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The present study delves into the utilization of subsumption architecture for the modeling 

of mobile robot behaviors, particularly those that respond adaptively to environmental 

dynamics and inaccuracies in sensor measurements. Central to this investigation is the 

deployment of reactive controller networks, wherein each node—representing a distinct 

state—is governed by sensor-triggered conditions that dictate state transitions. The 

methodology adopted comprises a thorough literature review, encompassing sources from 

IEEE Xplore, ScienceDirect, and the ACM Digital Library, which discuss the integration 

of subsumption architecture in the realm of mobile robot control. Through this review, the 

effectiveness of subsumption architecture in crafting reactive robotic behaviors is 

underscored. It has been established that augmented finite state machines (AFSMs), which 

are integral to the subsumption architecture and possess internal timing mechanisms, are 

pivotal in managing the temporal aspects of state transitions. Additionally, the technique of 

layering—merging multiple simple networks to form intricate behavior patterns—emerges 

as a significant finding, accentuating the architecture's capability to facilitate complex 

behavioral constructs. The prime contribution of this body of work lies in identifying and 

elucidating the strategic role of subsumption architecture in enhancing the adaptability and 

robustness of mobile robots. The insights gleaned from this study not only advance our 

understanding of robotic control systems but also hold implications for the amplification of 

industrial efficiency and effectiveness through the application of sophisticated AI and 

machine learning techniques in mobile robotics. 
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1. INTRODUCTION

Mobile robots have become increasingly prevalent in 

various industries, including manufacturing, healthcare, and 

transportation. The ability of mobile robots to perform 

complex tasks and make autonomous decisions has been made 

possible through advancements in artificial intelligence (AI) 

and machine learning algorithms. One approach to modeling 

robot behaviors that are reactive to environmental changes and 

sensor measurement errors is subsumption architecture. 

Subsumption architecture consists of networks made of 

reactive controllers, where a node or state contains sensor 

conditions that determine whether to stay in or leave that state 

[1]. While the use of sensors such as LIDAR, cameras, infrared 

technology, and ultrasonic systems is mentioned in the 

literature, there is a gap in the existing research regarding how 

each sensor contributes to perception and control operations in 

mobile robots. Therefore, the objective of this study is to 

explore the use of subsumption architecture in mobile robot 

control and to provide a comprehensive understanding of how 

sensors contribute to perception and control operations in 

mobile robots. The study includes a literature review of 

articles from various databases, such as IEEE Xplore, 

ScienceDirect, and ACM Digital Library, that discuss the use 

of subsumption architecture in mobile robot control. The main 

contribution of this research is to provide valuable insights into 

the use of subsumption architecture in mobile robot control, 

which has the potential to improve the efficiency and 
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effectiveness of various industries [2]. 

Among these pivotal components, several key aspects bear 

significance when it comes to controlling mobile robots. First 

and foremost, sensing and perception constitute vital domains. 

Mobile robots depend on an array of sensors such as LIDAR, 

cameras, infrared technology [3, 4], and ultrasonic systems [5] 

to apprehend their surroundings. These sensors furnish the 

robot with essential data, enabling the detection of obstacles 

and object recognition, thus serving as the bedrock for 

perception and control operations [6]. In the realm of 

localization and mapping, mobile robots are tasked with 

estimating their position within a given environment-a process 

aptly termed localization [7, 8]. Simultaneously, mapping 

involves the construction of a model of the robot's 

surroundings, leveraging data harvested from its sensors [9]. 

The ingenious technique of Simultaneous Localization and 

Mapping (SLAM) deftly addresses both these tasks in tandem, 

allowing the robot to dynamically build a map while 

continually ascertaining its real-time position [10-12]. The 

third critical facet is path planning and navigation. Once a 

mobile robot has gleaned information about its surroundings, 

it must chart a course from its current location to a predefined 

destination while adeptly circumventing obstacles [13]. 

Navigation, in this context, encompasses the execution of the 

planned path, which necessitates continuous updates to the 

robot's position and precise trajectory adjustments. This 

section also delves into an exploration of the frameworks 

employed within the mobile robot navigation field [14]. 

Finally, the overarching element of control takes center stage. 

A proficient control system steers the robot along its 

designated path by manipulating its actuators. Various control 

techniques, such as the proportional-integral-derivative (PID) 

controller [15-18], model predictive control (MPC) [19-22], 

and adaptive control, find application in this realm. This 

research inquiry zeroes in on the initial block of localization-a 

pivotal prerequisite for successful navigation in the mobile 

robot domain. In the context of robotics, localization entails 

the identification of objects and entities within the robot's 

environment, including its own spatial positioning [23]. 

Mobile robot localization, sometimes referred to as 

positioning estimation or positioning tracking [24, 25], 

emerges as a focal point in the quest to unleash the full 

potential of these dynamic robotic systems. 

 

 

2. PAGE SETUP SUBSUMPTION ARCHITECTURE 

 

One of the most widely used approaches to mobile robot 

control is subsumption architecture, which is often used in 

conjunction with AI techniques such as machine learning and 

neural networks. Subsumption architecture is a behavior-

based approach that involves the use of reactive controllers 

organized into a hierarchy of layers, where each layer is 

responsible for a specific behavior. The layers are arranged in 

a way that allows higher-level behaviors to subsume lower-

level behaviors, hence the name "subsumption architecture." 

The use of subsumption architecture in mobile robot control 

has several advantages. First, it allows for the creation of 

complex behaviors by combining simple behaviors. Second, it 

enables the robot to react quickly to changes in the 

environment, as the reactive controllers are designed to 

respond to sensor feedback in real-time. Finally, it allows for 

the creation of robust and fault-tolerant systems, as the layers 

can be designed to operate independently of each other. 

The integration of subsumption architecture with AI 

techniques such as machine learning and neural networks has 

led to significant advancements in mobile robot control. For 

example, machine learning algorithms can be used to train the 

higher-level behaviors of a mobile robot, while subsumption 

architecture can be used to implement the low-level behaviors. 

This combination of techniques allows for the creation of 

highly adaptive and intelligent mobile robots that can perform 

complex tasks and make autonomous decisions. In this study, 

we will explore the current landscape of AI applications in the 

control of mobile robots, with a particular emphasis on 

machine learning and neural networks. We will also examine 

the role of subsumption architecture in mobile robot control 

and its integration with AI techniques. By the end of this study, 

you will have a comprehensive understanding of the cutting-

edge applications of AI and machine learning in mobile 

robotics and the role of subsumption architecture in creating 

highly adaptive and intelligent mobile robots. For moving a 

mobile robot to a goal position, it is told to execute a particular 

type of force into the wheels’ motor for a period of time rather 

than going directly to the goal position coordinates. The 

robot’s movement is programmed using a controller, a piece 

of software that tells the robot what to do after sensing the 

environment until a control objective is achieved. Reactive 

controls are oriented to deal with simple reflex agents. Most of 

the actions a robot can execute are separable in subcomponents 

[26]. These subcomponents can be modelled as finite-state 

machines that react to sensor feedback [27]. Subsumption 

architecture emerged in the 1990s due to the need for more 

intelligent robot controllers that model robot behaviours that 

are reactive to environment changes and sensor measurement 

errors. The subsumption architecture was developed in the 

study [28]. The implementation consists of networks made of 

reactive controllers. A node or state often contains sensor 

conditions that determine whether to stay in or leave that state. 

It is possible to go from one state (the transmitter) to another 

(the receiver) through arcs containing messages that are the 

output of the recently left state. Sometimes, these arcs 

represent physical wiring, and the messages are the signals 

sent to the robot’s motor. These augmented finite state 

machines (AFSM) have internal clocks that control the time it 

takes to traverse an arc; the word augmented refers to such 

internal clocks. Figure 1. Below shows a model of a robot that 

uses (AFSM) and explains its working mechanism. Two or 

more simple networks representing simple behaviours can be 

connected one to another to form more complex networks and 

thus represent more complex behaviours, as mentioned in the 

study [29]. This process is called layering. 

 

 
 

Figure 1. A hexapod robot called Genghis (left) was 

created by Brooks [30] using 57 augmented finite states 

machines (AFSM). An AFSM for controlling only one leg 

is illustrated on the right side. The AFSM receives 

feedback from a proximity sensor in order to see if the 

leg is stuck or not and to lift it higher next time 
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3. ARTIFICIAL INTELLIGENCE FOR 

CONTROLLING MOBILE ROBOTS 

 

Artificial intelligence has significantly improved the 

capabilities of mobile robots, enabling them to learn and adapt 

to their environments, perform complex tasks, and make 

decisions autonomously. One of the most prominent AI 

techniques used in mobile robot control is machine learning, 

which involves training a model on a dataset to make 

predictions or decisions. Machine learning has been 

successfully applied in various tasks such as obstacle 

avoidance, navigation, and mapping. Fuzzy logic is another AI 

technique that has been widely used in mobile robot control. 

Fuzzy logic is a form of AI that excels in handling imprecise 

or uncertain data. In mobile robot control, fuzzy logic is often 

used for tasks such as obstacle avoidance, navigation, and 

mapping. For example, fuzzy logic can be used to control the 

speed and direction of a mobile robot based on the distance to 

an obstacle. Genetic algorithms are another AI technique that 

has been used in mobile robot control. Genetic algorithms are 

a type of optimization algorithm that mimics the process of 

natural selection. In mobile robot control, genetic algorithms 

can be used to optimize the parameters of a control system, 

such as the weights of a neural network. AI techniques such as 

machine learning, fuzzy logic, and genetic algorithms have 

been successfully applied in mobile robot control for tasks 

such as obstacle avoidance, navigation, and mapping. These 

techniques have enabled mobile robots to perform complex 

tasks and make autonomous decisions, making them valuable 

assets in various industries. 

Mobile robots have been revolutionized by the 

incorporation of artificial intelligence (AI) techniques with 

other disciplines, such as control and electronics, that co-

create them. Artificial intelligence pertains to the capacity of 

robots or machines controlled by computers to execute tasks 

that closely resemble or mimic human capabilities [31]. 

Artificial intelligence has significantly improved the 

capabilities of mobile robots. Mobile robots are equipped with 

sensors that enable them to perceive their environment, and AI 

algorithms are used to process this sensory data and make 

decisions based on it. AI has allowed mobile robots to learn 

and adapt to their environments, perform complex tasks, and 

make decisions autonomously, such as navigation, object 

detection, and localization. Within the domain of mobile robot 

control, a diverse array of AI techniques are leveraged to 

augment their capabilities. One such technique is Fuzzy Logic, 

a form of artificial intelligence that excels in handling 

imprecise or uncertain data. Its application in mobile robot 

control spans a spectrum of tasks, encompassing obstacle 

avoidance, navigation, and mapping, where its adaptability to 

uncertain environments proves invaluable. Another powerful 

tool in the arsenal of mobile robot control is the Genetic 

Algorithm (GA), an AI approach inspired by the mechanisms 

of natural selection and genetics. By mimicking nature's 

optimization processes, GA plays a pivotal role in refining the 

paths and trajectories of mobile robots. Through its iterative 

and evolutionary approach, GA enables robots to navigate and 

operate in complex and dynamically changing environments 

with enhanced efficiency and precision. 
 

 

4. MACHINE LEARNING IN ROBOTICS 

 

Machine learning is a powerful AI technique that has 

revolutionized the field of mobile robotics. Machine learning 

involves training a model on a dataset to make predictions or 

decisions. In mobile robot control, machine learning has been 

successfully applied in various tasks such as object detection, 

image recognition, path planning, and more. There are two 

main types of machine learning: supervised learning and 

unsupervised learning. Supervised learning involves training a 

model on labeled data, where the input data is paired with the 

correct output. The model learns to predict outputs based on 

input data by identifying patterns within the labeled dataset. 

Supervised learning algorithms find applications in a 

multitude of mobile robot control tasks, spanning from object 

detection and image recognition to path planning. For example, 

a mobile robot can be trained to recognize different objects in 

its environment using supervised learning. On the other hand, 

unsupervised learning involves training a model on unlabeled 

data, where the input data is not paired with any output. The 

model learns to discern patterns and structures within the data 

without any explicit guidance. Unsupervised learning 

algorithms contribute significantly to mobile robot control, 

serving purposes such as clustering, anomaly detection, and 

feature extraction. For example, unsupervised learning can be 

used to identify anomalies in sensor data, which can be 

indicative of a malfunctioning component in the robot. 

machine learning is a powerful AI technique that has been 

successfully applied in various mobile robot control tasks. 

Supervised learning involves training a model on labeled data, 

while unsupervised learning involves training a model on 

unlabeled data. Both approaches have their unique advantages 

and applications in mobile robot control, making them 

valuable tools for creating intelligent and adaptive mobile 

robots. 

Machine learning (ML) is an expanded group of algorithms 

that can utilize datasets to determine patterns, deepen 

understanding and make determinations [32]. It gives the tools 

needed to analyze structured or unstructured data, draw 

conclusions, and make predictions [33]. The goal of machine 

learning is to investigate the concepts, algorithms, and theories 

used in statistics, computer science, and optimization [34]. 

According to the study [35], a robot can be seen as a system 

that interacts with the world and uses learning as a method of 

improving its performance. Machine learning plays a pivotal 

role in shaping the landscape of robotics, but it is not without 

its set of challenges. To fully harness its potential, machine 

learning in robotics must confront several key obstacles: 

Firstly, it must acquire the capability to learn representations 

of the world that align with the specific objectives 

programmed into the robot. These representations serve as the 

foundation for the robot to comprehend and achieve its 

intended purpose. Secondly, machine learning should 

encompass the calibration of sensors and actuators [36-42]. 

This calibration process enhances the precision and accuracy 

of these critical components, enabling the robot to interact 

more effectively with its environment. Lastly, it's crucial for 

machine learning to address the nuances of a robot's behavior 

in relation to its perceived environment and internal state. 

Understanding and managing the intricate interplay between 

these aspects are paramount for effective learning and 

decision-making. Within the realm of mobile robot control, 

several types of machine learning algorithms come into play: 

Supervised Learning stands out as a prominent approach, 

involving the training of machine learning models on labeled 

data. Through this method, models acquire the ability to 

predict outputs based on input data by identifying patterns 

within the labeled dataset. Supervised learning algorithms find 
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applications in a multitude of mobile robot control tasks, 

spanning from object detection and image recognition to path 

planning. On the other hand, Unsupervised Learning takes a 

different route, relying on unlabelled data for training. In this 

paradigm, machine learning models autonomously discern 

patterns and structures within the data without any explicit 

guidance. Unsupervised learning algorithms contribute 

significantly to mobile robot control, serving purposes such as 

clustering, anomaly detection, and feature extraction. These 

techniques further enrich the repertoire of machine learning 

tools at the disposal of robotics researchers and practitioners. 

 

 

5. LITERATURE REVIEW 

 

Machine learning, predictive analytics, or statistical 

learning represents a dynamic and ever-evolving research field 

situated at the fascinating crossroads of statistics, artificial 

intelligence, and computer science [43]. This interdisciplinary 

domain serves as a veritable powerhouse, equipping us with 

the essential tools required to extract knowledge and make 

predictions when faced with a deluge of structured or 

unstructured data [44]. To truly appreciate the profound 

impact of machine learning, it's insightful to take a step back 

to the early days of artificial intelligence. Back then, systems 

were deemed "intelligent" if they operated on meticulously 

hand-crafted if-else statements and rule-based logic [45]. 

However, as the volume and complexity of data continued to 

surge exponentially, the limitations of such rule-based systems 

became glaringly evident. This paradigm shift ushered in the 

era of machine learning, where algorithms and techniques 

have the capacity to autonomously learn from data, adapt, and 

improve their performance over time. In this section, we 

embark on a journey through the vast landscape of machine 

learning, a realm teeming with a rich assortment of algorithms 

and techniques. These tools empower us to traverse the 

intricate terrain of data, extracting meaningful insights, and 

enabling us to predict future trends, outcomes, and patterns. 

Whether it's the formidable power of deep neural networks, 

the interpretability of decision trees, the versatility of support 

vector machines, or the elegance of Bayesian methods, we'll 

delve into the most popular and widely embraced machine 

learning approaches. Each of these techniques serves as a 

potent arrow in the quiver of data scientists and researchers, 

equipping them to tackle diverse challenges and unlock the 

latent potential of data-driven decision-making. 

 

5.1 Artificial neural networks 

 

The concept of Artificial Neural Networks (ANN), also 

called neural networks (NN), is extensively used in controlling 

mobile robots in areas such as object detection, image 

recognition, and navigation. NN is inspired by networks of 

brain cells called neurons, and NN is modelled after the 

structure and function of the human brain [46, 47]. ANN is 

made of many layers; each layer contains a bunch of units that 

are connected with units in other layers by links. A link going 

from unit i to unit j has a numerical value associated with it 

that represents the strength of the link called weight, denoted 

as wij. There are three kinds of layers in the neural network [48] 

as follows: 

• Input layer: It does not have any preceding layer; it 

receives as input direct values. 

• Hidden layer: it is the layer that is between the input 

and output layers. It can connect other hidden layers. 

• Output layer: It provides the output of the neural 

network. 

Convolutional neural networks (CNN) are the most popular 

and frequently used type of neural network that is specifically 

designed for image processing and pattern recognition. CNN's 

primary advantage is that it determines pertinent features 

without human intervention [49]. The CNN improves upon the 

architecture of conventional artificial neural networks. Every 

layer in a CNN considers the optimal parameters necessary to 

provide a meaningful output while also reducing the 

complexity of the model [50]. CNN's structure, similar to a 

traditional neural network, has been inspired by the neurons in 

animal and human brains. In particular, the optic cortex of a 

cat's brain is made up of a complicated pattern of cells, and 

CNN simulates this sequence [51]. CNN has been widely used 

in various applications for mobile robots, particularly in tasks 

related to computer vision [52], such as object recognition, 

segmentation, and scene understanding. CNN (Convolutional 

Neural Networks) applications in mobile robotics encompass 

a wide array of functionalities that enhance the capabilities of 

these robotic systems. One prominent application is object 

recognition and classification, where CNNs excel at 

identifying and categorizing objects within the mobile robot's 

environment [53]. Another crucial role that CNNs play in 

mobile robotics is obstacle detection and avoidance, 

contributing significantly to navigation [54-58]. By leveraging 

CNNs, robots can discern obstacles in their path and make 

informed decisions to navigate around them safely. Semantic 

segmentation is another valuable application of CNNs in 

mobile robotics [59]. This involves the classification of each 

pixel in an image according to the object or category it 

represents. Such segmentation aids mobile robots in 

comprehending their surroundings, thereby facilitating tasks 

like obstacle avoidance and path planning, as mentioned in the 

study [60]. In the domain of visual SLAM (Simultaneous 

Localization and Mapping), CNNs prove instrumental. They 

enhance feature extraction, matching, and loop closure 

detection, as discussed in the study [61, 62], thereby 

contributing to the accuracy and efficiency of SLAM systems 

employed by mobile robots. CNNs also find utility in depth 

estimation for mobile robots [63]. By employing CNNs for 

monocular depth estimation, robots can derive depth 

information from single RGB images. This depth information 

is invaluable for navigation and obstacle avoidance. 

Furthermore, CNNs extend their reach to path planning and 

decision-making tasks for mobile robots [64]. These networks 

assist in learning to navigate in intricate environments and 

predicting the behavior of other agents, allowing robots to 

make informed decisions during their operations. In sum, 

CNNs play a pivotal role in advancing the capabilities of 

mobile robots across a spectrum of applications, 

encompassing object recognition, obstacle detection, semantic 

segmentation, visual SLAM, depth estimation, and decision-

making in complex environments. 

 

5.2 Reinforcement learning 

 

Reinforcement Learning (RL): RL is a machine learning 

technique that enables a robot to learn a control policy through 

trial and error [65]. RL involves training a machine learning 

model to take actions based on rewards or punishments. 

Through the utilization of information collected through the 

examination of the surrounding environment [66], the model 
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learns to optimize its actions to maximize rewards and 

minimize punishments [67]. RL is a highly effective technique 

for training machine learning models, which in turn can 

contribute to the advancement of automation and the 

optimization of operational efficiency within the field of 

robotics [68]. Reinforcement learning algorithms have been 

used for various tasks in mobile robot control, such as obstacle 

avoidance [69], navigation [70, 71], path planning, and objects 

manipulation [72]. 

 

5.3 Symbolic regression techniques 

 

Symbolic regression techniques are employed as machine 

learning methodologies to facilitate the implementation of a 

novel form of control that involves the manipulation of the 

stable equilibrium point's position. The successful execution 

of such control necessitates the establishment of a dual 

feedback loop. The presence of an inner contour guarantees 

the establishment of stability for the control system with 

respect to a specific point within the state space. The external 

contour facilitates the attainment of optimal control over the 

position of the stable equilibrium point. Symbolic regression 

techniques utilize a specialized coding system to represent the 

mathematical expression being searched and employ a special 

genetic algorithm to optimize the solution within the codes 

space. A specialized crossover procedure has been created for 

this purpose. The utilization of a specialized crossover 

operation on two parental codes facilitates the generation of 

two novel child chromosomal. Various crossover techniques 

are employed for distinct code structures. Symbolic regression 

techniques are commonly employed in the domain of 

supervised machine learning to approximate data that requires 

modelling. The issue at hand in machine learning for control 

pertains to the absence of a training set, necessitating the 

pursuit of a control function through the minimization of a 

quality criterion. This particular methodology, within the 

context of established nomenclature, is commonly referred to 

as unsupervised learning. Currently, a variety of symbolic 

regression techniques exist, including genetic programming 

(GP) [73], Cartesian GP [74], parse matrix evolution [75], 

network operator method [76], complete binary GP [77] and 

others. 

 

 

6. ROBOT LOCALIZATION 

 

One of the critical challenges in mobile robotics is robot 

localization, which involves determining the position and 

orientation of a robot in its environment. Robot localization is 

essential for enabling mobile robots to navigate autonomously 

and perform tasks accurately. Several techniques have been 

developed to address the problem of robot localization, 

including Bayes Filter, Kalman Filter (KF), Extended Kalman 

Filter (EKF), and Particle Filter. Bayes Filter is a probabilistic 

approach to robot localization that involves estimating the 

probability distribution of the robot's position and orientation 

based on sensor measurements. Bayes Filter has been 

successfully applied in various mobile robot control tasks, 

such as simultaneous localization and mapping (SLAM). For 

example, a mobile robot can use Bayes Filter to estimate its 

position and orientation based on sensor measurements such 

as odometry and laser range finders. Kalman Filter (KF) is 

another popular technique for robot localization that involves 

estimating the state of a system based on noisy sensor 

measurements. KF is widely used in mobile robot control tasks 

such as tracking and navigation. For example, a mobile robot 

can use KF to estimate its position and velocity based on 

sensor measurements such as GPS and inertial sensors. 

Extended Kalman Filter (EKF) is an extension of KF that can 

handle nonlinear systems. EKF is widely used in mobile robot 

control tasks such as localization and mapping. For example, 

a mobile robot can use EKF to estimate its position and 

orientation based on sensor measurements such as visual 

odometry and laser range finders. Particle Filter is a 

probabilistic approach to robot localization that involves 

estimating the probability distribution of the robot's position 

and orientation based on a set of particles. Particle Filter has 

been successfully applied in various mobile robot control tasks, 

such as SLAM and tracking. For example, a mobile robot can 

use Particle Filter to estimate its position and orientation based 

on sensor measurements such as visual odometry and laser 

range finders. Robot localization is a critical challenge in 

mobile robotics, and several techniques have been developed 

to address this problem. Bayes Filter, Kalman Filter (KF), 

Extended Kalman Filter (EKF), and Particle Filter are some of 

the popular techniques used in mobile robot control tasks such 

as localization, mapping, and tracking. These techniques have 

enabled mobile robots to navigate autonomously and perform 

tasks accurately, making them valuable assets in various 

industries. 

Localization, a critical process in robotics, revolves around 

determining a robot's precise position within its surroundings. 

When exploring the diverse landscape of localization 

techniques, several key comparisons come to light: Firstly, 

there's the distinction between Local and Global Localization. 

In scenarios where a robot lacks any prior information about 

its initial position, it must rely on sensor observations to infer 

its pose. This approach extends to challenging situations like 

the kidnapped robot problem, wherein a robot aware of its 

environment suddenly finds itself relocated to an unfamiliar 

location [78]. Another crucial consideration is whether 

localization occurs in Static or Dynamic Environments. The 

localization process must adapt depending on whether the 

robot operates in a stable, unchanging setting or contends with 

a dynamic environment characterized by moving entities [79]. 

Dynamic environments introduce added complexity as the 

constantly changing landscape necessitates the incorporation 

of dynamic elements into the environment state. Furthermore, 

the dimension of Single-robot versus Multi-robot Localization 

warrants attention. In the former, the focus revolves around a 

solitary robot navigating the environment, whereas the latter 

scenario entails deploying a group of robots within the same 

surroundings. Interestingly, the insights gleaned from single-

robot localization can often be applied individually to each 

robot within a multi-robot setting, facilitating collaborative 

localization efforts [80, 81]. These distinctions underscore the 

intricate web of choices and considerations inherent in the 

realm of robotics localization. Sensors and actuators take part 

in determining the robot’s localization, but both are subjected 

to noise, and thus the problem of localization becomes difficult 

[82]. Another problem with sensors is that they usually do not 

provide enough information content to determine the position 

of the robot directly, and therefore, the robot might be in an 

ambiguous location. This problem is known as sensor aliasing 

Siegwart: intro-autonomous-robots and, along with sensors 

and actuators noise turns the localization problem into a 

difficult task. Here  are some known techniques to deal with 

robot localization are mentioned: 
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(1) Bayes Filter: As claimed by Fox et al. [83], Bayes Filter 

is a statistical estimator of a dynamic system’s state based on 

noisy observations. In other words, it is an algorithm that 

calculates the belief’s distribution based on measurements and 

control data [84]. This is generally done in two steps: the 

prediction and the correction step, and thus each time a robot 

receives the sensor’s measurement data, the robot controller 

software needs to compute the posterior densities but notice 

that such a task is computationally heavy. Consequently, its 

time complexity grows exponentially because the amount of 

sensor’s measurements increases over time. A solution to this 

problem is to assume that such a dynamic system has the 

Markovian Property. That is, the future state xt+1 depends on 

the present state xt because of the assumption that xt carries all 

the needed information. Bayes filter algorithm is recursive. It 

requires the previous posterior distribution to calculate the 

current posterior distribution. 

(2) Kalman Filter (KF): is a Gaussian technique invented in 

1950 by Kalman [85] and was first implemented by NASA in 

the Apollo program to estimate the trajectory of the space 

capsule in real time [86]. It takes noisy data and takes the noise 

out to get information with less uncertainty [87]. It works with 

continuous states and represents the beliefs by the first and 

second moments [88] from multivariate normal distributions. 

Laskar et al. [89] proposed another version of KF called 

Maximum Correntropy Kalman Filter (MCKF), an effective 

and robust algorithm for non-Gaussian signals and heavy-

tailed impulsive noise. Instead of using the Minimum Mean 

Square Error (MMSE) as KF, its optimality criterion is the 

Maximum Correntropy Criterion (MCC). 

(3) Extended Kalman Filter (EKF): does not assume any 

linearity as KF does, and therefore, the next state and the 

measurement probabilities are nonlinear functions, as 

mentioned in the study [89]. Some variants of this method 

include the Unscented Kalman Filter, where the state 

distribution is approximated by a Gaussian random variable as 

in EKF, but now a minimal set of sample points is cautiously 

chosen for representing the state distribution [90]. Another 

improvement of EKF is the Invariant Extended Kalman Filter 

(IEKF) used for continuous-time systems with discrete 

observations [91]. 

(4) Particle Filter: Early in the nineties, the particle filter 

gained popularity and has been utilized to resolve estimate 

problems [92]. It acts as an approximate numerical solution to 

nonlinear Bayesian filtering problems [93], where the 

posterior is approximated by a set of M samples called 

particles where M is usually a large number (e.g., 2000). 

Under the context of localization, it is also known as Monte 

Carlo localization (MCL) [94]. Each particle has associated a 

weight, also called the importance factor, that represents the 

contribution to the overall estimate of the posterior, as 

mentioned in the study [95]. Thus, it shows the belief at time t 

approximated by a set of particles and weights of M particles 

[96-98]. 

 

 

7. PARTICLE FILTER APPLIED TO ROBOT 

LOCALIZATION 

 

Many variants of particle filters have been popularized 

lately for addressing robot localization. Zhou et al. [99] 

proposed an improved PF algorithm called the Pearson 

Particles Filter (PPF) because it is based on the Pearson 

Correlation Coefficient (PCC). PCC is a statistical technique 

to determine the linear dependence between two random 

variables, and thus, it is used to decide how close the 

hypothetical particle state is to the true state value. Even 

though this technique solves the degeneracy and sample 

impoverishment problem present in PF, it is computationally 

complex, as mentioned in the study [95]. Below are some of 

the Particle Filter Applied: 

(a) Differentiable Particle Filter: Jonschkowski and Brock 

[100] presented the Differentiable Particle Filters (DPFs), a 

differentiable version of the classic particle filter algorithm 

with end-to-end learnable models. The recursive state 

prediction and correction steps are encoded in the DPFs 

structure, which is made of a recurrent network representing 

the filtering loop. Even though their experiments reduce the 

error rate by 80% compared to algorithmic priors, they present 

the limitation of resampling as a non-differentiable operation 

that stops the gradient computation after a single loop iteration, 

limiting the scope of the implementation to supervised 

learning. 

(b) Discriminative Particle Filter Reinforcement Learning: 

Ma et al. [101] introduced a reinforcement learning framework 

for complex partial observations called Discriminative 

Particle Filter Reinforcement Learning (DPFRL). It uses a 

DPF in the neural network policy for reasoning with partial 

observations over time. It is composed of two main 

components: a discriminatively trained particle filter that 

tracks a latent belief and an actor-network that learns a policy 

given the belief. DPFRL is benchmarked using different 

problems in different domains. First, the Mountain Hike Task 

[102]. Consisting of an agent that goes from a start to a goal 

position in a map that contains an irregular terrain with partial 

visibility, showing that DPFRL learns faster compared to other 

models such as Deep Variational Reinforcement Learning 

(DVRL) [102] and Gated Recurrent Unit (GRU) [103]. 

(c) Particles Filter Recurrent Neural Networks: Ma et al. 

[101] extended Recurrent Neural Networks (RNN) to use 

particle filters. This is different from RNNs that approximate 

the belief as a long latent vector, updating it using a 

deterministic nonlinear function, Particles Filter Recurrent 

Neural Networks (PF-RNNs) approximate the belief using a 

set of weighted particles and the stochastic particle filter 

algorithm to update them. PF-RNNs are applied to LSTM and 

GRU RNNs architectures, called PF-LSTM and PF-GRU, 

respectively. They are evaluated for the robot localization task 

in three custom 2D synthetic symmetric maps. 

 

 

8. PROBABILISTIC ROBOTICS 

 

Probabilistic robotics is a promising field that has the 

potential to revolutionize the field of mobile robotics. 

Probabilistic robotics employs probabilistic techniques and 

algorithms to allow robots to make better decisions in the face 

of uncertainty. The key idea behind probabilistic robotics is to 

use probability theory to model uncertainty and to develop 

algorithms that can reason about this uncertainty. This is 

particularly important in real-world environments, where 

sensors can be noisy, and the robot's state and environment can 

be uncertain. Probabilistic robotics is based on three main 

components: perception, control, and state estimation. 

Perception refers to the process of sensing the environment 

and extracting information from the sensors. Control refers to 

the process of selecting actions that achieve some objective. 

State estimation refers to the process of estimating the state of 
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the robot and its environment. Probabilistic techniques and 

algorithms are applied in perception, control, and state 

estimation in the context of mobile robotics. For example, in 

perception, probabilistic techniques such as Bayesian 

inference and Markov models are used to estimate the 

probability distribution of the robot's environment based on 

sensor measurements. In control, probabilistic techniques such 

as optimal control and reinforcement learning are used to 

select actions that maximize some objective function. In state 

estimation, probabilistic techniques such as Kalman filters and 

particle filters are used to estimate the probability distribution 

of the robot's state based on sensor measurements. 

Probabilistic robotics has been utilized in various mobile 

robot control tasks, such as robot localization and obstacle 

avoidance. For example, in robot localization, probabilistic 

techniques such as particle filters and Kalman filters have been 

used to estimate the robot's position and orientation based on 

sensor measurements. In obstacle avoidance, probabilistic 

techniques such as fuzzy logic and Bayesian networks have 

been used to detect and avoid obstacles in the robot's 

environment. probabilistic robotics is a promising field that 

has the potential to revolutionize the field of mobile robotics. 

Probabilistic techniques and algorithms are applied in 

perception, control, and state estimation in the context of 

mobile robotics, enabling robots to make better decisions in 

the face of uncertainty. Probabilistic robotics has been 

successfully applied in various mobile robot control tasks, 

such as robot localization and obstacle avoidance, making it a 

valuable tool for creating intelligent and adaptive mobile 

robots. 

This section explains the critical and relevant concepts from 

probabilistic robotics applied to the current research. 

Probabilistic robotics is a promising field that has the potential 

to revolutionize the field of robotics. Probabilistic robotics has 

several applications, including autonomous driving and 

mobile robotics. In mobile robotics, probabilistic robotics is 

used to localize the robot in the environment and to plan paths 

that avoid obstacles. It employs probabilistic techniques and 

algorithms to allow robots to make better decisions in the face 

of uncertainty, as mentioned in the study [104]. Probabilistic 

robotics is based on three main components: 

(1) Perception: Perception refers to the process of sensing 

the environment and extracting information from the sensors 

[105]. 

(2) Control: Control refers to the process of selecting 

actions that achieve some objective. 

(3) State estimation: State estimation refers to the process 

of estimating the state of the robot and its environment. 

The key idea behind probabilistic robotics is to use 

probability theory to model uncertainty and to develop 

algorithms that can reason about this uncertainty. In traditional 

robotics, uncertainty is often treated as a nuisance that needs 

to be eliminated. In probabilistic robotics, uncertainty is 

explicitly modelled and used to improve decision-making, as 

mentioned in the study [100]. This is particularly important in 

real-world environments, where sensors can be noisy, and 

environments can be dynamic and unpredictable. Probabilistic 

robotics provides a robust framework for dealing with the 

challenges of uncertainty in real-world robotic applications. 

Robots can make more informed decisions by modelling and 

accounting for uncertainty, improving performance and 

reliability. 

 

 

9. STATE 

 

According to the study [75], the notion of State refers to the 

set of all aspects of the robot and its environment that can 

influence the future. Some instances of state are: 

• Static state does not change its position over time. 

Such as the walls or other moveless object locations. 

• Dynamic state changes its position over time. For 

instance, people or other robot locations. 

• The robot pose is usually defined by its position 

(Localization) and orientation (rotation) relative to a global 

reference frame. A robot moves on a fixed frame attached to 

the ground and does not move. This frame is called the global 

reference frame (GRF). Additionally, a robot is linked within 

a frame that moves along with the robot. This frame is referred 

to as a local reference frame (LRF) [106]. Communication 

between the coordinate frames is known as the transformation 

of frames, and it is a crucial concept when modelling and 

programming a robot [107]. The difference between GRF and 

LRF is that the XR axis points to the robot's right side, the YR 

axis is aligned to its longitudinal axis, and the ZR axis 

indicates upward. The notation used to represent a state at time 

t will be denoted as xt. The control data is information about 

the change of state in the environment [108]. It can be, for 

instance, the velocity or the acceleration of the robot at a given 

time t, and thus it will be represented as ut. The sensor data 

provided at time t is denoted as zt, and therefore, a collection 

of percepts, called here a sequence of sensor observations, will 

be denoted as z1:t=z1, z2, ..., zt. In Figure 2, the comparison 

between the local and global reference frames illustrates the 

distinctive characteristics and relationships between these two 

frames of reference within the context of the study. 

 

 
 

Figure 2. Local vs. Global reference frame 

 

 

10. DIFFERENTIABLE PROGRAMMING 

 

Differentiable programming (DP) is a programming 

paradigm that enables the automatic differentiation of 

algorithms. DP is a combination of the ideas of automatic 

differentiation and functional programming. DP has 

demonstrated that it is more than just a compilation of machine 

learning algorithms. DP can be applied to various types of 

robots, including mobile robots, manipulators, and humanoid 

robots. DP can be used for tasks such as trajectory planning, 

motion control, and reinforcement learning algorithms. DP 

works by allowing the user to define a function that maps 

inputs to outputs. The function can be a complex algorithm 
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that involves multiple operations, such as matrix 

multiplication, convolution, and activation functions. DP then 

automatically computes the gradient of the function with 

respect to its inputs using the chain rule of calculus. The 

gradient can be used to optimize the function using gradient-

based methods such as stochastic gradient descent (SGD). DP 

has several advantages over traditional programming 

approaches for controlling robots. DP enables the efficient 

optimization of control policies using gradient-based methods, 

which can lead to faster convergence and better performance. 

DP also allows the integration of sensor feedback into the 

control policy, which can improve the robot's ability to adapt 

to changing environments. DP is a promising technology that 

has the potential to revolutionize the field of robotics. 

DP has been successfully applied in various mobile robot 

control tasks, such as trajectory planning, motion control, and 

reinforcement learning algorithms. For example, in trajectory 

planning, DP can be used to optimize trajectories by 

differentiating through the trajectory generation algorithm. 

The objective function can be defined as a function of the 

robot's state and the control inputs. DP can be used to compute 

the gradient of the objective function with respect to the 

control inputs, which can be used to update the control policy. 

In motion control, DP can be used to optimize the control 

policy by differentiating through the dynamics of the robot. 

DP can be used to compute the gradient of the control policy 

with respect to the robot's state and the control inputs, which 

can be used to update the control policy. In reinforcement 

learning, DP can be used to optimize the Reinforcement 

Learning algorithm by differentiating through the policy 

evaluation and improvement steps. DP can be used to compute 

the gradient of the policy with respect to the parameters of the 

policy, which can be used to update the policy. DP is a 

promising technology that enables the automatic 

differentiation of algorithms. 

In order to understand what differentiable programming 

(DP). The study [35] is restated here. DP is a programming 

paradigm that enables the automatic differentiation of 

algorithms. DP is a combination of the ideas of automatic 

differentiation and functional programming. It has 

demonstrated that it is more than just a compilation of machine 

learning algorithms [109]. DP can be applied to various types 

of robots [110], including mobile robots, manipulators, and 

humanoid robots. DP can be used for tasks. In this section, we 

will discuss some of the applications of DP in controlling 

robots. 

(1) Trajectory Planning: Trajectory planning is the process 

of generating a sequence of robot poses that satisfy some 

objective. It is an essential problem facing mobile robotics 

[111] and is computationally extremely costly [112]. DP can 

be used to optimize trajectories by differentiating through the 

trajectory generation algorithm. The objective function can be 

defined as a function of the robot's state and the control inputs. 

DP can be used to compute the gradient of the objective 

function with respect to the control inputs, which can be used 

to update the control policy. 

(2) Motion Control: Motion control is the process of 

controlling the robot's motion to achieve some objective [113]. 

DP can be used to optimize the control policy by 

differentiating through the dynamics of the robot. 

(3) Reinforcement Learning: DP can be used to optimize the 

Reinforcement Learning algorithm by differentiating through 

the policy evaluation and improvement steps. 

DP has several advantages over traditional programming 

approaches for controlling robots. DP enables the efficient 

optimization of control policies using gradient-based methods 

[114], which can lead to faster convergence and better 

performance. DP also allows the integration of sensor 

feedback into the control policy, which can improve the robot's 

ability to adapt to changing environments. DP is a promising 

technology that has the potential to revolutionize the field of 

robotics. However, there are some limitations of DP that need 

to be addressed. DP requires the algorithm to be differentiable, 

which can limit the complexity of the algorithm that can be 

used. DP also requires the computation of the Jacobian matrix, 

which can be computationally expensive for large systems. 

 

 

11. CONCLUSION 

 

The reviewed research articles related to AI techniques in 

mobile robot control have made significant contributions to 

the field. The main findings of these studies include the 

successful application of AI techniques such as machine 

learning, neural networks, and probabilistic robotics in various 

mobile robot control tasks such as localization, mapping, path 

planning, and obstacle avoidance. The research has shown that 

AI techniques can significantly improve the performance of 

mobile robots in real-world environments by enabling them to 

make better decisions in the face of uncertainty. The use of 

probabilistic techniques and algorithms has been particularly 

effective in addressing the challenges of uncertainty and noise 

in mobile robot control. The reviewed research articles have 

also highlighted the importance of integrating sensor feedback 

into the control policy of mobile robots. This can improve the 

robot's ability to adapt to changing environments and perform 

tasks accurately. Overall, the reviewed research articles have 

demonstrated the potential of AI techniques in mobile robot 

control and have paved the way for the development of 

intelligent and adaptive mobile robots. The findings of these 

studies have significant implications for various industries, 

including manufacturing, healthcare, and transportation, 

where mobile robots can be used to perform tasks that are 

dangerous, tedious, or impossible for humans. 
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