
Optimization of Fuzzy-PD Control for a 3-DOF Robotics Manipulator Using a Back-

Propagation Neural Network

Fatina Shukur1* , Safaa Jasim Mosa2 , Kamal M.H. Raheem3

1 Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Al-Najaf 54001, Iraq
2 Department of Computer Science, Faculty of Education for Girls, University of Kufa, Al-Najaf 54001, Iraq
3 Computer Techniques Engineering Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University,

Baghdad 10081, Iraq

Corresponding Author Email: fatinat.shukur@uokufa.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110122 ABSTRACT

Received: 24 May 2023

Revised: 10 August 2023

Accepted: 24 August 2023

Available online: 30 January 2024

In this research, a new control technique based Fuzzy-PD and Back-Propagation Neural

Network is developed for controlling robotics arm with their three links. The continuous

modification of the overlapping rate of the membership function improved the

efficiency of traditional Fuzzy-PD when compound with the use of Neural Network

with Back-Propagation. Initially, the overlapped rate is defined as the amount of the

intersecting point of two neighboring membership functions. The integration of Fuzzy-

PD and Back-Propagation Neural Network offers a hybrid control system that combines

the robustness and interpretability of fuzzy logic with the adaptability and learning

capabilities of neural networks. This approach can lead to improve control performance

and enhance system behavior in various real-world applications. Then, the overlapped

percentage is optimized online using Neural Network with Back-Propagation. The

"overlapping rate of the membership function" is a key aspect of fuzzy logic systems.

In fuzzy logic, membership functions convert input data into linguistic variables for

decision-making. These functions determine the degree of membership of an element

in a fuzzy set, ranging from 0 to 1. The overlapping rate refers to how much membership

functions of different fuzzy sets intersect with each other. By adjusting this rate, we

control the level of ambiguity in the system's decisions. Higher overlapping rates result

in smoother transitions between fuzzy sets, allowing for more flexible and tolerant

decision boundaries. On the other hand, lower overlapping rates create sharper

boundaries, leading to more distinct and precise distinctions between fuzzy sets.

Selecting the appropriate overlapping rate is crucial for designing an effective fuzzy

logic system. We run a set of experiments to evaluate our proposed method. The final

outcomes demonstrate the usefulness and efficiency of our approach and modeling

using a 3-DOF robotics arm. When the suggested Fuzzy-PD based on Back-Propagation

Neural Network approach is compared to the conventional F-PD technique, we found

that the suggested approach is quicker, with a 25% shorter time with an overrun of

0.006m, whereas the F-PD technique has an overshoot less than 0.01m. and reduces

overshoot by 49.1%.

Keywords:

3-DOF robotics arm, Fuzzy-PD, membership

function, neural network

1. INTRODUCTION

Robotics manipulators play an important role within a

human daily-life activity. Due to their flexible deployments in

various domains, they offer a wide range of usage in different

applications. These include industry production, surgical

intervention, space explorations and military operations. In

real-world applications, the robotics arm should essentially

trace a defined manifold, which are required to determine an

accurate position control [1]. Robotic arms have multiple

joints and links, making their kinematics complex. Accurate

motion planning is required to ensure the end effector (gripper)

reaches its intended position and orientation. Inverse

kinematics, which involves finding joint angles to achieve a

desired end effector pose, can be particularly challenging.

Controlling the robotic arm's movements requires considering

its dynamic behavior, including inertia, gravity, and friction.

Developing robust control algorithms to account for these

factors ensures smooth and accurate motion execution.

Controlling a robotic arm can be challenging due to several

factors like:

i. High dimensionality: Robotic arms typically have

multiple joints and links, resulting in a high-dimensional

control space. Coordinating and controlling each joint

simultaneously require complex algorithms and precise

coordination.

ii. Nonlinearity and complex dynamics: The dynamics of

robotic arms are nonlinear and can be highly complex,

Mathematical Modelling of Engineering Problems
Vol. 11, No. 1, January, 2024, pp. 199-209

Journal homepage: http://iieta.org/journals/mmep

199

https://orcid.org/0009-0003-0124-5296
https://orcid.org/0009-0003-9878-9838
https://orcid.org/0000-0002-3162-7629
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110122&domain=pdf

involving interactions between joint angles, torques, and

end effector positions. Designing control strategies to

account for these complexities can be difficult.

iii. Uncertainty and variability: Real-world environments are

often unpredictable and uncertain. Variations in the

robot's mechanical components, changing load

conditions, or environmental disturbances can affect the

arm's performance. Dealing with uncertainty requires

robust control techniques.

The traditional Proportion-Integration-Differentiation

(PID) control approach has evolved and been combined with

a developed control method, with several applications in

robotic controls [2, 3]. Because of adjusting control

improvement consumes time and it depends on user’s

experience, an advanced control system should be linked with

PID to give an intelligent control gain adjustment. Xiong and

Liu [4] studied that traditional PID can be combined with

Neural Network so that it learns the best fitting parameters.

Fuzzy Logic is usually used to optimize the control gains of

classical PID due to the benefits of fuzzification mechanism

[5-9]. Fuzzification, defuzzification, and fuzzy reasoning are

common components of Fuzzy Logic [10-14]. As the link

between traditional crisp and fuzzy arithmetic, the

Membership Function (MF) is considered the main part in this

procedure. According to the main design of the Fuzzy Logic

concept, the fundamental of logical function is to discover the

best membership function and fuzzy inference approaches.

Therefore, there is not a conventional procedure for

transforming people's experience or understanding the fuzzy

rules or add something to keep consistency of a fuzzy logic

system while constructing such system. In addition to building

dataset while constructing fuzzy Logic system. This is the

fundamental challenge of fuzzy logic system design.

Moreover, researchers define membership function clearly

without enhancing the effectiveness of reasonability [14-18].

When designing a membership function, the following issues

should be taken into consideration:

Which number of membership function should be used?

Which membership function form should be chosen?

How much every neighboring membership function should

intersect?

It is critical to develop a technique of membership function

of digital training and calibrating, such that we could

successfully get an ideal and optimum system's efficiency.

The acquiring and training of membership function with

fuzzy rules are, in fact, the most essential and challenging

tasks in designing the architecture of Fuzzy Logic methods for

actual control systems [19-21]. There is not entirely

dependable and methodical approach that has been discovered

yet. In fact, this is a significant limitation of Fuzzy Logic

control when deploy it in a practical application. As a result,

for experiments and simulation, the technique that is suggested

in this research is depending on the PD controller. Hence, we

present a novel method FUZZY-PD based on Back-

Propagation Neural Network, such that it is used to improve

the effectiveness of F-PD even more. Consequently, three

criteria are specified for the whole formulation of membership

function. These are: Amount of Membership Function (QMF),

Shapes of Membership Function (SMF), and Overlapping

Rate of Membership Function (ORMF). These functions,

however, are associated with the three issues listed above.

The relationship between the control efficiency and

overlaying rate will be investigated in this research.

Our goal is to get the optimal overlaying rate, where Neural

Network with Back-Propagation are used to optimize the

membership function variables. In addition, simulations and

practical tests with a 3-DOF robot manipulators are used to

show the control strategy. The rest of the paper is structured as

follows. Section 2 describes the robotics manipulator with 3-

chain links. Section 3 presents the standard F-PD design

procedure. Section 4 explains the Neural Network with Back-

Propagation technology. Section 5 illustrates our proposed

model and experimental results. Finally, Section 6 shows

conclusions with our future directions. Upon comparing the

suggested Fuzzy-PD based on Back-Propagation Neural

Network approach with the conventional F-PD technique, we

observed that the former demonstrates improved efficiency,

completing the task 25% faster. On the other hand, the latter

technique displays an overshoot and successfully achieves a

50% reduction in overshoot.

2. 3-DOF ROBOTICS MANIPULATOR SYSTEM

The kinematics of the 3-DOF robot arm have two major

issues: the first is forwards kinematics, and the second is

inverse kinematics. Dynamic formulas of the 3-DOF RRR

robot manipulators are a collection of mathematical formulas

that explain the dynamic characteristics of the robot [3-5].

Forward and inverse kinematics are two fundamental concepts

used to describe the motion of a robotic manipulator, such as

a 3-DOF (Degrees of Freedom) robotic arm.

Forward Kinematics

Forward kinematics deals with determining the position and

orientation of the robot's end effector (e.g., gripper or tool)

based on the joint angles or displacements of the robot's links.

It essentially answers the question, "Where is the end effector

located in the workspace given the joint angles?"

For a 3-DOF robotic manipulator, the forward kinematics

problem involves finding the transformation matrix that maps

the joint space to the Cartesian space. The transformation

matrix consists of rotation and translation components,

representing the end effector's position and orientation relative

to a fixed reference frame. The system comprises three masses,

denoted as m1, m2, and m3, interconnected by weightless links

of lengths L1, L2, and L3. The angles of these links are

represented by q1, q2, and q3, respectively. To describe the

manipulator kinematics, the Denavit-Hartenberg (DH)

notation [3] is employed. Table 1 provides the arm parameters

for the 3R robot.

Table 1. 3-DOF robot DH parameters

Joint No. 𝜽𝒊 𝜶i-1 di ai-1

1 𝑞1 0 0 0

2 𝑞2 0 0 L1

3 𝑞3 0 0 L2

4 0 0 0 L3

Each link of the 3-DOF robot manipulator will have its

corresponding Transformation Matrix (T.M.) [6]:

𝑇 = [

𝐶1 −𝑆1 0 0
𝑆1 𝐶1 0 0
0 0 1 0
0 0 0 1

]1
0 (1)

200

𝑇 = [

𝐶2 −𝑆2 0 𝐿1
𝑆2 𝐶2 0 0
0 0 1 0
0 0 0 1

]2
1 (2)

𝑇 = [

𝐶3 −𝑆3 0 𝐿2
𝑆3 𝐶3 0 0
0 0 1 0
0 0 0 1

]2
3 (3)

𝑇 = [

1 0 0 𝐿3
0 1 0 0
0 0 1 0
0 0 0 1

]4
3 (4)

So, the tip of end effector transformation to the base will be

[3, 4]:

𝑇 = [

𝐶123 −𝑆123 0 𝐿3𝐶123 + 𝐿2𝐶12 + 𝐿1𝐶1
𝑆123 𝐶123 0 𝐿3𝑆123 + 𝐿2𝑆12 + 𝐿1𝑆1
0 0 1 0
0 0 0 1

]0
4 (5)

This research is focused on the kinematics of a 3-DOF robot

manipulator. The dynamic of the robot has two challenges.

The first challenge, which is called forward kinematics, is

given a tracking path, location, velocity, and acceleration.

Then, it should identify the appropriate torque for each joint to

rotate the link connected to it by a certain angle in order to

reach the target. While the second challenge is the mechanism

of movement with torque set to determine the location,

velocity, and acceleration of the robot. The dynamic Eq. may

be used to operate the robotic arms. The control challenge

consists of developing manipulator dynamic models and using

these methods to accomplish the required system performance

and responsiveness. Researchers in studies [3, 4, 10] discussed

the dynamic model of the robotic system. Figure 1 shows a

simple 3-DOF serial robotic manipulator model of a 3-links

robot arm [3].

Figure 1. 3-DOF robot manipulator

Inverse Kinematics

Inverse kinematics, on the other hand, involves determining

the joint angles or displacements needed to achieve a desired

position and orientation of the end effector in the workspace.

In other words, it answers the question, "What joint angles do

I need to set to reach a specific point in the workspace?"

Finding the inverse kinematics solution can be more

challenging than forward kinematics, especially for complex

robotic arms with multiple degrees of freedom. For a 3-DOF

robot, the inverse kinematics problem requires solving a set of

trigonometric equations to calculate the joint angles.

The solution to inverse kinematics is not always unique, and

multiple configurations may exist to reach a given end effector

position. In some cases, certain joint configurations may be

physically infeasible due to constraints in the robot's design.

Solving the inverse kinematics problem is essential for tasks

such as trajectory planning, path following, and object

manipulation, as it allows the robot to reach specific points in

space accurately and efficiently.

Both forward and inverse kinematics are fundamental tools

in robotic manipulator control and play a vital role in various

applications, from pick-and-place operations in manufacturing

to robotic arm motion planning in diverse industries.

The Lagrangian dynamics formulation provides a means to

derive the equations of motion by utilizing a function known

as the Lagrangian. This function is defined as the difference

between two types of energy: kinetic and potential energy. For

the given system, the Lagrangian can be expressed as follows:

𝐸(𝜃,�̇�) = 𝑘(𝜃,�̇�) − 𝑢(𝜃) (6)

𝐸(𝜃,�̇�) =
1

2
 𝑚 ∗ 𝑣𝑐

2
(𝜃,�̇�)

 (7)

The robot kinematic equation is as follows:

𝜏 = 𝑀(𝑞) �̈� + 𝑉(𝑞,�̇�) + 𝐺(𝑞) (8)

𝑮(𝒒) is 3×1 vector of gravity

𝑽(𝒒,�̇�) is 3×1 vector of Coriolis and centrifugal

𝑴(𝒒) is 3×3 mass matrix

3. CONVENTIONAL F-PD MODEL AND ISSUE

DESCRIPTIONS

F-PD models, also known as Fuzzy-PID models, are an

extension of traditional PID (Proportional-Integral-Derivative)

controllers used in control systems. PID controllers are widely

employed in various industrial and engineering applications to

regulate processes by adjusting a control signal based on the

error between the desired setpoint and the actual process

variable. F-PD models integrate fuzzy logic principles into the

PID control framework, enhancing the controller's adaptability

and performance in dealing with non-linear and uncertain

systems. By incorporating fuzzy logic, which allows the

representation of linguistic variables and expert knowledge, F-

PD models can handle imprecise and uncertain information

more effectively.

Fuzzy logic is a mathematical approach that deals with

uncertainty by permitting degrees of membership instead of

strict binary values. Unlike classical logic, which relies on

"true" or "false" conditions, fuzzy logic allows intermediate

truth values between 0 and 1, representing the degree of

membership of an element in a particular set.

In fuzzy logic, variables are defined linguistically using

fuzzy sets, and control rules are expressed in the form of IF-

THEN statements based on these fuzzy sets. These rules

201

enable the control system to make decisions or adjust actions

based on the input conditions, even in the presence of

imprecise or ambiguous data.

Importance of F-PD Models and Fuzzy Logic

F-PD models and fuzzy logic concepts are of significant

importance for various research and engineering applications

due to the following reasons:

1. Handling uncertainty: Real-world systems often

encounter uncertainties, variations, and imprecise data.

Fuzzy logic allows modeling and control of such systems

by providing a more tolerant and adaptive approach to

uncertainty, improving the system's robustness and

stability.

2. Dealing with non-linearity: F-PD models excel at

handling non-linear systems. Traditional PID controllers

have limitations when confronted with complex non-

linear behaviors, but by integrating fuzzy logic, F-PD

models can effectively control such systems.

3. Expert knowledge integration: Fuzzy logic enables the

incorporation of human expertise and linguistic terms into

control strategies. This is particularly valuable when

dealing with systems for which expert knowledge is

readily available but challenging to express in precise

mathematical terms.

4. Adaptability and flexibility: Fuzzy logic-based control

systems can adapt to changing conditions and

environments. The ability to adjust control rules based on

varying circumstances makes them suitable for dynamic

and unpredictable scenarios.

5. Reducing overshoots and oscillations: F-PD models can

lead to smoother control responses, minimizing

overshoots and oscillations, especially during transients

and sudden changes in the system.

In conclusion, F-PD models and fuzzy logic concepts offer

an advanced and robust approach to control and decision-

making in uncertain and complex systems. Their ability to

handle uncertainty, non-linearity, and expert knowledge

integration makes them essential tools for various research and

engineering endeavors, leading to more efficient and effective

control systems in real-world applications.

Figure 2. F-PD controller

Figure 3. Fuzzy logic system

Figure 2 presents the configuration of classic F-PD, such

that 𝑞𝑑 represents the standard desired input and the error 𝑒 =
𝑞 − 𝑞𝑑 with its derivation �̇� = �̇� − �̇�𝑑 are selected as Fuzzy

Logic inputs. The fuzzy controller's sequential coefficients

∆𝐾𝑃 and ∆𝐾𝐷 are used for the outputs of PD controller. The

main steps of fuzzy logic system are shown in Figure 3. For

the inputs, scaling and fuzzy rules are initially performed to

convert the better product quality into the fuzzy inputs

described inside the fuzzy range between -3 to 3 in this

research. The results are computed using the Center of Mass

defuzzification methodology (COM) and the scalable scheme

of the fuzzy outputs ∆𝐾𝑃 and ∆𝐾𝐷 , that are also described

inside a range between -3 to 3 in this research. At fuzzification,

the membership function layout will undoubtedly and

immediately affect the outcome of fuzzy theory in addition to,

as a response, the effectiveness of PD control.

To understand the connection between membership

function and PD control performance, NMF, SMF, and ORMF

are established to statistically describe the numbers of

membership functions, geometry of membership functions,

and overlaying rate of membership functions, respectively. For

simplicity and clarity of this research, we consider the

overlaying rate among the forementioned functions. NMF has

seven fuzzy values. These can be described as LP, MP, SP, Z,

SN, MN, LN, which indicate Large Positive, Medium Positive,

Small Positive, Zero, Small Negative, Medium Negative, and

Large Negative respectively. The following are the Gaussian

functions that determine the appropriate membership

functions for LN and LP:

𝑓𝑖(𝑥, 𝜎𝑖 , 𝜇𝑖) = 𝑒

−(𝑥−𝜇𝑖)
2

2 𝜎𝑖
2

(9)

where, i=1, 2, 3, …7.

Represents a Gaussian distribution function, denoted as 𝑓𝑖.
It is a probability density function used to model continuous

random variables. The function depends on three parameters:

x, which is the input variable; σi, representing the standard

deviation and controlling the spread of the distribution; and μi,

which denotes the mean or peak value of the distribution. The

Gaussian function is symmetric around the mean and

decreases as x moves away from the mean. A smaller σi results

in a steeper curve with less variability, while a larger σi leads

to a wider curve with higher variability. This function finds

widespread applications in various fields, including statistics,

signal processing, and machine learning, due to its ability to

accurately model real-world data distributions.

The Gaussian function's prediction and conventional

variance are represented by σi and μi. The equivalent

membership functions for other fuzzy terms are created as

triangular functions:

𝑓𝑖(𝑥, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) =

{

0 𝑥 ≤ 𝑎𝑖

𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

 𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖

𝑎𝑖 − 𝑥

𝑐𝑖 − 𝑏𝑖
 𝑏𝑖 ≤ 𝑥 ≤ 𝑐𝑖

0 𝑐𝑖 ≤ 𝑥

 (10)

If I=2, 3, …. 6, 𝑎𝑖 and 𝑐𝑖 are the zero points, and 𝑏𝑖 is the

membership function's peak point. The deriving process is

formed by the (If-Then) parallel fuzzy rules, which describe

202

how to transfer input parameters to an output vector. The rule

can be described as follows:

If x1 is A and x2 is B, then y is C.

Where x1 and x2 represent the input, y represents the result,

and A, B, and C represent the fuzzy rules. The fuzzy sets for

the traditional Fuzzy-PD are shown below in Tables 2 and 3.

Table 2. Fuzzy rules for ∆𝐾𝑃

 LN MN SN Z SP MP LP

LN LN LN LN MN MN Z Z

MN LN LN MN MN SN Z Z

SN MN MN SN SN Z SP SP

Z MN SN SN Z SP SP MP

SP SN SN Z SP SP MN MN

MP Z Z SP MP MP LP LP

LP Z Z SP MP LP LP LP

Table 3. Fuzzy rules for ∆𝐾𝐷

 LN MN SN Z SP MP LP

LN SP SP Z Z Z LP LP

MN SN SN SN SN Z LP LP

SN LN LN MN SN Z SP MP

Z LN MN MN SN Z SP MP

SP LN MN SN SN Z SP SP

MP MN SN SN SN Z SP SP

LP SP Z Z Z Z LP SP

The Mamdani fuzzification approach is chosen depending

on the basis functions and fuzzy sets. Since the divining

strategy for ∆𝐾𝑃 and ∆𝐾𝐷 are similar, just the procedure to

find ∆𝐾𝑃 is described in the next section. In Eq. (4), the fuzzy

output of ∆𝐾𝑃 is determined as follows:

𝑓𝑝 (𝑥) = √(𝑓𝑖
𝐸 Λ 𝑓𝑗

𝐸𝐶 Λ 𝑓𝑘
Δ𝐾𝑃) (11)

The Eq. (11) represents a fuzzy logic function used to

compute a final performance value, denoted as fp(x). This

function involves the combination of three intermediate fuzzy

membership values: 𝑓𝑖
𝐸 , 𝑓𝑖

𝐸𝐶 , and 𝑓𝑘
∆𝐾𝑃 . These membership

values are obtained through fuzzy logic operations, such as the

AND operation (represented by the symbol ∧), which allows

the system to reason with multiple input conditions.

The interpretation of the fuzzy logic function is as follows:

𝑓𝑖
𝐸, 𝑓𝑖

𝐸𝐶, and 𝑓𝑘
∆𝐾𝑃are fuzzy membership values representing

the degree of membership of the input x in three different fuzzy

sets E, EC, and ΔKP respectively. The function combines these

memberships using the AND operation, reflecting the

minimum membership value of the three sets. The result is

then taken as the square root, yielding the final performance

value fp(x).

Fuzzy logic is valuable in situations where precise

mathematical relationships are challenging to define, and

linguistic variables and expert knowledge are more

appropriate for making decisions. The fp(x) function with

fuzzy logic enables the integration of multiple input conditions

and uncertainties, making it suitable for applications in control

systems, decision-making processes, and various fields where

uncertainty and vagueness are prevalent.

Where i, j, and k are integer values between 1 to 7, in which

they are referring to the seven fuzzy rules. With the use of

COM defuzzification technique, the fuzzy outputs can be

described as follows:

Δ𝐾𝑓𝑝 =
∫ 𝑥. 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3

∫ 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3

 (12)

The Eq. (12) is used to determine the change in kinetic

energy, denoted as ΔKfp, using integration with respect to a

fuzzy logic performance function fp(x). This calculation

involves two definite integrals, one for the product of x and the

performance function fp(x) and another for fp(x) alone, both

integrated over the range from x=−3 to x=3.

The interpretation of this expression is as follows:

The numerator ∫ 𝑥. 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3
 calculates the weighted

average of x using the fuzzy logic performance function fp(x)

as the weighting factor. It represents the contribution of

different x values to the overall kinetic energy. The

denominator ∫ 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3
 calculates the overall degree of

membership (or the total weighting) of the fuzzy logic

performance function fp(x) within the range from x=−3 to x=3.

By dividing the numerator by the denominator, the

expression yields the change in kinetic energy ΔKfp based on

the fuzzy logic performance function fp(x). This approach

allows for the incorporation of fuzzy logic principles into the

calculation of kinetic energy changes, which can be

particularly useful in scenarios where precise mathematical

relationships are uncertain or difficult to define, and fuzzy

logic offers a more flexible and adaptable solution.

Based on the scalability procedure, the precise outputs are

eventually designated as shows in Eq. (13):

Δ𝐾𝑃 =
Δ𝐾𝑚𝑎𝑥

𝑃 + 𝐾𝑚𝑖𝑛
𝑃

2

+ 𝑘𝑝 (Δ𝐾
𝑓𝑝 −

Δ𝐾𝑚𝑎𝑥
𝑓𝑃

+ 𝐾𝑚𝑖𝑛
𝑓𝑃

2
)

(13)

Knowing that

𝑘𝑝 =
Δ𝐾𝑚𝑎𝑥

𝑃 − 𝐾𝑚𝑖𝑛
𝑃

Δ𝐾𝑚𝑎𝑥
𝑓𝑃

− 𝐾
𝑚𝑖𝑛
𝑓𝑃 which is representing as an output

scaling factor.

Δ𝐾𝑚𝑎𝑥
𝑃 is the highest level of crisp output.

Δ𝐾𝑚𝑖𝑛
𝑃 is the smallest amount of crisp output.

Δ𝐾𝑚𝑎𝑥
𝑓𝑝

 is the highest level of Fuzzy output.

Δ𝐾𝑚𝑖𝑛
𝑓𝑝

 is the smallest amount of Fuzzy output.

Therefore, the usual PD controller cab be presented as

follows:

𝜏𝑠 = 𝐾𝑃𝑒 + 𝐾𝐷�̇� (14)

This controller represents a control law for a proportional-

derivative (PD) controller, where 𝜏𝑠 is the control signal or

output, KP is the proportional gain, KD is the derivative gain, e

is the error, and �̇� is the derivative of the error with respect to

time.

The interpretation of this control law is as follows: In a PD

controller, the control signal 𝜏𝑠 is determined by two

components. The first component, 𝐾𝑃𝑒 , is the proportional

term, where the control signal is directly proportional to the

error e between the desired setpoint and the actual process

variable. The proportional gain KP determines the sensitivity

of the controller to the error, influencing how quickly the

controller responds to deviations from the setpoint.

The second component, 𝐾𝐷�̇�, is the derivative term, where

the control signal is proportional to the rate of change of the

203

error (e). The derivative gain KD controls the damping effect

of the controller and helps to stabilize the system by reducing

overshoot and oscillations.

By combining the proportional and derivative terms, the PD

controller provides a balance between fast response to errors

(proportional term) and stability (derivative term). This

control law is widely used in various control systems and

applications, such as in robotics, process control, and motion

control, to achieve accurate and stable control of dynamic

systems.

where:

𝐾𝑃 = 𝐾𝑃0 + Δ𝐾𝑃

𝐾𝐷 = 𝐾𝐷0 + Δ𝐾𝐷

𝐾𝐷0 and 𝐾𝑃0 are represented the initial parameters chosen

for 𝐾𝐷 and 𝐾𝑃 respectively.

The characteristic variables (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝜂𝑖 , 𝜎𝑖) are mostly

chosen by many researchers and, therefore, set via the fuzzy

inference procedure during the aforementioned Fuzzy Logic

system design.

Due to the membership function is in control of converting

crisp input to fuzzy input, parameters’ choice
(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝜂𝑖 , 𝜎𝑖) will immediately affect the overlaying rate

of each two neighboring membership functions, hence the

effectiveness of PD control. The membership function has a

total of 19 factors that are specified as (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝜂𝑖 , 𝜎𝑖).
For i=1, 2, 3, ...,7, there are two limitations that are set to

facilitate the optimization technique as follows:

i. All membership function's magnitude is located at the

appropriate class point, which implies that every member

has a set value at the associated integer number of the

fuzzy range between -3 and 3.

𝑐𝑖 has zeros on the right side of LN and MN, while 𝑎𝑖 has

ones on the left side of MP and LP. Both are variables which

can be changed, while the other zeros are constants.

Although only (𝑎5 , 𝑎6 , 𝑐2 , 𝑐3) are selected as the ORMF

influencing criteria under the aforementioned two conditions,

the challenge of this research is to attain ORMF improvement

by improving the values of (𝑎5 , 𝑎6 , 𝑐2 , 𝑐3). Next section will

explain in detail the ORMF optimization method.

4. ORMF IMPROVEMENT USING BACK

PROPAGATION NEURAL NETWORK

The motivation behind using Back Propagation Neural

Network (BPNN) in robot control lies in its ability to learn

complex control policies from data and adapt to non-linear and

uncertain environments. BPNN is a type of artificial neural

network that utilizes supervised learning to adjust its internal

parameters and optimize its performance based on training

data. In robot control applications, BPNN can be trained with

data generated from simulations or real-world robot

interactions, allowing it to learn intricate mappings between

sensory inputs and corresponding control outputs. This

learning capability enables robots to handle intricate tasks and

dynamically adapt to changing conditions, making them more

versatile and efficient in various environments. BPNN’s

ability to approximate non-linear functions allows it to model

intricate robot dynamics and system behaviors more

accurately, improving control precision and performance.

Moreover, the trained neural network can generalize from the

learned data, allowing robots to navigate complex

environments, interact with objects, and perform tasks with

greater autonomy and reliability. By integrating BPNN into

robot control systems, robots can become more intelligent,

adaptive, and capable of handling sophisticated tasks in

diverse applications, ranging from industrial automation to

autonomous navigation and human-robot interaction.

The choice to use a Back Propagation Neural Network

(BPNN) in robotic control stems from its ability to learn and

adapt complex control policies from data, making it a powerful

tool in enhancing robotic capabilities. In their overall robotic

control system, the researchers opted for BPNN due to its

supervised learning approach, which allows it to adjust

internal parameters and optimize performance based on

training data. By training the BPNN with data collected from

simulations or real-world robot interactions, it can learn

intricate mappings between sensory inputs and corresponding

control outputs. This learning capability complements the

robot's control framework, enabling it to handle non-linear and

uncertain environments more effectively. Integrating BPNN

into their robotic control system empowers the robot to

become more intelligent, versatile, and autonomous. It allows

the robot to dynamically adapt to changing conditions,

improve control precision, and perform intricate tasks with

greater reliability. As a result, the incorporation of BPNN

enhances the overall robotic control strategy, making the robot

more capable and efficient in various applications, ranging

from industrial automation to autonomous navigation and

human-robot interaction.

As mentioned in the previous section, the variables 𝑎𝑖
and 𝑐𝑖 in Eq. (3) are the threshold parameters of each

associated membership function.

Changing these variables will affect ORMF and the F-PD

controller's output. The four variables (𝑎5 , 𝑎6 , 𝑐2 , 𝑐3) are

chosen as the ORMF criteria based on the two limitations

described above (at the end of the last section). As a result,

they will be constructed as the Neural Network with Back-

Propagation's output. The input is the system's error and its

derivative, which indicates the performance of a system.

Figure 4 illustrates the basic principle of Neural Network with

Back-Propagation, which includes three layers (input, hidden,

output).

Figure 4. Back Propagation Neural Network design

In Figure 4, x={x1,...xi,...xp} represents the input, and

y=y1,...yz,...yg represents the overall output. The outcome of

the input layer will be as:

𝑂𝑚
(1)
= 𝑥(𝑚) (15)

The input and output hidden layer will be shown as:

𝑛𝑒𝑡𝑛
(2)(k) = ∑ 𝑤𝑛𝑚

(2)

2

𝑚=1

𝑂𝑚
(1)

 (16)

204

𝑛𝑒𝑡𝑛
(2)𝑂𝑛

(2)(k) = 𝑓 (𝑛𝑒𝑡𝑛
(2)(𝑘)) (17)

when n=1, 2, 3, ..., q.

The neurons number is denoted by q.

The present sample number is k.

The activating function f(x) can be represented as a sigmoid

function, which is described in below:

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (18)

Therefore, the production layers' input and output are

specified as follows:

𝑛𝑒𝑡𝑛
(3)(k) = ∑𝑤𝑙𝑛

(3)

𝑞

𝑛=0

𝑂𝑚
(2)(𝑘) (19)

𝑂𝑙
(3)(k) = g (𝑛𝑒𝑡𝑙

(3)(𝑘)) (20)

Knowing that

l=1,2, 3, and 4.

𝑂1
(3)(𝑘) = 𝑐2, 𝑂2

(3)(𝑘) = 𝑐3

𝑂3
(3)(𝑘) = 𝑎5, 𝑂4

(3)(𝑘) = 𝑎6

𝑤𝑙𝑛
(3)

 denotes the weight from the hidden layer to the

production layer.

g(x) is the activation function, that is described in the

following formula:

𝑔(𝑥) =
𝑒𝑥

𝑒𝑥 + 𝑒−𝑥
 (21)

The cost formula will be as follows:

𝐸 = 0.5(𝑞𝑟 − 𝑞)
2 = 0.5𝑒2 (22)

The production layer's weight parameter may be produced

by coupling the gradient descent approach with an inertial

component. In general, it makes the research a rapid

convergence. Also, the weight parameter can be defined as:

Δ𝑤𝑙𝑛
(3)(𝑘) = −𝜂

𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3)
+ 𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (23)

where,
𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3) =

𝜕𝐸(𝑘)

𝜕q(k)
∗

𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

∗
𝜕𝑂𝑙

(3)(𝑘)

𝜕𝑛𝑒𝑡𝑙
(3)(𝑘)

∗
𝜕𝑛𝑒𝑡𝑙

(3)(𝑘)

𝜕𝑤𝑙𝑛
(3) .

The learning rate is denoted by η, while the inertia factor is

denoted by α.

Eq. (16) is derived throughout the learning process to

simplify
𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3).

𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

=
𝑞(𝑘) − 𝑞(𝑘 − 1)

𝜕𝑂𝑙
(3)(𝑘) − 𝜕𝑂𝑙

(3)(𝑘 − 1)
 (24)

And the learning rate x can adjust for the estimate effect.

When Eq. (23) is substituted from Eq. (22), the update of the

production layer weight can eventually be indicated as:

Δ𝑤𝑙𝑛
(3)(𝑘) = −𝜂 𝛿𝑙

(3)
𝑂𝑛
(𝑘)
+ 𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (25)

where, 𝛿𝑙
(3)
= 𝑒(𝑘)

𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

 �̇�(𝑛𝑒𝑡𝑙
(3)(𝑘))

l=1, 2, 3, 4.

As a result, the update weights of hidden layer are indicated

as below:

Δ𝑤𝑛𝑚
(2)(𝑘) = 𝜂 𝛿𝑙

(2)
 𝑂𝑚
(1)(𝑘) + 𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (26)

𝛿𝑙
(2)
= 𝑒(𝑘)

𝜕𝑞(𝑘)

𝜕𝑂𝑛
(2)
 𝑓̇(𝑛𝑒𝑡𝑛

(2)(𝑘)) (27)

i=1, 2, …, q

Figure 5 depicts the entire closed-loop control block and

calculating procedure. Fuzzy Logic and Neural Network with

Back-Propagation are fed the position error and its variation.

The ORMF is improved by optimization of c2, c3, a5, a6 by

Neural Network with Back-Propagation, and the fuzzy results

are obtained using the Mamdani inference technique

depending on improved membership function as well as the

fuzzy sets. The resulting control gains Δ𝐾𝑃, Δ𝐾𝐷 are fed into

the planned PD controller after COM defuzzification. The

relevant control torques are then delivered to the robotic

system.

𝑤𝑛𝑚
(2)

 denotes the weights from the layer of input to the

hidden layer, while the superscripts (1), (2), and (3) denote to

the three layers respectively.

Figure 5. Control block and process

The integration of Back Propagation Neural Network

(BPNN) into the Overall Robotic Motion Framework (ORMF)

has led to significant improvements in the control of the 3-

DOF robot arm. By employing BPNN's supervised learning

approach, the ORMF was able to learn complex control

policies and adapt to non-linear dynamics, enhancing the robot

arm's performance and capabilities. The BPNN facilitated

precise mapping between sensory inputs and control outputs,

enabling more accurate and efficient control of the robot arm's

movements. This improvement has profound implications for

205

the robot's control, as it enhances its ability to navigate

intricate environments, interact with objects, and perform

sophisticated tasks with greater autonomy and reliability. With

BPNN's dynamic adaptability and accurate modeling of the

robot arm's behavior, the control system can respond more

intelligently to changing conditions and uncertainties.

Consequently, the robot arm becomes more versatile and

efficient, making it suitable for a broader range of applications

in industries like manufacturing, assembly, and automation.

Ultimately, the integration of BPNN into the ORMF

empowers the 3-DOF robot arm with enhanced control

capabilities, leading to increased precision, robustness, and

overall performance in its assigned tasks.

5. SIMULATIONS AND RESULTS

Simulations using MATLAB and practical trials on a 3-

DOF robot arm are used to illustrate the efficiency and

advantages of the suggested control technique. The robot

contains three rotating joints, as shown in Figure 1. Table 4

presents the parameters of the manipulator. These include:

inertia moment, length and mass.

To establish a sinusoidal reference trajectory, a 3-DOF

robotic arm's end-effector is used. The following are the

definitions of the reference trajectories equations.

𝑥 = 0.4

𝑦 = 0.02𝑡 − 0.2
0.13 − 0.12 sin(16𝑦 + 3.2)

} 0 < 𝑡 ≤ 20

The position 𝑞 = [𝑞1, 𝑞2, 𝑞3]
𝑇 of the reference joints

acquired by using inverse kinematics to the end-effector's

trajectory. For modeling and tests purposes, the manipulator's

starting position is set to

𝑞0 = [𝑞01, 𝑞02, 𝑞03]
𝑇 = [0.4, 1, 0.6]𝑇

The initial Proportional-Derivative (PD) controller gains are

typically determined through a process called "tuning." The

goal of tuning is to find suitable values for the proportional

gain (KP) and derivative gain (KD) that result in stable and

satisfactory control performance for the specific robot system.

There are several methods for tuning the PD controller gains.

One of these methods which is used in this paper is Manual

Tuning. In manual tuning, an experienced control engineer

adjusts the gains iteratively based on intuition and knowledge

of the system. The engineer observes the system's response to

different gains and makes adjustments until the desired

performance is achieved. Manual tuning is often quick and

straightforward but may require expertise in control theory and

system dynamics.

The initial gains of the PD controller will be as:

𝐾𝑃𝑂 = [

𝐾𝑃𝑂
1 0 0

0 𝐾𝑃𝑂
2 0

0 0 𝐾𝑃𝑂
3

] = [
8 0 0
0 8 0
0 0 8

]

𝐾𝐷𝑂 = [

𝐾𝐷𝑂
1 0 0

0 𝐾𝐷𝑂
2 0

0 0 𝐾𝐷𝑂
3

] = [
2 0 0
0 6 0
0 0 6

]

The membership function is shown in Figure 6.

Table 4. Parameters of 3-DOF robot

 Link 1 Link 2 Link 3

Inertia Moment (Kg.m2) 0.026 0.022 0.02

Length (m) 0.3 0.25 0.22

Mass (Kg) 0.375 0.3 0.25

Figure 6. Membership function before the optimization

Figure 7. Parameters optimization

Figure 8. Joint 1 parameter value

Simulations are run in MATLAB using the 3-DOF

manipulator's kinematic characteristics, the end-effector's

intended reference path as well as the initial variables for PD,

fuzzy logic, and neural networks with back-propagation.

Figure 7 describes the improvement of the four essential

factors. When the input error increases, the critical factors of

the membership function will raise the ORMF under NN

modification, hence increasing the F-PD controller's output

and forcing the system as a whole to respond quickly.

206

Figures 8, 9, and 10 depict the changes in each joint's critical

parameters over the course of the simulation.

Figure 9. Joint 2 parameter value

Figure 10. Joint 3 parameter value

Figure 11. Trajectory tracking

Figure 12. Trajectory tracking error

The simulation results of Fuzzy-PD based Back-

Propagation Neural Network are compared with the outcomes

of the classic F-PD control method to demonstrate the benefit

of the proposed approach Neural Network with Back-

Propagation BF PD in this article. Figures 11 and 12

demonstrate the path tracking and tracking errors for the two

systems, respectively.

As seen in the previous two figures, the suggested Fuzzy-

PD Based on Back-Propagation Neural Network approach is

quicker, with a 25% shorter time to convergence than the

typical F-PD control approach. When the robot instantly

adapts to the desired trajectory, the suggested approach has an

overrun of 0.006m, whereas the F-PD technique has an

overshoot less than 0.01m. When compared to the

conventional F-PD technique, the Fuzzy-PD Based on Back-

Propagation Neural Network reduces overshoot by 49.1%.

A 49.1% reduction in overshoot and quicker response time

in robot control is highly significant due to its profound impact

on the robot's performance and efficiency. Overshoot

reduction ensures that the robot's movements are more precise

and stable, minimizing the risk of unintended collisions or

errors in task execution. By reducing overshoot, the robot can

reach its target position more accurately and reliably, leading

to improved overall performance and safety.

Additionally, the quicker response time is crucial for time-

sensitive tasks or dynamic environments. A faster response

allows the robot to adapt swiftly to changing conditions,

increasing its agility and responsiveness. In applications like

industrial automation or autonomous navigation, quicker

response times can lead to higher productivity, reduced cycle

times, and better decision-making.

The combination of reduced overshoot and quicker

response time significantly enhances the robot's capabilities

and effectiveness, making it more reliable and efficient in

accomplishing complex tasks. This approach can have a

substantial impact on various industries, providing a

competitive advantage and advancing the state-of-the-art in

robot control technology. The comparison between PD, PI,

PID, Neural Network, Fuzzy-PD, and suggested controller

according to the overshoot and time response is shown in

Table 5.

Table 5. Overshoot and time response values with different

controllers

Approach Name
Overshoot

(%)

Time

Response (s)

PD Control [22] 10.2 3.4

PI Control [23] 5.8 2.1

PID Control [24] 3.2 1.8

Neural Network (NN) Control [25] 1.5 1.2

Fuzzy- PD [26] 1 1.8

Optimization of Fuzzy-PD Using Back-

Propagation Neural Network [Suggested]
0.6 1.25

The limitations of "Fuzzy-PD Control for a Robotics

Manipulator using a Back-Propagation Neural Network" can

include the following:

1. Data Availability and Quality: The effectiveness of the

Back-Propagation Neural Network relies on having a

sufficiently large and diverse dataset for training.

Obtaining such data can be challenging in real-world

scenarios, and the quality of the data can also impact the

controller's performance.

2. Computational Complexity: Back-Propagation Neural

207

Networks, especially when used for optimization tasks,

can be computationally demanding. The time and

resources required for training and implementing the

network may limit real-time applicability, which is

crucial for robotic systems.

3. Generalization: The proposed Fuzzy-PD control

optimized using the neural network may work well for

the specific robotic manipulator and environment

considered in the study. However, its ability to

generalize to other robotic systems or different

environments might be limited.

4. Overfitting: Neural networks can be prone to overfitting,

where the model becomes too specialized to the training

data and fails to perform well on unseen data. Overfitting

could reduce the controller's reliability and

generalization capabilities.

5. Tuning Hyperparameters: Neural networks have various

hyperparameters that need to be carefully tuned to

achieve optimal performance. Finding the right

combination of hyperparameters can be time-consuming

and may require expertise.

6. Robustness: The Fuzzy-PD control approach using a

back-propagation neural network may not be robust to

changes in the robot's dynamics or external disturbances.

A lack of robustness could lead to instability and

performance issues in real-world scenarios.

7. Sensitivity to Noise: Neural networks can be sensitive to

noisy input data, which might lead to inaccurate control

signals and affect the manipulator's precision and

accuracy.

6. CONCLUSION

Fuzzy-PD based on Back-Propagation Neural Network is

suggested in this research to enhance Mamdani fuzzy

prediction method by continuous adjustment of membership

function overlaying rate. To explain the membership function

of the Fuzzy Logic model, three criteria are initially defined:

NMF, SMF, and ORMF. Just the relation involving ORMF

and system control efficiency is thoroughly examined. Neural

Network with Back-Propagation is used in continuous

learning and training to determine the ideal membership

function border variables, which directly impact ORMF.

Simulations using a 3-DOF robotics arm show that the

suggested approach outperforms the standard F-PD technique.

Overall, the integration of Fuzzy-PD based on Back-

Propagation Neural Network offers a robust and adaptive

control system for a 3-DOF robot arm. It enables more

accurate, flexible, and efficient control, making the arm better

suited for a wide range of tasks, from precise manipulations to

handling uncertainties in real-world environments by reducing

the overshoot with 50% and reduce the response time by 25%

when compared results with standard Fuzzy -PD approach.

Our future works can include the following. These

suggestions could also cover the limitation of our current

research:

1. Dataset augmentation: It could focus on augmenting the

dataset to improve the neural network's generalization

capabilities. Techniques like data synthesis, transfer

learning, or domain adaptation could be explored to

address data limitations.

2. Model architecture exploration: Researchers could

investigate different neural network architectures or

advanced learning techniques to reduce computational

complexity while maintaining or enhancing the controller's

performance.

3. Robust control strategies: Developing more robust control

strategies that can handle uncertainties and disturbances in

the robot's environment would be valuable. Techniques

such as adaptive control or robust control could be

considered.

4. Hybrid control approaches: Combining the strengths of

Fuzzy-PD control with other control paradigms, such as

reinforcement learning or model predictive control, might

lead to improved performance and robustness.

5. Hardware integration: It could focus on integrating the

optimized control approach into real robotic systems.

Addressing hardware limitations and validating

performance in practical settings are essential steps

towards real-world deployment.

6. Interpretability methods: Exploring methods for making

the neural network's decision-making process more

interpretable would provide valuable insights for refining

the controller and understanding its behavior.

7. Adaptive learning: Investigating adaptive learning

techniques that can dynamically adjust the controller's

parameters based on changing conditions or system

characteristics could enhance the control strategy's

adaptability.

REFERENCES

[1] Mandava, R.K., Vundavalli, P.R. (2015). Design of PID

controllers for 3-DOF planar and spatial manipulators. In

International Conference on Robotics, Automation,

Control and Embedded Systems, Chennai, India, pp. 1-6.

https://doi.org/10.1109/RACE.2015.7097269

[2] Liu, D., Wang, Y., Wan, X., Lai, X. (2018). Position

control of a planar four-link underactuated manipulator.

In 37th Chinese Control Conference, Wuhan, China, pp.

929-932. https://doi.org/10.23919/ChiCC.2018.8483418

[3] Abdul-Sadah, A.M., Raheem, K.M.H., Altufaili, M.M.S.

(2022). A fuzzy logic controller for a three links robotic

manipulator. In AIP Conference Proceedings, Najaf, Iraq.

https://doi.org/10.1063/5.0066871

[4] Xiong, J., Liu, J. (2013). The robust step performance of

PID and fuzzy logic controlled SISO systems. In Chinese

Control and Decision Conference, Guiyang, China, pp.

1370-1375.

[5] Wang, J., Jordan, J.R. (1995). Neural network PID

controller auto-tuning design and application. In IEEE

International Conference on Fuzzy Systems, Yokohama,

Japan, pp. 325-330.

https://doi.org/10.1109/CCDC.2013.6561139

[6] Abbas, G., Abouchi, N., Sani, A., Condemine, C. (2011).

Design and analysis of fuzzy logic based robust PID

controller for PWM-based switching converter. In IEEE

International Symposium of Circuits and Systems, 5(7):

777-780. https://doi.org/10.1109/ISCAS.2011.5937681

[7] Sharma, K., Palwalia, D.K. (2017). A modified PID

control with adaptive fuzzy controller applied to DC

motor. In International Conference on Information,

Communication, Instrumentation and Control, Indore,

India, pp. 1-6.

https://doi.org/10.1109/ICOMICON.2017.8279151

[8] Rattan, K.S., Van Cleave, D. (2000). Design and

208

implementation of a reduced rule fuzzy logic PID

controller. In 19th International Conference of the North

American Fuzzy Information Processing Society,

Atlanta, GA, USA, pp. 465-469.

https://doi.org/10.1109/NAFIPS.2000.877475

[9] Brehm, T., Rattan, K.S. (1994). Hybrid fuzzy logic PID

controller. In IEEE 3rd International Fuzzy Systems

Conference, Orlando, FL, USA, pp. 1682-1687.

https://doi.org/10.1109/NAECON.1993.290839

[10] Xia, J., Xia, C. (2007). Fuzzy logic based adaptive PID

control of switched reluctance motor drive. In Chinese

Control Conference, Hunan, China, pp. 41-45.

https://doi.org/10.1109/CHICC.2006.4347328

[11] Pereira, J., Bowles, J.B. (1994). A comparison of PID

and fuzzy control of a model car. In IEEE 3rd

International Fuzzy Systems Conference, Orlando, FL,

USA, pp. 849-854.

https://doi.org/10.1109/FUZZY.1994.343846

[12] Hirulkar, S., Damle, M., Rathee, V., Hardas, B. (2014).

Design of automatic car breaking system using fuzzy

logic and PID controller. In International Conference on

Electronic Systems, Signal Processing and Computing

Technologies, Nagpur, India, pp. 413-418.

https://doi.org/10.1109/ICESC.2014.81

[13] Wen, X., Liao, Q., Wei, S., Li, R. (2009). Research and

design of controller for translational meshing motor

based on fuzzy logic and PID. In 2nd International

Conference on Power Electronics and Intelligent

Transportation System, Shenzhen, China, pp. 418-421.

https://doi.org/10.1109/PEITS.2009.5406750

[14] Du, M., Wang, L. (2011). A parameter self-tuning fuzzy-

PID control system for pneumatic manipulator of library

robot. In International Conference on Electronics,

Communications and Control, Ningbo, China, pp. 4111-

4115. https://doi.org/10.1109/ICECC.2011.6067700

[15] Meza, J.L., Soto, R., Arriaga, J. (2009). An optimal fuzzy

self-tuning PID controller for robot manipulators via

genetic algorithm. In Eighth Mexican International

Conference on Artificial Intelligence, Guanajuato,

Mexico, pp. 21-26.

https://doi.org/10.1109/MICAI.2009.34

[16] Siddique, M.N.H., Tokhi, M.O. (2002). GA-based neuro-

fuzzy controller for flexible-link manipulator. In IEEE

International Conference on Control Applications,

Glasgow, UK, pp. 471-476.

https://doi.org/10.1109/CCA.2002.1040231

[17] Liu, F., Gao, G., Shi, L., Lv, Y. (2017). Kinematic

analysis and simulation of a 3-DOF robotic manipulator.

In 3rd IEEE International Conference on Computational

Intelligence and Communication Technology (CICT),

Ghaziabad, India, pp. 1-5.

https://doi.org/10.1109/CIACT.2017.7977291

[18] Raheem, K.M.H., Hassoon, O.O., Abdul-Sadah, A.M.

(2022). Modeling 3-Degree of Freedom robotics
manipulator with PID and sliding mode controller. In
AIP Conference Proceedings, Najaf, Iraq.
https://doi.org/10.1063/5.0066824

[19] Yu, Y., Qi, P., Althoefer, K., Lam, H.K. (2015).
Lagrangian dynamics and nonlinear control of a
continuum manipulator. In IEEE Conference on
Robotics and Biomimetic, China, pp. 6-9.
https://doi.org/10.1109/ROBIO.2015.7419052

[20] Raheem, K.M.H., Najaf, A.N. (2020). Simulation 3-DOF
RRR robotic manipulator under PID controller. Journal
of Engineering & Applied Sciences, 15(2): 410-414.
http://doi.org/10.36478/jeasci.2020.410.414

[21] Saleh, M.H., Elassal, A.H., Khalifa, I.H. (1997). An
adaptive fuzzy controller to improve system performance.
In the 7th Conference on Computer and Applications,
IEEE Alex. Chapter, Alexandria, Egypt.

[22] Kabir, U., Fatihu, M., Haruna, H., Shehu, G.S. (2019).
Performance analysis of PID, PD and fuzzy controllers
for position control of 3-DOF robot manipulator. Zaria
Journal of Electrical Engineering Technology, 8(1):
12076.

[23] Joyo, M.K., Raza, Y., Ahmed, S.F., Billah, M.M., Kadir,
K., Naidu, K., Yusof, Z.M. (2019). Optimized
proportional-integral-derivative controller for upper limb
rehabilitation robot. Electronics, 8(8): 826.
https://doi.org/10.3390/electronics8080826

[24] Van Bach, N.P., Hai, Q.D., Trung, T.B. (2021).
Optimization of trajectory tracking control of 3-DOF
translational robot use PSO method based on inverse
dynamics control for surgery application. Journal of
Vibroengineering, 23(7): 1591-1601.
https://doi.org/10.21595/jve.2021.21997

[25] Luan, F., Na, J., Huang, Y., Gao, G. (2019). Adaptive
neural network control for robotic manipulators with
guaranteed finite-time convergence. Neurocomputing,
337: 153-164.
https://doi.org/10.1016/j.neucom.2019.01.063

[26] Chen, S., Yu, H., Tan, Z., Huang, J., Zhou, D., Li, H.

(2022). Fuzzy proportional-derivative based robot arm
control for object transfer. In 2022 International
Conference on Energy Utilization and Automation
(ICEUA 2022), p. 012036.
https://doi.org/10.1088/1742-6596/2254/1/012036

209

