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In this research, a new control technique based Fuzzy-PD and Back-Propagation Neural 

Network is developed for controlling robotics arm with their three links. The continuous 

modification of the overlapping rate of the membership function improved the 

efficiency of traditional Fuzzy-PD when compound with the use of Neural Network 

with Back-Propagation. Initially, the overlapped rate is defined as the amount of the 

intersecting point of two neighboring membership functions. The integration of Fuzzy-

PD and Back-Propagation Neural Network offers a hybrid control system that combines 

the robustness and interpretability of fuzzy logic with the adaptability and learning 

capabilities of neural networks. This approach can lead to improve control performance 

and enhance system behavior in various real-world applications. Then, the overlapped 

percentage is optimized online using Neural Network with Back-Propagation. The 

"overlapping rate of the membership function" is a key aspect of fuzzy logic systems. 

In fuzzy logic, membership functions convert input data into linguistic variables for 

decision-making. These functions determine the degree of membership of an element 

in a fuzzy set, ranging from 0 to 1. The overlapping rate refers to how much membership 

functions of different fuzzy sets intersect with each other. By adjusting this rate, we 

control the level of ambiguity in the system's decisions. Higher overlapping rates result 

in smoother transitions between fuzzy sets, allowing for more flexible and tolerant 

decision boundaries. On the other hand, lower overlapping rates create sharper 

boundaries, leading to more distinct and precise distinctions between fuzzy sets. 

Selecting the appropriate overlapping rate is crucial for designing an effective fuzzy 

logic system. We run a set of experiments to evaluate our proposed method. The final 

outcomes demonstrate the usefulness and efficiency of our approach and modeling 

using a 3-DOF robotics arm. When the suggested Fuzzy-PD based on Back-Propagation 

Neural Network approach is compared to the conventional F-PD technique, we found 

that the suggested approach is quicker, with a 25% shorter time with an overrun of 

0.006m, whereas the F-PD technique has an overshoot less than 0.01m. and reduces 

overshoot by 49.1%. 
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1. INTRODUCTION

Robotics manipulators play an important role within a 

human daily-life activity. Due to their flexible deployments in 

various domains, they offer a wide range of usage in different 

applications. These include industry production, surgical 

intervention, space explorations and military operations. In 

real-world applications, the robotics arm should essentially 

trace a defined manifold, which are required to determine an 

accurate position control [1]. Robotic arms have multiple 

joints and links, making their kinematics complex. Accurate 

motion planning is required to ensure the end effector (gripper) 

reaches its intended position and orientation. Inverse 

kinematics, which involves finding joint angles to achieve a 

desired end effector pose, can be particularly challenging. 

Controlling the robotic arm's movements requires considering 

its dynamic behavior, including inertia, gravity, and friction. 

Developing robust control algorithms to account for these 

factors ensures smooth and accurate motion execution. 

Controlling a robotic arm can be challenging due to several 

factors like: 

i. High dimensionality: Robotic arms typically have

multiple joints and links, resulting in a high-dimensional

control space. Coordinating and controlling each joint

simultaneously require complex algorithms and precise

coordination.

ii. Nonlinearity and complex dynamics: The dynamics of

robotic arms are nonlinear and can be highly complex,
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involving interactions between joint angles, torques, and 

end effector positions. Designing control strategies to 

account for these complexities can be difficult. 

iii. Uncertainty and variability: Real-world environments are 

often unpredictable and uncertain. Variations in the 

robot's mechanical components, changing load 

conditions, or environmental disturbances can affect the 

arm's performance. Dealing with uncertainty requires 

robust control techniques. 

The traditional Proportion-Integration-Differentiation 

(PID) control approach has evolved and been combined with 

a developed control method, with several applications in 

robotic controls [2, 3]. Because of adjusting control 

improvement consumes time and it depends on user’s 

experience, an advanced control system should be linked with 

PID to give an intelligent control gain adjustment. Xiong and 

Liu [4] studied that traditional PID can be combined with 

Neural Network so that it learns the best fitting parameters. 

Fuzzy Logic is usually used to optimize the control gains of 

classical PID due to the benefits of fuzzification mechanism 

[5-9]. Fuzzification, defuzzification, and fuzzy reasoning are 

common components of Fuzzy Logic [10-14]. As the link 

between traditional crisp and fuzzy arithmetic, the 

Membership Function (MF) is considered the main part in this 

procedure. According to the main design of the Fuzzy Logic 

concept, the fundamental of logical function is to discover the 

best membership function and fuzzy inference approaches. 

Therefore, there is not a conventional procedure for 

transforming people's experience or understanding the fuzzy 

rules or add something to keep consistency of a fuzzy logic 

system while constructing such system. In addition to building 

dataset while constructing fuzzy Logic system. This is the 

fundamental challenge of fuzzy logic system design. 

Moreover, researchers define membership function clearly 

without enhancing the effectiveness of reasonability [14-18]. 

When designing a membership function, the following issues 

should be taken into consideration:  

Which number of membership function should be used? 

Which membership function form should be chosen?  

How much every neighboring membership function should 

intersect? 

It is critical to develop a technique of membership function 

of digital training and calibrating, such that we could 

successfully get an ideal and optimum system's efficiency.  

The acquiring and training of membership function with 

fuzzy rules are, in fact, the most essential and challenging 

tasks in designing the architecture of Fuzzy Logic methods for 

actual control systems [19-21]. There is not entirely 

dependable and methodical approach that has been discovered 

yet. In fact, this is a significant limitation of Fuzzy Logic 

control when deploy it in a practical application. As a result, 

for experiments and simulation, the technique that is suggested 

in this research is depending on the PD controller. Hence, we 

present a novel method FUZZY-PD based on Back-

Propagation Neural Network, such that it is used to improve 

the effectiveness of F-PD even more. Consequently, three 

criteria are specified for the whole formulation of membership 

function. These are: Amount of Membership Function (QMF), 

Shapes of Membership Function (SMF), and Overlapping 

Rate of Membership Function (ORMF). These functions, 

however, are associated with the three issues listed above.  

The relationship between the control efficiency and 

overlaying rate will be investigated in this research.  

Our goal is to get the optimal overlaying rate, where Neural 

Network with Back-Propagation are used to optimize the 

membership function variables. In addition, simulations and 

practical tests with a 3-DOF robot manipulators are used to 

show the control strategy. The rest of the paper is structured as 

follows. Section 2 describes the robotics manipulator with 3-

chain links. Section 3 presents the standard F-PD design 

procedure. Section 4 explains the Neural Network with Back-

Propagation technology. Section 5 illustrates our proposed 

model and experimental results. Finally, Section 6 shows 

conclusions with our future directions. Upon comparing the 

suggested Fuzzy-PD based on Back-Propagation Neural 

Network approach with the conventional F-PD technique, we 

observed that the former demonstrates improved efficiency, 

completing the task 25% faster. On the other hand, the latter 

technique displays an overshoot and successfully achieves a 

50% reduction in overshoot. 

 

 

2. 3-DOF ROBOTICS MANIPULATOR SYSTEM 

 

The kinematics of the 3-DOF robot arm have two major 

issues: the first is forwards kinematics, and the second is 

inverse kinematics. Dynamic formulas of the 3-DOF RRR 

robot manipulators are a collection of mathematical formulas 

that explain the dynamic characteristics of the robot [3-5]. 

Forward and inverse kinematics are two fundamental concepts 

used to describe the motion of a robotic manipulator, such as 

a 3-DOF (Degrees of Freedom) robotic arm. 

 

Forward Kinematics 

Forward kinematics deals with determining the position and 

orientation of the robot's end effector (e.g., gripper or tool) 

based on the joint angles or displacements of the robot's links. 

It essentially answers the question, "Where is the end effector 

located in the workspace given the joint angles?" 

For a 3-DOF robotic manipulator, the forward kinematics 

problem involves finding the transformation matrix that maps 

the joint space to the Cartesian space. The transformation 

matrix consists of rotation and translation components, 

representing the end effector's position and orientation relative 

to a fixed reference frame. The system comprises three masses, 

denoted as m1, m2, and m3, interconnected by weightless links 

of lengths L1, L2, and L3. The angles of these links are 

represented by q1, q2, and q3, respectively. To describe the 

manipulator kinematics, the Denavit-Hartenberg (DH) 

notation [3] is employed. Table 1 provides the arm parameters 

for the 3R robot. 

 

Table 1. 3-DOF robot DH parameters 
 

Joint No. 𝜽𝒊 𝜶i-1 di ai-1 

1 𝑞1 0 0 0 

2 𝑞2 0 0 L1 

3 𝑞3 0 0 L2 

4 0 0 0 L3 

 

Each link of the 3-DOF robot manipulator will have its 

corresponding Transformation Matrix (T.M.) [6]: 

 

𝑇 =  [

𝐶1 −𝑆1 0 0
𝑆1 𝐶1 0 0
0 0 1 0
0 0 0 1

]1
0  (1) 
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𝑇 =  [

𝐶2 −𝑆2 0 𝐿1
𝑆2 𝐶2 0 0
0 0 1 0
0 0 0 1

]2
1  (2) 

 

𝑇 =  [

𝐶3 −𝑆3 0 𝐿2
𝑆3 𝐶3 0 0
0 0 1 0
0 0 0 1

]2
3  (3) 

 

𝑇 =  [

1 0 0 𝐿3
0 1 0 0
0 0 1 0
0 0 0 1

]4
3  (4) 

 

So, the tip of end effector transformation to the base will be 

[3, 4]: 

 

𝑇 =  [

𝐶123 −𝑆123 0 𝐿3𝐶123 + 𝐿2𝐶12 + 𝐿1𝐶1
𝑆123 𝐶123 0 𝐿3𝑆123 + 𝐿2𝑆12 + 𝐿1𝑆1
0 0 1 0
0 0 0 1

]0
4  (5) 

 

This research is focused on the kinematics of a 3-DOF robot 

manipulator. The dynamic of the robot has two challenges. 

The first challenge, which is called forward kinematics, is 

given a tracking path, location, velocity, and acceleration. 

Then, it should identify the appropriate torque for each joint to 

rotate the link connected to it by a certain angle in order to 

reach the target. While the second challenge is the mechanism 

of movement with torque set to determine the location, 

velocity, and acceleration of the robot. The dynamic Eq. may 

be used to operate the robotic arms. The control challenge 

consists of developing manipulator dynamic models and using 

these methods to accomplish the required system performance 

and responsiveness. Researchers in studies [3, 4, 10] discussed 

the dynamic model of the robotic system. Figure 1 shows a 

simple 3-DOF serial robotic manipulator model of a 3-links 

robot arm [3]. 

 

 
 

Figure 1. 3-DOF robot manipulator 

 

Inverse Kinematics 

Inverse kinematics, on the other hand, involves determining 

the joint angles or displacements needed to achieve a desired 

position and orientation of the end effector in the workspace. 

In other words, it answers the question, "What joint angles do 

I need to set to reach a specific point in the workspace?" 

Finding the inverse kinematics solution can be more 

challenging than forward kinematics, especially for complex 

robotic arms with multiple degrees of freedom. For a 3-DOF 

robot, the inverse kinematics problem requires solving a set of 

trigonometric equations to calculate the joint angles. 

The solution to inverse kinematics is not always unique, and 

multiple configurations may exist to reach a given end effector 

position. In some cases, certain joint configurations may be 

physically infeasible due to constraints in the robot's design. 

Solving the inverse kinematics problem is essential for tasks 

such as trajectory planning, path following, and object 

manipulation, as it allows the robot to reach specific points in 

space accurately and efficiently. 

Both forward and inverse kinematics are fundamental tools 

in robotic manipulator control and play a vital role in various 

applications, from pick-and-place operations in manufacturing 

to robotic arm motion planning in diverse industries. 

The Lagrangian dynamics formulation provides a means to 

derive the equations of motion by utilizing a function known 

as the Lagrangian. This function is defined as the difference 

between two types of energy: kinetic and potential energy. For 

the given system, the Lagrangian can be expressed as follows: 

 

𝐸(𝜃,�̇�) = 𝑘(𝜃,�̇�) − 𝑢(𝜃) (6) 

 

𝐸(𝜃,�̇�) = 
1

2
 𝑚 ∗  𝑣𝑐

2
(𝜃,�̇�)

 (7) 

 

The robot kinematic equation is as follows: 

 

𝜏 =  𝑀(𝑞) �̈� + 𝑉(𝑞,�̇�) + 𝐺(𝑞) (8) 

 

𝑮(𝒒) is 3×1 vector of gravity 

𝑽(𝒒,�̇�) is 3×1 vector of Coriolis and centrifugal 

𝑴(𝒒) is 3×3 mass matrix 

 

 

3. CONVENTIONAL F-PD MODEL AND ISSUE 

DESCRIPTIONS 

 

F-PD models, also known as Fuzzy-PID models, are an 

extension of traditional PID (Proportional-Integral-Derivative) 

controllers used in control systems. PID controllers are widely 

employed in various industrial and engineering applications to 

regulate processes by adjusting a control signal based on the 

error between the desired setpoint and the actual process 

variable. F-PD models integrate fuzzy logic principles into the 

PID control framework, enhancing the controller's adaptability 

and performance in dealing with non-linear and uncertain 

systems. By incorporating fuzzy logic, which allows the 

representation of linguistic variables and expert knowledge, F-

PD models can handle imprecise and uncertain information 

more effectively. 

Fuzzy logic is a mathematical approach that deals with 

uncertainty by permitting degrees of membership instead of 

strict binary values. Unlike classical logic, which relies on 

"true" or "false" conditions, fuzzy logic allows intermediate 

truth values between 0 and 1, representing the degree of 

membership of an element in a particular set. 

In fuzzy logic, variables are defined linguistically using 

fuzzy sets, and control rules are expressed in the form of IF-

THEN statements based on these fuzzy sets. These rules 
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enable the control system to make decisions or adjust actions 

based on the input conditions, even in the presence of 

imprecise or ambiguous data. 

 

Importance of F-PD Models and Fuzzy Logic 

F-PD models and fuzzy logic concepts are of significant 

importance for various research and engineering applications 

due to the following reasons: 

1. Handling uncertainty: Real-world systems often 

encounter uncertainties, variations, and imprecise data. 

Fuzzy logic allows modeling and control of such systems 

by providing a more tolerant and adaptive approach to 

uncertainty, improving the system's robustness and 

stability. 

2. Dealing with non-linearity: F-PD models excel at 

handling non-linear systems. Traditional PID controllers 

have limitations when confronted with complex non-

linear behaviors, but by integrating fuzzy logic, F-PD 

models can effectively control such systems. 

3. Expert knowledge integration: Fuzzy logic enables the 

incorporation of human expertise and linguistic terms into 

control strategies. This is particularly valuable when 

dealing with systems for which expert knowledge is 

readily available but challenging to express in precise 

mathematical terms. 

4. Adaptability and flexibility: Fuzzy logic-based control 

systems can adapt to changing conditions and 

environments. The ability to adjust control rules based on 

varying circumstances makes them suitable for dynamic 

and unpredictable scenarios. 

5. Reducing overshoots and oscillations: F-PD models can 

lead to smoother control responses, minimizing 

overshoots and oscillations, especially during transients 

and sudden changes in the system. 

In conclusion, F-PD models and fuzzy logic concepts offer 

an advanced and robust approach to control and decision-

making in uncertain and complex systems. Their ability to 

handle uncertainty, non-linearity, and expert knowledge 

integration makes them essential tools for various research and 

engineering endeavors, leading to more efficient and effective 

control systems in real-world applications. 

 

 
 

Figure 2. F-PD controller 

 

 
 

Figure 3. Fuzzy logic system 

 

Figure 2 presents the configuration of classic F-PD, such 

that 𝑞𝑑 represents the standard desired input and the error 𝑒 =
𝑞 − 𝑞𝑑  with its derivation �̇� = �̇� − �̇�𝑑  are selected as Fuzzy 

Logic inputs. The fuzzy controller's sequential coefficients 

∆𝐾𝑃 and ∆𝐾𝐷  are used for the outputs of PD controller. The 

main steps of fuzzy logic system are shown in Figure 3. For 

the inputs, scaling and fuzzy rules are initially performed to 

convert the better product quality into the fuzzy inputs 

described inside the fuzzy range between -3 to 3 in this 

research. The results are computed using the Center of Mass 

defuzzification methodology (COM) and the scalable scheme 

of the fuzzy outputs ∆𝐾𝑃  and ∆𝐾𝐷 , that are also described 

inside a range between -3 to 3 in this research. At fuzzification, 

the membership function layout will undoubtedly and 

immediately affect the outcome of fuzzy theory in addition to, 

as a response, the effectiveness of PD control. 

To understand the connection between membership 

function and PD control performance, NMF, SMF, and ORMF 

are established to statistically describe the numbers of 

membership functions, geometry of membership functions, 

and overlaying rate of membership functions, respectively. For 

simplicity and clarity of this research, we consider the 

overlaying rate among the forementioned functions. NMF has 

seven fuzzy values. These can be described as LP, MP, SP, Z, 

SN, MN, LN, which indicate Large Positive, Medium Positive, 

Small Positive, Zero, Small Negative, Medium Negative, and 

Large Negative respectively. The following are the Gaussian 

functions that determine the appropriate membership 

functions for LN and LP: 

 

𝑓𝑖(𝑥, 𝜎𝑖 , 𝜇𝑖) =  𝑒

−( 𝑥−𝜇𝑖)
2

2 𝜎𝑖
2

 
(9) 

 

where, i=1, 2, 3, …7. 

Represents a Gaussian distribution function, denoted as 𝑓𝑖. 
It is a probability density function used to model continuous 

random variables. The function depends on three parameters: 

x, which is the input variable; σi, representing the standard 

deviation and controlling the spread of the distribution; and μi, 

which denotes the mean or peak value of the distribution. The 

Gaussian function is symmetric around the mean and 

decreases as x moves away from the mean. A smaller σi results 

in a steeper curve with less variability, while a larger σi leads 

to a wider curve with higher variability. This function finds 

widespread applications in various fields, including statistics, 

signal processing, and machine learning, due to its ability to 

accurately model real-world data distributions. 

The Gaussian function's prediction and conventional 

variance are represented by σi and μi. The equivalent 

membership functions for other fuzzy terms are created as 

triangular functions: 

 

𝑓𝑖(𝑥, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) =

{
 
 
 

 
 
 

0                                     𝑥 ≤ 𝑎𝑖
 

𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

                          𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖
 

𝑎𝑖 − 𝑥

𝑐𝑖 − 𝑏𝑖
                           𝑏𝑖 ≤ 𝑥 ≤ 𝑐𝑖

 
0                                     𝑐𝑖 ≤ 𝑥

 (10) 

 

If I=2, 3, …. 6, 𝑎𝑖 and 𝑐𝑖 are the zero points, and 𝑏𝑖 is the 

membership function's peak point. The deriving process is 

formed by the (If-Then) parallel fuzzy rules, which describe 
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how to transfer input parameters to an output vector. The rule 

can be described as follows: 

If x1 is A and x2 is B, then y is C. 

Where x1 and x2 represent the input, y represents the result, 

and A, B, and C represent the fuzzy rules. The fuzzy sets for 

the traditional Fuzzy-PD are shown below in Tables 2 and 3. 

 

Table 2. Fuzzy rules for ∆𝐾𝑃 

 
 LN MN SN Z SP MP LP 

LN LN LN LN MN MN Z Z 

MN LN LN MN MN SN Z Z 

SN MN MN SN SN Z SP SP 

Z MN SN SN Z SP SP MP 

SP SN SN Z SP SP MN MN 

MP Z Z SP MP MP LP LP 

LP Z Z SP MP LP LP LP 

 

Table 3. Fuzzy rules for ∆𝐾𝐷 

 
 LN MN SN Z SP MP LP 

LN SP SP Z Z Z LP LP 

MN SN SN SN SN Z LP LP 

SN LN LN MN SN Z SP MP 

Z LN MN MN SN Z SP MP 

SP LN MN SN SN Z SP SP 

MP MN SN SN SN Z SP SP 

LP SP Z Z Z Z LP SP 

 

The Mamdani fuzzification approach is chosen depending 

on the basis functions and fuzzy sets. Since the divining 

strategy for ∆𝐾𝑃  and ∆𝐾𝐷  are similar, just the procedure to 

find ∆𝐾𝑃 is described in the next section. In Eq. (4), the fuzzy 

output of ∆𝐾𝑃 is determined as follows: 

 

𝑓𝑝 (𝑥) = √(𝑓𝑖
𝐸   Λ 𝑓𝑗

𝐸𝐶   Λ  𝑓𝑘
Δ𝐾𝑃) (11) 

 

The Eq. (11) represents a fuzzy logic function used to 

compute a final performance value, denoted as fp(x). This 

function involves the combination of three intermediate fuzzy 

membership values: 𝑓𝑖
𝐸 , 𝑓𝑖

𝐸𝐶 , and 𝑓𝑘
∆𝐾𝑃 . These membership 

values are obtained through fuzzy logic operations, such as the 

AND operation (represented by the symbol ∧), which allows 

the system to reason with multiple input conditions. 

The interpretation of the fuzzy logic function is as follows: 

𝑓𝑖
𝐸, 𝑓𝑖

𝐸𝐶, and 𝑓𝑘
∆𝐾𝑃are fuzzy membership values representing 

the degree of membership of the input x in three different fuzzy 

sets E, EC, and ΔKP respectively. The function combines these 

memberships using the AND operation, reflecting the 

minimum membership value of the three sets. The result is 

then taken as the square root, yielding the final performance 

value fp(x). 

Fuzzy logic is valuable in situations where precise 

mathematical relationships are challenging to define, and 

linguistic variables and expert knowledge are more 

appropriate for making decisions. The fp(x) function with 

fuzzy logic enables the integration of multiple input conditions 

and uncertainties, making it suitable for applications in control 

systems, decision-making processes, and various fields where 

uncertainty and vagueness are prevalent. 

Where i, j, and k are integer values between 1 to 7, in which 

they are referring to the seven fuzzy rules. With the use of 

COM defuzzification technique, the fuzzy outputs can be 

described as follows: 

Δ𝐾𝑓𝑝 =
∫ 𝑥. 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3

∫  𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3

 (12) 

 

The Eq. (12) is used to determine the change in kinetic 

energy, denoted as ΔKfp, using integration with respect to a 

fuzzy logic performance function fp(x). This calculation 

involves two definite integrals, one for the product of x and the 

performance function fp(x) and another for fp(x) alone, both 

integrated over the range from x=−3 to x=3. 

The interpretation of this expression is as follows:  

The numerator ∫ 𝑥. 𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3
 calculates the weighted 

average of x using the fuzzy logic performance function fp(x) 

as the weighting factor. It represents the contribution of 

different x values to the overall kinetic energy. The 

denominator ∫  𝑓𝑝(𝑥)𝑑𝑥
𝑥=3

𝑥=−3
 calculates the overall degree of 

membership (or the total weighting) of the fuzzy logic 

performance function fp(x) within the range from x=−3 to x=3. 

By dividing the numerator by the denominator, the 

expression yields the change in kinetic energy ΔKfp based on 

the fuzzy logic performance function fp(x). This approach 

allows for the incorporation of fuzzy logic principles into the 

calculation of kinetic energy changes, which can be 

particularly useful in scenarios where precise mathematical 

relationships are uncertain or difficult to define, and fuzzy 

logic offers a more flexible and adaptable solution. 

Based on the scalability procedure, the precise outputs are 

eventually designated as shows in Eq. (13): 

 

Δ𝐾𝑃 =
Δ𝐾𝑚𝑎𝑥

𝑃 + 𝐾𝑚𝑖𝑛
𝑃

2

+ 𝑘𝑝 ( Δ𝐾
𝑓𝑝 − 

Δ𝐾𝑚𝑎𝑥
𝑓𝑃

+ 𝐾𝑚𝑖𝑛
𝑓𝑃

2
) 

(13) 

 

Knowing that 

𝑘𝑝 = 
Δ𝐾𝑚𝑎𝑥

𝑃 − 𝐾𝑚𝑖𝑛
𝑃

Δ𝐾𝑚𝑎𝑥
𝑓𝑃

− 𝐾
𝑚𝑖𝑛
𝑓𝑃  which is representing as an output 

scaling factor. 

Δ𝐾𝑚𝑎𝑥
𝑃  is the highest level of crisp output. 

Δ𝐾𝑚𝑖𝑛
𝑃  is the smallest amount of crisp output. 

Δ𝐾𝑚𝑎𝑥
𝑓𝑝

 is the highest level of Fuzzy output. 

Δ𝐾𝑚𝑖𝑛
𝑓𝑝

 is the smallest amount of Fuzzy output. 

Therefore, the usual PD controller cab be presented as 

follows: 

 

𝜏𝑠 = 𝐾𝑃𝑒 + 𝐾𝐷�̇� (14) 

 

This controller represents a control law for a proportional-

derivative (PD) controller, where 𝜏𝑠  is the control signal or 

output, KP is the proportional gain, KD is the derivative gain, e 

is the error, and �̇� is the derivative of the error with respect to 

time. 

The interpretation of this control law is as follows: In a PD 

controller, the control signal 𝜏𝑠  is determined by two 

components. The first component, 𝐾𝑃𝑒 , is the proportional 

term, where the control signal is directly proportional to the 

error e between the desired setpoint and the actual process 

variable. The proportional gain KP determines the sensitivity 

of the controller to the error, influencing how quickly the 

controller responds to deviations from the setpoint. 

The second component, 𝐾𝐷�̇�, is the derivative term, where 

the control signal is proportional to the rate of change of the 
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error (e). The derivative gain KD controls the damping effect 

of the controller and helps to stabilize the system by reducing 

overshoot and oscillations. 

By combining the proportional and derivative terms, the PD 

controller provides a balance between fast response to errors 

(proportional term) and stability (derivative term). This 

control law is widely used in various control systems and 

applications, such as in robotics, process control, and motion 

control, to achieve accurate and stable control of dynamic 

systems. 

where: 

𝐾𝑃 = 𝐾𝑃0 + Δ𝐾𝑃 

𝐾𝐷 = 𝐾𝐷0 + Δ𝐾𝐷 

 

𝐾𝐷0 and 𝐾𝑃0 are represented the initial parameters chosen 

for 𝐾𝐷 and 𝐾𝑃 respectively. 

The characteristic variables ( 𝑎𝑖  , 𝑏𝑖  , 𝑐𝑖  , 𝜂𝑖 , 𝜎𝑖  ) are mostly 

chosen by many researchers and, therefore, set via the fuzzy 

inference procedure during the aforementioned Fuzzy Logic 

system design. 

Due to the membership function is in control of converting 

crisp input to fuzzy input, parameters’ choice 
( 𝑎𝑖  , 𝑏𝑖  , 𝑐𝑖  , 𝜂𝑖 , 𝜎𝑖  ) will immediately affect the overlaying rate 

of each two neighboring membership functions, hence the 

effectiveness of PD control. The membership function has a 

total of 19 factors that are specified as ( 𝑎𝑖  , 𝑏𝑖  , 𝑐𝑖  , 𝜂𝑖 , 𝜎𝑖  ). 
For i=1, 2, 3, ...,7, there are two limitations that are set to 

facilitate the optimization technique as follows: 

i. All membership function's magnitude is located at the 

appropriate class point, which implies that every member 

has a set value at the associated integer number of the 

fuzzy range between -3 and 3. 

𝑐𝑖 has zeros on the right side of LN and MN, while 𝑎𝑖 has 

ones on the left side of MP and LP. Both are variables which 

can be changed, while the other zeros are constants. 

Although only ( 𝑎5 , 𝑎6 , 𝑐2 , 𝑐3 ) are selected as the ORMF 

influencing criteria under the aforementioned two conditions, 

the challenge of this research is to attain ORMF improvement 

by improving the values of ( 𝑎5 , 𝑎6 , 𝑐2 , 𝑐3 ). Next section will 

explain in detail the ORMF optimization method. 

 

 

4. ORMF IMPROVEMENT USING BACK 

PROPAGATION NEURAL NETWORK 

 

The motivation behind using Back Propagation Neural 

Network (BPNN) in robot control lies in its ability to learn 

complex control policies from data and adapt to non-linear and 

uncertain environments. BPNN is a type of artificial neural 

network that utilizes supervised learning to adjust its internal 

parameters and optimize its performance based on training 

data. In robot control applications, BPNN can be trained with 

data generated from simulations or real-world robot 

interactions, allowing it to learn intricate mappings between 

sensory inputs and corresponding control outputs. This 

learning capability enables robots to handle intricate tasks and 

dynamically adapt to changing conditions, making them more 

versatile and efficient in various environments. BPNN’s 

ability to approximate non-linear functions allows it to model 

intricate robot dynamics and system behaviors more 

accurately, improving control precision and performance. 

Moreover, the trained neural network can generalize from the 

learned data, allowing robots to navigate complex 

environments, interact with objects, and perform tasks with 

greater autonomy and reliability. By integrating BPNN into 

robot control systems, robots can become more intelligent, 

adaptive, and capable of handling sophisticated tasks in 

diverse applications, ranging from industrial automation to 

autonomous navigation and human-robot interaction. 

The choice to use a Back Propagation Neural Network 

(BPNN) in robotic control stems from its ability to learn and 

adapt complex control policies from data, making it a powerful 

tool in enhancing robotic capabilities. In their overall robotic 

control system, the researchers opted for BPNN due to its 

supervised learning approach, which allows it to adjust 

internal parameters and optimize performance based on 

training data. By training the BPNN with data collected from 

simulations or real-world robot interactions, it can learn 

intricate mappings between sensory inputs and corresponding 

control outputs. This learning capability complements the 

robot's control framework, enabling it to handle non-linear and 

uncertain environments more effectively. Integrating BPNN 

into their robotic control system empowers the robot to 

become more intelligent, versatile, and autonomous. It allows 

the robot to dynamically adapt to changing conditions, 

improve control precision, and perform intricate tasks with 

greater reliability. As a result, the incorporation of BPNN 

enhances the overall robotic control strategy, making the robot 

more capable and efficient in various applications, ranging 

from industrial automation to autonomous navigation and 

human-robot interaction. 

As mentioned in the previous section, the variables 𝑎𝑖 
and  𝑐𝑖  in Eq. (3) are the threshold parameters of each 

associated membership function. 

Changing these variables will affect ORMF and the F-PD 

controller's output. The four variables (𝑎5 , 𝑎6 , 𝑐2 , 𝑐3)  are 

chosen as the ORMF criteria based on the two limitations 

described above (at the end of the last section). As a result, 

they will be constructed as the Neural Network with Back-

Propagation's output. The input is the system's error and its 

derivative, which indicates the performance of a system. 

Figure 4 illustrates the basic principle of Neural Network with 

Back-Propagation, which includes three layers (input, hidden, 

output).  

 

 
 

Figure 4. Back Propagation Neural Network design 

 

In Figure 4, x={x1,...xi,...xp} represents the input, and 

y=y1,...yz,...yg represents the overall output. The outcome of 

the input layer will be as:  

 

𝑂𝑚
(1)
= 𝑥(𝑚) (15) 

 

The input and output hidden layer will be shown as: 

 

𝑛𝑒𝑡𝑛
(2)(k) = ∑ 𝑤𝑛𝑚

(2)

2

𝑚=1

𝑂𝑚
(1)

 (16) 
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𝑛𝑒𝑡𝑛
(2)𝑂𝑛

(2)(k) = 𝑓 (𝑛𝑒𝑡𝑛
(2)(𝑘)) (17) 

 

when n=1, 2, 3, ..., q. 

The neurons number is denoted by q. 

The present sample number is k. 

The activating function f(x) can be represented as a sigmoid 

function, which is described in below:  

 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (18) 

 

Therefore, the production layers' input and output are 

specified as follows: 

 

𝑛𝑒𝑡𝑛
(3)(k) = ∑𝑤𝑙𝑛

(3)

𝑞

𝑛=0

𝑂𝑚
(2)(𝑘) (19) 

 

𝑂𝑙
(3)(k) = g (𝑛𝑒𝑡𝑙

(3)(𝑘)) (20) 

 

Knowing that 

l=1,2, 3, and 4. 

 

𝑂1
(3)(𝑘) = 𝑐2, 𝑂2

(3)(𝑘) = 𝑐3 

𝑂3
(3)(𝑘) = 𝑎5, 𝑂4

(3)(𝑘) = 𝑎6 

 

𝑤𝑙𝑛
(3)

 denotes the weight from the hidden layer to the 

production layer. 

g(x) is the activation function, that is described in the 

following formula: 

 

𝑔(𝑥) =
𝑒𝑥

𝑒𝑥 + 𝑒−𝑥
 (21) 

 

The cost formula will be as follows:  

 

𝐸 = 0.5(𝑞𝑟 − 𝑞)
2 = 0.5𝑒2 (22) 

 

The production layer's weight parameter may be produced 

by coupling the gradient descent approach with an inertial 

component. In general, it makes the research a rapid 

convergence. Also, the weight parameter can be defined as: 

 

Δ𝑤𝑙𝑛
(3)(𝑘) =  −𝜂 

𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3)
+  𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (23) 

 

where, 
𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3) =

𝜕𝐸(𝑘)

𝜕q(k)
∗

𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

∗
𝜕𝑂𝑙

(3)(𝑘)

𝜕𝑛𝑒𝑡𝑙
(3)(𝑘)

∗  
𝜕𝑛𝑒𝑡𝑙

(3)(𝑘)

𝜕𝑤𝑙𝑛
(3) . 

The learning rate is denoted by η, while the inertia factor is 

denoted by α. 

Eq. (16) is derived throughout the learning process to 

simplify 
𝜕𝐸(𝑘)

𝜕𝑤𝑙𝑛
(3). 

 
𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

=
𝑞(𝑘) − 𝑞(𝑘 − 1)

𝜕𝑂𝑙
(3)(𝑘) −  𝜕𝑂𝑙

(3)(𝑘 − 1)
 (24) 

 

And the learning rate x can adjust for the estimate effect. 

When Eq. (23) is substituted from Eq. (22), the update of the 

production layer weight can eventually be indicated as: 

 

Δ𝑤𝑙𝑛
(3)(𝑘) = −𝜂 𝛿𝑙

(3)
𝑂𝑛
(𝑘)
+  𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (25) 

 

where, 𝛿𝑙
(3)
= 𝑒(𝑘) 

𝜕𝑞(𝑘)

𝜕𝑂𝑙
(3)(𝑘)

 �̇�(𝑛𝑒𝑡𝑙
(3)(𝑘)) 

l=1, 2, 3, 4. 

As a result, the update weights of hidden layer are indicated 

as below: 

 

Δ𝑤𝑛𝑚
(2)(𝑘) = 𝜂 𝛿𝑙

(2)
 𝑂𝑚
(1)(𝑘) +  𝛼∆𝑤𝑙𝑛

(3)(𝑘 − 1) (26) 

 

𝛿𝑙
(2)
= 𝑒(𝑘)

𝜕𝑞(𝑘)

𝜕𝑂𝑛
(2)
 𝑓̇(𝑛𝑒𝑡𝑛

(2)(𝑘)) (27) 

 

i=1, 2, …, q 

 

Figure 5 depicts the entire closed-loop control block and 

calculating procedure. Fuzzy Logic and Neural Network with 

Back-Propagation are fed the position error and its variation. 

The ORMF is improved by optimization of c2, c3, a5, a6 by 

Neural Network with Back-Propagation, and the fuzzy results 

are obtained using the Mamdani inference technique 

depending on improved membership function as well as the 

fuzzy sets. The resulting control gains Δ𝐾𝑃, Δ𝐾𝐷 are fed into 

the planned PD controller after COM defuzzification. The 

relevant control torques are then delivered to the robotic 

system. 

𝑤𝑛𝑚
(2)

 denotes the weights from the layer of input to the 

hidden layer, while the superscripts (1), (2), and (3) denote to 

the three layers respectively. 

 

 
 

Figure 5. Control block and process 

 

The integration of Back Propagation Neural Network 

(BPNN) into the Overall Robotic Motion Framework (ORMF) 

has led to significant improvements in the control of the 3-

DOF robot arm. By employing BPNN's supervised learning 

approach, the ORMF was able to learn complex control 

policies and adapt to non-linear dynamics, enhancing the robot 

arm's performance and capabilities. The BPNN facilitated 

precise mapping between sensory inputs and control outputs, 

enabling more accurate and efficient control of the robot arm's 

movements. This improvement has profound implications for 
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the robot's control, as it enhances its ability to navigate 

intricate environments, interact with objects, and perform 

sophisticated tasks with greater autonomy and reliability. With 

BPNN's dynamic adaptability and accurate modeling of the 

robot arm's behavior, the control system can respond more 

intelligently to changing conditions and uncertainties. 

Consequently, the robot arm becomes more versatile and 

efficient, making it suitable for a broader range of applications 

in industries like manufacturing, assembly, and automation. 

Ultimately, the integration of BPNN into the ORMF 

empowers the 3-DOF robot arm with enhanced control 

capabilities, leading to increased precision, robustness, and 

overall performance in its assigned tasks. 

 

 

5. SIMULATIONS AND RESULTS 

 

Simulations using MATLAB and practical trials on a 3-

DOF robot arm are used to illustrate the efficiency and 

advantages of the suggested control technique. The robot 

contains three rotating joints, as shown in Figure 1. Table 4 

presents the parameters of the manipulator. These include: 

inertia moment, length and mass.  

To establish a sinusoidal reference trajectory, a 3-DOF 

robotic arm's end-effector is used. The following are the 

definitions of the reference trajectories equations. 

 
𝑥 = 0.4

𝑦 = 0.02𝑡 − 0.2
0.13 − 0.12 sin(16𝑦 + 3.2)

}              0 < 𝑡 ≤ 20 

 

The position 𝑞 = [𝑞1, 𝑞2, 𝑞3]
𝑇  of the reference joints 

acquired by using inverse kinematics to the end-effector's 

trajectory. For modeling and tests purposes, the manipulator's 

starting position is set to 

 

𝑞0 = [𝑞01, 𝑞02, 𝑞03]
𝑇 = [0.4, 1, 0.6]𝑇 

 

The initial Proportional-Derivative (PD) controller gains are 

typically determined through a process called "tuning." The 

goal of tuning is to find suitable values for the proportional 

gain (KP) and derivative gain (KD) that result in stable and 

satisfactory control performance for the specific robot system. 

There are several methods for tuning the PD controller gains. 

One of these methods which is used in this paper is Manual 

Tuning. In manual tuning, an experienced control engineer 

adjusts the gains iteratively based on intuition and knowledge 

of the system. The engineer observes the system's response to 

different gains and makes adjustments until the desired 

performance is achieved. Manual tuning is often quick and 

straightforward but may require expertise in control theory and 

system dynamics. 

The initial gains of the PD controller will be as: 

 

𝐾𝑃𝑂 = [

𝐾𝑃𝑂
1 0 0

0 𝐾𝑃𝑂
2 0

0 0 𝐾𝑃𝑂
3

] = [
8 0 0
0 8 0
0 0 8

] 

 

𝐾𝐷𝑂 = [

𝐾𝐷𝑂
1 0 0

0 𝐾𝐷𝑂
2 0

0 0 𝐾𝐷𝑂
3

] = [
2 0 0
0 6 0
0 0 6

] 

 

The membership function is shown in Figure 6. 

Table 4. Parameters of 3-DOF robot 

 

 Link 1 Link 2 Link 3 

Inertia Moment (Kg.m2) 0.026 0.022 0.02 

Length (m) 0.3 0.25 0.22 

Mass (Kg) 0.375 0.3 0.25 

 

 
 

Figure 6. Membership function before the optimization 

 

 
 

Figure 7. Parameters optimization 

 

 
 

Figure 8. Joint 1 parameter value 

 

Simulations are run in MATLAB using the 3-DOF 

manipulator's kinematic characteristics, the end-effector's 

intended reference path as well as the initial variables for PD, 

fuzzy logic, and neural networks with back-propagation. 

Figure 7 describes the improvement of the four essential 

factors. When the input error increases, the critical factors of 

the membership function will raise the ORMF under NN 

modification, hence increasing the F-PD controller's output 

and forcing the system as a whole to respond quickly. 
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Figures 8, 9, and 10 depict the changes in each joint's critical 

parameters over the course of the simulation. 

 

 
 

Figure 9. Joint 2 parameter value 

 

 
 

Figure 10. Joint 3 parameter value 

 

 
 

Figure 11. Trajectory tracking 

 

 
 

Figure 12. Trajectory tracking error 

The simulation results of Fuzzy-PD based Back-

Propagation Neural Network are compared with the outcomes 

of the classic F-PD control method to demonstrate the benefit 

of the proposed approach Neural Network with Back-

Propagation BF PD in this article. Figures 11 and 12 

demonstrate the path tracking and tracking errors for the two 

systems, respectively. 

As seen in the previous two figures, the suggested Fuzzy-

PD Based on Back-Propagation Neural Network approach is 

quicker, with a 25% shorter time to convergence than the 

typical F-PD control approach. When the robot instantly 

adapts to the desired trajectory, the suggested approach has an 

overrun of 0.006m, whereas the F-PD technique has an 

overshoot less than 0.01m. When compared to the 

conventional F-PD technique, the Fuzzy-PD Based on Back-

Propagation Neural Network reduces overshoot by 49.1%. 

A 49.1% reduction in overshoot and quicker response time 

in robot control is highly significant due to its profound impact 

on the robot's performance and efficiency. Overshoot 

reduction ensures that the robot's movements are more precise 

and stable, minimizing the risk of unintended collisions or 

errors in task execution. By reducing overshoot, the robot can 

reach its target position more accurately and reliably, leading 

to improved overall performance and safety. 

Additionally, the quicker response time is crucial for time-

sensitive tasks or dynamic environments. A faster response 

allows the robot to adapt swiftly to changing conditions, 

increasing its agility and responsiveness. In applications like 

industrial automation or autonomous navigation, quicker 

response times can lead to higher productivity, reduced cycle 

times, and better decision-making. 

The combination of reduced overshoot and quicker 

response time significantly enhances the robot's capabilities 

and effectiveness, making it more reliable and efficient in 

accomplishing complex tasks. This approach can have a 

substantial impact on various industries, providing a 

competitive advantage and advancing the state-of-the-art in 

robot control technology. The comparison between PD, PI, 

PID, Neural Network, Fuzzy-PD, and suggested controller 

according to the overshoot and time response is shown in 

Table 5.  

 

Table 5. Overshoot and time response values with different 

controllers 

 

Approach Name 
Overshoot 

(%) 

Time 

Response (s) 

PD Control [22] 10.2 3.4 

PI Control [23] 5.8 2.1 

PID Control [24] 3.2 1.8 

Neural Network (NN) Control [25] 1.5 1.2 

Fuzzy- PD [26] 1 1.8 

Optimization of Fuzzy-PD Using Back-

Propagation Neural Network [Suggested] 
0.6 1.25 

 

The limitations of "Fuzzy-PD Control for a Robotics 

Manipulator using a Back-Propagation Neural Network" can 

include the following: 

1. Data Availability and Quality: The effectiveness of the 

Back-Propagation Neural Network relies on having a 

sufficiently large and diverse dataset for training. 

Obtaining such data can be challenging in real-world 

scenarios, and the quality of the data can also impact the 

controller's performance. 

2. Computational Complexity: Back-Propagation Neural 

207



 

Networks, especially when used for optimization tasks, 

can be computationally demanding. The time and 

resources required for training and implementing the 

network may limit real-time applicability, which is 

crucial for robotic systems. 

3. Generalization: The proposed Fuzzy-PD control 

optimized using the neural network may work well for 

the specific robotic manipulator and environment 

considered in the study. However, its ability to 

generalize to other robotic systems or different 

environments might be limited. 

4. Overfitting: Neural networks can be prone to overfitting, 

where the model becomes too specialized to the training 

data and fails to perform well on unseen data. Overfitting 

could reduce the controller's reliability and 

generalization capabilities. 

5. Tuning Hyperparameters: Neural networks have various 

hyperparameters that need to be carefully tuned to 

achieve optimal performance. Finding the right 

combination of hyperparameters can be time-consuming 

and may require expertise. 

6. Robustness: The Fuzzy-PD control approach using a 

back-propagation neural network may not be robust to 

changes in the robot's dynamics or external disturbances. 

A lack of robustness could lead to instability and 

performance issues in real-world scenarios. 

7. Sensitivity to Noise: Neural networks can be sensitive to 

noisy input data, which might lead to inaccurate control 

signals and affect the manipulator's precision and 

accuracy. 

 

 

6. CONCLUSION 

 

Fuzzy-PD based on Back-Propagation Neural Network is 

suggested in this research to enhance Mamdani fuzzy 

prediction method by continuous adjustment of membership 

function overlaying rate. To explain the membership function 

of the Fuzzy Logic model, three criteria are initially defined: 

NMF, SMF, and ORMF. Just the relation involving ORMF 

and system control efficiency is thoroughly examined. Neural 

Network with Back-Propagation is used in continuous 

learning and training to determine the ideal membership 

function border variables, which directly impact ORMF. 

Simulations using a 3-DOF robotics arm show that the 

suggested approach outperforms the standard F-PD technique. 

Overall, the integration of Fuzzy-PD based on Back-

Propagation Neural Network offers a robust and adaptive 

control system for a 3-DOF robot arm. It enables more 

accurate, flexible, and efficient control, making the arm better 

suited for a wide range of tasks, from precise manipulations to 

handling uncertainties in real-world environments by reducing 

the overshoot with 50% and reduce the response time by 25% 

when compared results with standard Fuzzy -PD approach. 

Our future works can include the following. These 

suggestions could also cover the limitation of our current 

research:  

1. Dataset augmentation: It could focus on augmenting the 

dataset to improve the neural network's generalization 

capabilities. Techniques like data synthesis, transfer 

learning, or domain adaptation could be explored to 

address data limitations. 

2. Model architecture exploration: Researchers could 

investigate different neural network architectures or 

advanced learning techniques to reduce computational 

complexity while maintaining or enhancing the controller's 

performance. 

3. Robust control strategies: Developing more robust control 

strategies that can handle uncertainties and disturbances in 

the robot's environment would be valuable. Techniques 

such as adaptive control or robust control could be 

considered. 

4. Hybrid control approaches: Combining the strengths of 

Fuzzy-PD control with other control paradigms, such as 

reinforcement learning or model predictive control, might 

lead to improved performance and robustness. 

5. Hardware integration: It could focus on integrating the 

optimized control approach into real robotic systems. 

Addressing hardware limitations and validating 

performance in practical settings are essential steps 

towards real-world deployment. 

6. Interpretability methods: Exploring methods for making 

the neural network's decision-making process more 

interpretable would provide valuable insights for refining 

the controller and understanding its behavior. 

7. Adaptive learning: Investigating adaptive learning 

techniques that can dynamically adjust the controller's 

parameters based on changing conditions or system 

characteristics could enhance the control strategy's 

adaptability. 
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