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The identification of individuals through finger vein patterns has become a prominent 

biometric technique due to its non-invasiveness and uniqueness. Convolutional neural 

networks (CNNs) have been at the forefront of this technology, offering impressive 

recognition rates within large, labeled datasets. Despite their successes, the application of 

CNNs to finger vein recognition remains a challenging task, largely due to the high 

dimensionality of input data and the multitude of classification outputs required. This paper 

presents an optimized CNN model designed to address the intricacies of finger vein image 

classification. It is posited that increasing the number of feature extraction layers, coupled 

with a strategic selection of kernel sizes for each layer, significantly enhances model 

accuracy. Through a series of systematic experiments, the optimal layer configurations 

were identified, resulting in an architecture that surpasses previous models in classification 

precision. The proposed CNN architecture demonstrates a classification accuracy 

exceeding 99%, an improvement over existing method. It is noteworthy that the 

development of this model has been constrained by the limited scale of current finger vein 

databases, which poses risks of overfitting. Hence, the expansion of these databases is 

suggested as a future avenue to reinforce the robustness of the training process. The results 

depicted in this study underscore the potential of deep learning techniques in biometric 

security, with the advanced CNN model setting a new benchmark in finger vein recognition. 
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1. INTRODUCTION

In today's world, the act of accessing private or confidential 

information has become an integral part of our daily lives. This 

rapidly growing trend, which encompasses a larger portion of 

the population with each passing day, presents significant 

security risks. One widely embraced solution to this issue is 

authentication, where an individual is expected to provide 

certain credentials, such as an ID and password pair or answers 

to secret questions. These passwords need to strike a balance 

between being easy to remember and sufficiently strong to 

prevent unauthorized access [1-3]. However, complex 

passwords or cryptographic keys are often too difficult to 

commit to memory. 

On the contrary, the utilization of biometric data, which 

involves behavioral or biological traits, holds the potential to 

replace password-based authentication. Biometric-based 

authentication requires the physical presence of the individual, 

making it a challenging task to circumvent. Moreover, 

compared to conventional password-based systems, 

biometrics are notably harder to steal, duplicate, or share [4, 

5]. 

Information security is becoming more and more important 

as a result of advances in science and technology and ongoing 

improvements to safety standards. The security of people's 

information can be ensured through biometric identification 

technology, which will eventually supplant traditional identity 

verification methods in daily life [1]. The location of finger 

veins beneath the skin's surface offers several advantages, 

including enhanced security, privacy, contactless 

identification, and cost-effectiveness, in comparison to other 

biometric identification methods. Consequently, finger vein 

recognition technology holds significant potential for various 

applications and has gained prominence as a focal point of 

research in biometric recognition [2]. 

Conventional biometric approaches, such as iris 

recognition, do not inherently guarantee confidentiality, as the 

features they rely on are visible externally on the human body, 

rendering them susceptible to potential forgery. To address 

this issue, researchers proposed a biometric system based on 

the patterns of veins inside the finger, thus utilizing features 

located internally within the human body. Figure 1 compares 

finger vein and traditional biological identifications. In 

comparison to traditional biological identification 

technologies, this new method excels in accuracy and is highly 

reliable in preventing counterfeiting, all while being less 

restrictive. Firstly, it relies on the uniqueness of individual 

finger vein patterns, resulting in false alarms of less than 
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0.01% and false identifications of less than 0.0001%. 

Secondly, the finger vein patterns are located inside the human 

body, rendering them immune to theft or replication. Thirdly, 

the non-contact, short-distance infrared ray imaging is 

impervious to external factors like dirt, moisture, or damage to 

the finger's skin. 

 

 
 

Figure 1. Comparison between finger vein and traditional 

biological identifications 

 

These advantages make this technology highly suitable for 

deployment in commercial establishments, residences, and 

other private settings, showcasing its substantial potential for 

practical applications [1, 6, 7].  

 

 
 

Figure 2. Two ways of finger vein acquisition: (a) Light 

reflection; and (b) Light transmission 

 

The extraction of vein patterns is dependent on the presence 

of blood, because hemoglobin in the blood absorbs infrared 

light, showing vein patterns as distinct dark outlines. A 

specialized camera captures this interaction of infrared light, 

creating an image of the finger vein pattern. This image is then 

translated into pattern data, which is saved as a template for 

biometric authentication data for an individual. During the 

authentication procedure, a specific finger vein image is taken 

and compared to the person's previously stored template [3]. 

Figure 2 depicts two approaches for collecting finger vein 

images: the light reflection method and the light transmission 

method. The positioning of near-infrared light is the major 

difference between both approaches. The light reflection 

approach involves placing near-infrared light on the palm side 

of the finger and capturing the finger vein pattern through light 

reflection from the palm's surface. In contrast, near-infrared 

light is placed on the dorsal side of the finger in the light 

transmission method, allowing the light to penetrate the finger. 

The light transmission method, as opposed to the light 

reflection approach, can capture high-contrast images, which 

is why most image acquisition systems choose to employ it [4]. 

When the separation between venous and non-venous 

regions is insufficient, the main issue in finger vein detection 

is the deterioration of finger-vein pictures, which prevents the 

accurate use of finger-vein network properties. In practice, 

finger-vein segmentation results are often inadequate, and they 

are very vulnerable to distortions due to the low contrast 

character of finger-vein images. Consequently, the reliable 

segmentation of the finger-vein network is a critical 

requirement for successful finger-vein recognition [5]. In 

general, there are two main challenges for finger vein 

recognition: 

1) The quality of infrared finger vein images significantly 

impacts recognition performance. 

2) Limited texture information in finger vein patterns and 

the potential for variations in the finger's pose can introduce 

challenges for finger-vein recognition, especially when feature 

extraction methods lack robust generalization [2]. 

Another critical challenge is designing a robust classifier 

that achieves high recognition rates and fast recognition 

speeds to make the system practical for real-world applications. 

Even though images are obtained from the same individual's 

finger, variations like transitions, scaling, or rotations due to 

factors such as user actions or acquisition conditions can result 

in non-identical images. These variations increase the distance 

between images of the same person, reducing matching 

performance, even when using accurately segmented images 

[1].  

In recent years, a wide range of feature extraction and 

classification applications have increasingly utilized 

convolutional neural networks (CNN). CNN can identify 

finger veins by using convolution kernels of varying sizes to 

extract fine information from photos. For vein recognition, 

conventional CNNs were known to have complicated 

topologies [3-5], which require a lot of data and computing 

power for inference and training. Because of this, more 

effective lightweight CNNs that use less memory and 

computing power were created. Lightweight CNN 

architectures have been presented in several recent 

publications to enhance recognition task performance while 

decreasing computing costs. One of these systems employed a 

compact CNN alongside a triplet loss function, which was 

structured with stage blocks to capture intricate features and 

stem blocks to capture broader features from the images [6]. 

Recently, several studies have used CNN technologies and 

carried out to distinguish the finger vein based on its biometric 

images [7-9]. A different system developed a single CNN that 

was compatible with neural networks and performed well in 

tests requiring finger recognition and anti-spoofing [10]. 

 

 
 

 

Figure 3. CNN architecture 

 

CNNs, short for convolutional neural networks, represent a 

type of artificial neural network. CNNs have demonstrated 

proficiency in various image-related tasks, including 

classification, detection, and segmentation. They are 

predominantly employed for tasks involving image processing 
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and input from visual data. They are frequently used in a 

variety of computer vision tasks and have attracted interest 

from a variety of industries. A convolution module is a module 

that accepts an input picture and is coupled with an input layer 

[5]. This module is primarily comprised of a number of blocks, 

which are, in turn, comprised of a series of layers, with 

convolutional layers serving as the primary structural elements 

(see Figure 3) [4, 5]. 

This module functions as a feature extractor since it 

transforms a picture into a feature vector [6]. The vector is 

subsequently linked to the classification module's input. It 

comprises interconnected layers. This classification module is 

responsible for combining collected characteristics to 

categorize the input picture. CNN output is provided by the 

final layer of this module (prediction) [6]. Using the softmax 

function, the output values are typically standardized between 

(0,1). Following is a discussion of the fundamental 

components of convolutional neural networks, with a 

particular emphasis on the many layers utilized above the 

convolutional and classification modules. Fully connected 

layers are replaced with convolutional layers for at least one 

network layer. Fold Layers are driven by non-linear activation 

functions, such as ReLU, after which we may add one or two 

fully connected layers to get the final classification network 

output. Each of these layer types will be explained in depth in 

the rest of this section, along with the parameters associated 

with each layer and how to establish them and train the CNN. 

The scope of the research depends on developing a security 

system through the use of artificial intelligence and vein 

fingerprinting, as vein fingerprinting is considered one of the 

methods characterized by high security in identifying people 

as it is a modern biometric method. It was necessary to develop 

an intelligent system to identify people with high accuracy 

through the finger vein. A modern algorithm was developed to 

determine a person’s identity through. 

 

 
(a) Samples of class 1 

 
(b) Samples of class 2 

 

Figure 4. Dataset sample classes  

 

Since there are few publicly available datasets for finger 

vein recognition, the experiments were carried out utilizing the 

well-known Finger Vein USM (FV-USM) Database [11]. This 

database offers information about finger veins and finger 

shape, as well as extracted areas of interest (ROI) for vein 

recognition. It may be employed to validate both unimodal 

(finger vein and finger geometry) and bimodal (finger vein and 

geometry) systems. 

The database contains images acquired from 123 volunteers, 

83 males and 40 females, who were personnel and students at 

the University Sains Malaysia. The ages of the individuals 

ranged from 20 to 52 years. Each subject provided data from 

four fingers: the left index, left middle, right index, and right 

middle, yielding a total of 492 finger classes. 

The captured finger images yielded two crucial features: 

geometry and vein patterns. Every finger was captured six 

times within a single session, and each individual participated 

in two sessions, spaced at least two weeks apart. In the first 

session, a total of 2952 images (123 individuals × 4 fingers × 

6 captures) were obtained. Consequently, across the two 

sessions, a total of 5904 images from 492 finger classes were 

collected. These images possessed spatial and depth 

resolutions of 100×300 and 256 grey levels, respectively. For 

reference, in Figure 4 illustrates a sample of finger vein images 

[11]. 

 

 

2. RELATED WORK 

 

In 2023, A unique strategy was presented that combines a 

lightweight and low-complexity convolutional neural network 

(CNN) with intellectual property (IP) to speed up the inference 

process in finger vein recognition [12]. In client mode, this 

neural network system functions autonomously. It captures the 

user's finger vein image with a near-infrared (NIR) camera 

built into an embedded system, extracts vein features 

efficiently using specialized algorithms, and quickly 

completes user identification. Implementing various 

preprocessing approaches and altering CNN results in 

improved image quality and recognition accuracy. The 

practicality and resilience of this proposed finger vein 

identification system were verified through extensive 

experimental data collected using finger vein image capture 

equipment developed in their laboratory, adhering to 

specifications akin to existing market products. 

In 2023A study presented a novel, cost-effective, end-to-

end contactless system for wrist vein biometric detection 

based on deep learning [13]. They used the FYO wrist vein 

dataset to train a unique U-Net CNN structure, which 

successfully extracted and segmented wrist vein patterns. The 

extracted images exhibited a Dice Coefficient of 0.723. The 

study implemented a CNN and Siamese Neural Network to 

match wrist vein images, achieving the highest F1 score of 

84.7%. Remarkably, the average matching time was under 3 

seconds on a Raspberry Pi. These subsystems were seamlessly 

integrated through a designed graphical user interface (GUI) 

to establish a fully functional, deep learning-based wrist 

biometric recognition system. 

In 2022, a research endeavor [14] proposed a biometric 

technique predicated on the fusion of bimodal features from 

finger vein and face data, employing a convolutional neural 

network (CNN). This fusion operation occurred within the 

feature layer and employed the self-attention mechanism to 

derive weights for both biometrics. The self-attention weight 

feature was combined with the bimodal fusion feature channel 

Concat, in conjunction with the RESNET residual structure. 

To substantiate the efficacy of bimodal feature layer fusion, 

experiments were conducted utilizing AlexNet and VGG-19 
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network models for extracting finger vein and face image 

features as inputs to the feature fusion module. These 

comprehensive experiments exhibited recognition accuracies 

exceeding 98.4%, underscoring the high efficiency of the 

bimodal feature fusion. 

In 2022, a novel finger vein identification network based on 

a CNN with a hybrid pooling mechanism, was introduced. A 

block-wise feature extraction network was used in the scheme 

to extract discrete characteristics from interclass vein picture 

samples, regardless of their visual quality [15]. Images 

entering FVR-Net underwent preprocessing to segment vein 

patterns from the background. The feature extraction network 

comprised blocks consisting of a convolutional layer followed 

by hybrid pooling, with output activation maps concatenated 

before passing features to another block within the network. 

The hybrid pooling layer incorporated both max pooling and 

average pooling in parallel, enabling the activation of discrete 

features while considering the entire input volume for better 

feature localization. After feature extraction, three fully 

connected layers (FCLs) were utilized for classification. The 

model underwent extensive experimentation on publicly 

available finger vein datasets, achieving outstanding 

recognition performance with accuracies reaching up to 

97.84% and 97.22% for good and poor-quality images, 

respectively. Various network hyperparameters were adjusted 

to optimize the model's settings for the best recognition 

accuracy in a finger vein biometric system. 

In 2019, A novel finger vein detection approach based on 

convolutional neural networks has been introduced [16]. 

When working with finger-vein images of various quality, this 

method displayed outstanding stability and precision. It was 

rigorously evaluated using four publicly available databases. 

The major goal of this work was to demonstrate a deep 

learning strategy for finger vein recognition that consistently 

achieved accuracy of more than a 95% correct identification 

rate across all four databases studied. 
 

 

3. DATASET ACQUISITION AND PREPARATION  

 

3.1 Dataset description  

 

In this section, we provide an overview of the datasets 

employed to assess the efficacy of the model we have 

proposed for identification. The dataset is named Vein Finger 

Dataset. This dataset contains 4428 images which are divided 

into 123 classes. Each class has 34 images. Figure 4 illustrates 

samples of classes in the dataset. This dataset was downloaded 

from the Finger Vein USM (FV-USM) Database [16]. This 

dataset was split into two sections, specifically, a training 

segment and a testing segment, as outlined below. 

Training Part: 3100 images from the dataset, or 70% of the 

dataset, were used to train the CNN algorithm. 

Testing Part: 1328 images, or 30% of the dataset, were used 

to train the CNN algorithm in this section. 

 

3.2 Input data preprocessing 

 

In this step, noise is removed from the images using three 

types of filters (Mean, Median, and Gaussian) filters. The goal 

of noise removal is to increase the accuracy of extracting 

features from images and prevent features from being affected 

by noise. Since images vary in a wide range of sizes, all images 

in the dataset will be resized to a specified size (64×64). The 

image values are then normalized by dividing the pixel value 

by 255 to generate pixel values between (0, and 1), which 

increases system speed while decreasing storage value. 

 

 

4. FINGER VEIN IDENTIFICATION BASED ON CNN 

MULTIPLE FUNCTIONAL LAYERS 

 

This paper focused on proposing a new scenario with high 

accuracy for determining the fingerprint of a vein. It was based 

on building a deep model architecture of the CNN algorithm 

through which high prediction accuracy can be reached. 

 

4.1 Proposed identification architecture 

 

To enhance the performance of finger vein identification 

and effectively extract essential features from an individual's 

input dataset, an advanced deep network with ten key layers 

has been designed. This CNN model consists of various 

components, including an input layer, three convolution layers, 

three pooling layers, two fully connected layers, and an output 

layer. The architecture of the proposed CNN model is depicted 

in Figure 5. 

 

 
 

Figure 5. The proposed CNN models 

 

Three convolution layers were utilized in the suggested 

system to increase the number of features recovered from the 

test image. To extract a feature map, three layers were created 

using varying kernel sizes. The characteristics of 

convolutional layers are shown in Table 1. 

 

Table 1. Convolution layers characteristics 

 
Layer Function of Activation Kernel Size 

First Convolution Relu 256 

Second Convolution Relu 128 

Third Convolution Relu 64 

 

Only significant and powerful features are chosen for the 

pooling layer, and three levels of pooling have been employed 

to choose the features that have the most influence on the 

determination of vein class. The characteristics of the pooling 

layer are shown in Table 2. 

 

Table 2. Pooling layers characteristics 

 
Layer Kernel Size 

First Pool 5 

Second Pool 2 

Third Pool 2 

 

Utilize dropouts after pooling layers. The dropout layer 

serves as an auxiliary layer by removing features that have 

little bearing on classification accuracy and vein class 

prediction. In the proposed model, three additional dropout 

layers have been included, as shown in Table 3. 
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Table 3. Characteristics of dropout layers 

 
Lyare Kernel Size 

First Dropout 0.025 

Second Dropout 0.4 

Third Dropout 0.5 

 

Table 4. Fully connection layer characteristics 

 
Layer Activation Function 

First Fully Connection Relu 

Second Fully Connection SoftMax 

 

The system flattens features after the dropout layer chooses 

the best ones, converting them from a 2D array to a 1D array. 

Two completely connected layers make up the suggested 

system. The activation functions in the first and second layers 

are Relu and softmax, respectively. Table 4 displays the 

characteristics of the fully connected layer. 

This layer trains the dataset and assigns a weight to each 

vein finger category based on the attributes extracted from the 

images in that category. 

 

 

5. EXPERIMENTS AND RESULTS  

 

The deep learning CNN algorithm's practical training 

experiments will be discussed in this section, where the 

algorithm was tested by varying the number of training 

iterations as follows: 

Case 1: Divide the increasing dataset into 90% for training 

and 10% for testing. The outcomes of training and testing at 

various epochs are shown in Table 5. 

Case 2: Divide the dataset so that 80% was used for training 

and 20% was used for testing. Table 6 shows the results of 

testing and training using various epochs. 

Case 3: Dividing the dataset into 30% for testing and 70% 

for training, Table 7 displays the outcomes of training and 

testing using various epochs. 

Several experiments were conducted consisting of five 

stages in each stage to obtain high accuracy with the least 

possible error. The first value is an era of 10, the second value 

is an era of 50, the third value is an era of 100, the fourth value 

is an era of 150, and the fifth value is an era of 200). In 

particular, case 3 at epoch 100 had a 99.69% accuracy of 

testing, which is the maximum accuracy of testing achieved by 

the suggested system. Table 8 illustrates a summary of these 

results. 

We trained this group of finger veins in the first stage with 

a value of (Epoch 10) and obtained a training accuracy (Train 

ACC) of 0.4914, where he found a loss during training with a 

value of 0.3074. Then we ran an accuracy test, and the results 

showed that (Test ACC) has a value of 0.4444, we examined 

the percentage of loss, and the results showed that the test loss 

had a value of 0.2876. We trained this group of finger veins in 

the second stage with a value of (Epoch 50) and obtained a 

training accuracy (Train ACC) of 0.9118, where he found a 

loss during training with a value of 0.0745. Then we ran an 

accuracy test, and the results showed that (Test ACC) has a 

value of 0.8333, we examined the percentage of loss, and the 

results showed that the test loss had a value of 0.1244. We 

trained this group of finger veins in the second stage with a 

value of (Epoch 100) and obtained a training accuracy (Train 

ACC) of 0.9731, where he found a loss during training with a 

value of 0.0244. Then we ran an accuracy test, and the results 

showed that (Test ACC) has a value of 0.8333, we examined 

the percentage of loss, and the results showed that the test loss 

had a value of 0.1900, which is clarified in Figure 6. 

We trained this group of finger veins in the second stage 

with a value of (Epoch 150) and obtained a training accuracy 

(Train ACC) of 0.9844, where he found a loss during training 

with a value of 0.0198. Then we ran an accuracy test, and the 

results showed that (Test ACC) has a value of 0.83, we 

examined the percentage of loss, and the results showed that 

the test loss had a value of 0.2737. We trained this group of 

finger veins in the second stage with a value of (Epoch200) 

and obtained a training accuracy (Train ACC) of 0.9908, 

where he found a loss during training with a value of 0.0125. 

Then we ran an accuracy test, and the results showed that (Test 

ACC) has a value of 0.8754, we examined the percentage of 

loss, and the results showed that the test loss had a value of 

0.2389. 

We trained this group of finger veins in the first stage with 

a value of (Epoch 10) and obtained a training accuracy (Train 

ACC) of 0.4197, where he found a loss during training with a 

value of 0.3442. Then we ran an accuracy test, and the results 

showed that (Test ACC) had a value of 0.5819, we examined 

the percentage of loss, and the results showed that the test loss 

had a value of 0.2848. We trained this group of finger veins in 

the second stage with a value of (Epoch 50) and obtained a 

training accuracy (Train ACC) of 0.9168, where he found a 

loss during training with a value of 0.0695. Then we ran an 

accuracy test, and the results showed that (Test ACC) has a 

value of 0.8757, we examined the percentage of loss, and the 

results showed that the test loss had a value of 0. 1182, which 

is clarified in Figure 7.  
 

Table 5. Train-test of first case results at various epoch numbers 
 

Epoch Accuracy Loss 

(a) 10 epochs 
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(b) 50 epochs 

  
   

(c) 100 epochs 

  
   

(d) 150 epochs 

  
   

(e) 200 epochs 
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Table 6. Train-test of second case results at various epoch numbers  

 

Epoch Accuracy Loss 

(a) 10 epochs 

  
   

(b) 50 epochs 

  
   

(c) 100 epochs 

  
   

(d) 150 epochs 
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(e) 200 epochs 

  
 

Table 7. Train-test of third case results at various epoch numbers 

 

Epoch Accuracy Loss 

(a) 10 epochs 

  
   

(b) 50 epochs 

  
   

(c) 100 epochs 
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(d) 150 epochs 

  
   

(e) 200 epochs 

  
 

Table 8. Summary of train-test results 

 

Case Epoch 
Train 

ACC 

Train 

Loss 

Test 

ACC 

Test 

Loss 

Case 

1 

10 0.4914 0.3074 0.4444 0.2876 

50 0.9118 0.0745 0.8333 0.1244 

100 0.9731 0.0244 0.8333 0.1900 

150 0.9844 0.0198 0.8300 0.2737 

200 0.9908 0.0125 0.8754 0.2389 

Case 

2 

10 0.4197 0.3442 0.5819 0.2848 

50 0.9168 0.0695 0.8757 0.1182 

100 0.9698 0.0305 0.9096 0.1378 

150 0.9748 0.0270 0.9266 0.0712 

200 0.9899 0.0121 0.8870 0.1726 

Case 

3 

10 0.3241 0.3787 0.3717 0.3500 

50 0.8647 0.1447 0.8158 0.1874 

100 0..9951 0.0311 0.9969 0.290 

150 0.9749 0.0262 0.8585 0.1664 

200 0.9724 0.0238 0.8283 0.2280 

 

We trained this group of finger veins in the second stage 

with a value of (Epoch 100) and obtained a training accuracy 

(Train ACC) of 0.9698, where he found a loss during training 

with a value of 0.0305. Then we ran an accuracy test, and the 

results showed that (Test ACC) has a value of 0.9096, we 

examined the percentage of loss, and the results showed that 

the test loss had a value of 0.1378. We trained this group of 

finger veins in the second stage with a value of (Epoch 150) 

and obtained a training accuracy (Train ACC) of 0.9748, 

where he found a loss during training with a value of 0.027. 

Then we ran an accuracy test, and the results showed that (Test 

ACC) has a value of 0.9266, we examined the percentage of 

loss, and the results showed that the test loss had a value of 

0.0712.  

We trained this group of finger veins in the second stage 

with a value of (Epoch 200) and obtained a training accuracy 

(Train ACC) of 0.9899, where he found a loss during training 

with a value of 0.0121. Then we ran an accuracy test, and the 

results showed that (Test ACC) has a value of 0.887, we 

examined the percentage of loss, and the results showed that 

the test loss had a value of 0.1726, which is clarified in Figure 

7. 

 

 
 

Figure 6. Identification results corresponding to each epoch 

value for case 1 

 

We trained this group of finger veins in the first stage with 

a value of (Epoch 10) and obtained a training accuracy (Train 

ACC) of 0.3241, where he found a loss during training with a 
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value of 0.3787. Then we ran an accuracy test, and the results 

showed that (Test ACC) has a value of 0.3717, we examined 

the percentage of loss, and the results showed that the test loss 

had a value of 0.35. We trained this group of finger veins in 

the second stage with a value of (Epoch 50) and obtained a 

training accuracy (Train ACC) of 0.8647, where he found a 

loss during training with a value of 0.1447. Then we ran an 

accuracy test, and the results showed that (Test ACC) has a 

value of 0.8158, we examined the percentage of loss, and the 

results showed that the test loss had a value of 0.1874. We 

trained this group of finger veins in the second stage with a 

value of (Epoch100) and obtained a training accuracy (Train 

ACC) of 0.9951, where he found a loss during training with a 

value of 0.0311, which is clarified in Figure 8. 

 

 
 

Figure 7. Identification results corresponding to each epoch 

value for case 2 

 

 
 

Figure 8. Identification results corresponding to each epoch 

value for case 3 

 

Then we ran an accuracy test, and the results showed that 

(Test ACC) has a value of 0.9969, we examined the percentage 

of loss, and the results showed that the test loss had a value of 

0.029. Table 9 presents the filters usage. 

We trained this group of finger veins in the second stage 

with a value of (Epoch1 50) and obtained a training accuracy 

(Train ACC) of 0.9749, where he found a loss during training 

with a value of 0.0262. Then we ran an accuracy test, and the 

results showed that (Test ACC) has a value of 0.8585, we 

examined the percentage of loss, and the results showed that 

the test loss had a value of 0.1664.  

We trained this group of finger veins in the second stage 

with a value of (Epoch 200) and obtained a training accuracy 

(Train ACC) of 0.9724, where he found a loss during training 

with a value of 0.0238. Then we ran an accuracy test, and the 

results showed that (Test ACC) has a value of 0.8283, we 

examined the percentage of loss, and the results showed that 

the test loss had a value of 0.228. 

The following scales (Precision, Recall, and F1-Score) will 

be used to represent the system evaluation findings. The 

system evaluation findings are shown in Table 10.  

 

Table 9. Use of filters 

 

Filter Used 
Train 

ACC 

Train 

Loss 

Test 

ACC 

Test 

Loss 

Mean 0.9587 0.4897 0.9595 0.4789 

Median 0.9641 0.3657 0.9588 0.4179 

Gaussian 0.9698 0.3361 0.9642 0.3214 

Mean, Median 

and Gaussian 
0..9951 0.0311 0.9969 0.290 

 

Table 10. Results of system evaluation 

 
Class Precision Recall F1-Score 

Class 1 1.00 1.00 1.00 

Class 2 1.00 1.00 1.00 

Class 3 1.00 0.97 0.98 

Class 4 1.00 1.00 1.00 

Class 5 1.00 1.00 1.00 

Class 6 0.96 1.00 0.98 

Class 7 1.00 1.00 1.00 

Class 8 1.00 1.00 1.00 

Class 9 1.00 0.94 0.97 

… … … … 

Class 123 1.00 1.00 1.00 

Average 0.9968 0.9961 0.9973 

 

 

6. PROPOSED SYSTEM COMPARISON 

 

In this section, the performance evaluation of the proposed 

vein fingerprint recognition system by contrasting it with prior 

studies is presented. To facilitate this comparison, we have 

chosen specific research papers for reference, as listed in 

literature [6-10]. For literature [6], this research used several 

preprocessing techniques for image enhancement and 

modified CNN for vein fingerprint classification, while the 

research [7] used the novel U-Net CNN algorithm to classify 

vein fingerprints. The research [8] used two CNN models for 

classification which are the AlexNet model, and the VGG 

model. While research [9] used CNN with a hybrid pooling 

mechanism. The last research [10] used CNN for classification. 

Table 11 illustrates a comparison between the results of the 

proposed work with previous works.
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Table 11. Comparison with previous works 

 
Research Algorithms Accuracy 

[6] 

Several preprocessing 

techniques and the modified 

CNN 

95.82% 

[7] Novel U-Net CNN 84.70% 

[8] AlexNet and VGG-19 98.40% 

[9] 
CNN with a hybrid pooling 

mechanism 
97.84% 

[10] CNN 95.00% 

Proposed 

Classification 

System 

Proposed CNN model 99.69 

 

 

7. CONCLUSIONS  

 

The process of distinguishing between vein fingerprints 

from one person to another is considered a challenge, due to 

the great similarity between one fingerprint and another. This 

is because the vein capillaries are very similar from one person 

to another. For these reasons, it was necessary to design an 

effective model for extracting the different features in vein 

fingerprints. Through the previous tables, note the 

convergence in the accuracy of the results, which makes the 

proposed system able to recognize between vein fingerprints 

excellently, as the accuracy rate of the proposed system in 

discrimination reached more than 99 percent. This accuracy is 

considered excellent and the proposed system using deep 

learning was a successful choice in the classification of the 

vein fingerprint. Through the previous comparison, notice that 

the proposed system using the CNN deep learning algorithm 

reached a higher accuracy than the previous algorithms, The 

CNN deep learning method includes a number of layers that 

allow the system to extract features from vein fingerprint 

images and choose the best characteristics in addition to 

categorization. 
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