenarios, particularly those with constrained computational 

resources. 

Furthermore, the model's simplified nature aids in 

elucidating the core mechanisms of the leaching process. This 

insight is invaluable for researchers and engineers specializing 

in hydrodynamic process modeling within porous media. By 

implementing the averaging method, the model successfully 

maintains overall accuracy in system behavior predictions, 

considering the average parameter values. Consequently, the 

model emerges as a potent tool for forecasting general trends 

and outcomes in leaching processes, facilitating more efficient 

planning and management. It also contributes significantly to 

the development and optimization of new methodologies 

within this domain. 

The results derived from this mathematical modeling 

underscore the efficacy of utilizing averaged models for 

analyzing leaching processes. These models adeptly simplify 

complex chemical-physical processes while retaining their 
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fundamental characteristics, thereby playing a crucial role in 

accurately predicting leaching processes. 

 

 

4. CONCLUSIONS 

 

In this study, a mathematical model has been developed that 

approximates initial boundary value problems with unknown 

boundaries at the microscopic level and initial boundary value 

problems with unknown coefficients at the macroscopic level, 

with the aim of studying the leaching process of rare metals. 

This model demonstrates the efficacy of homogeneous 

approaches in significantly simplifying complex chemical-

physical processes while preserving their essential 

characteristics, thus rendering it an invaluable tool for 

decision-making in both industrial applications and scientific 

research. It is crucial to acknowledge, however, that the 

accuracy of results may be compromised if the assumptions of 

average models do not align closely with reality. This 

limitation stems from the models' inherent inability to account 

for every detail and heterogeneity of the process, impacting 

their applicability and predictive accuracy. Despite this, the 

use of averaged data in analyzing rare metal leaching 

processes allows for the prediction of overall trends and 

outcomes, which is imperative for optimizing production 

processes and enhancing the understanding of leaching 

principles at both the research and engineering levels. 

Despite some inherent limitations, the results of this 

mathematical modeling represent a significant advancement in 

predicting general trends in rare metal leaching processes, 

aligning with the primary objectives of this study. The analysis 

underscores the advantages of employing averaged models to 

simplify complex processes without compromising their 

fundamental characteristics, a benefit that holds substantial 

value for researchers and engineers in this field. 

It is anticipated that the averaged models presented in this 

study will have practical significance and contribute to the 

broader understanding of leaching processes, particularly 

under conditions of high variability. Future endeavors should 

focus on refining these models to incorporate the finer details 

and heterogeneities of processes, thereby enhancing their 

predictive accuracy. Moreover, expanding the application of 

these models across a broader spectrum of complex rare metal 

leaching conditions is recommended, with the aim of 

achieving new levels of understanding and optimization of 

these critical processes. 
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