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Descriptors serve as algorithms responsible for the representation and processing of 

multimedia files. One of the main challenges in these algorithms involves establishing a 

tradeoff among conflicting performance requirements such runtime, on the one hand, and 

standard metrics such as accuracy, precision, recall and F-score, on the other hand. To 

address this challenge, a novel descriptor named Histogram of Enhanced Gradients (HEG) 

is introduced for noisy face recognition. The methodology behind HEG involves enhancing 

local gradients prior to feature extraction, corroborated by the Histogram of Oriented 

Gradients (HOG) descriptor and adaptive filtering. Initially, facial images are divided into 

blocks, and features are extracted from each block using magnitude and orientation maps 

to discriminate between edges, details, and flat regions. Then, these features undergo 

denoising with an adaptive anisotropic diffusion filter, individually customized for each of 

these three types. Subsequently, the enhanced histograms from the blocks are concatenated 

to create a comprehensive feature vector representing the original noisy face image. Finally, 

the HEG descriptor is integrated within a supervised machine learning scheme with a 

Support Vector Machine as the classifier. The proposed descriptor is evaluated not only in 

terms of runtime and the standard metrics cited above, but also on the basis of six other 

similarity metrics, across three online datasets. Experimental results, conducted under 

different noise levels, clearly demonstrate that the HEG descriptor outperforms nine state-

of-the-art descriptors on all three datasets yielding significant enhancements in runtime 

efficiency, with speed improvements ranging from 1.64 to 29.56 times, and notable 

refinements in F-score, ranging from 1.03 to 2.39 times. These results highlight the 

effectiveness of the HEG descriptor in capturing facial features from multimedia noisy files. 
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1. INTRODUCTION

Face recognition is one of the most challenging problems in 

biometric systems. It has received much attention in the last 

two decades, or so, generating several breakthrough 

applications in computer vision and pattern recognition, 

among others [1, 2]. With the considerable increase of digital 

audio-visual information, it became essential to design ad hoc 

algorithms that allow users to define the content of the types 

of multimedia information - the so-called descriptors. These 

latter are algorithms specifically designed to possess adequate 

understanding of the objects within a multimedia file, 

facilitating easy and effective searches as well as the 

classification of specific requested content. In the present work, 

we will confine ourselves to face image recognition only. 

A face recognition system involves the identification of a 

person by extracting distinctive features from an image of the 

subject's face. This process encompasses three main tasks: 

face detection, feature extraction, and feature classification. 

Face detection is the initial step, wherein the system locates 

and isolates the facial region in an image. Following this step, 

feature extraction involves capturing unique facial 

characteristics, such as key points or patterns. Finally, in the 

features classification step, the system categorizes and 

matches the extracted features to a pre-existing database, 

enabling the identification of the individual. This sequential 

process ensures a comprehensive and accurate face 

recognition outcome in a typical face recognition system. 

The first step, face detection, consists in determining the 

location of one or more faces in the overall image [3, 4]. For 

detecting faces, many methods have been proposed, ranging 

from simple computer vision techniques, artificial neural 

networks to deep learning methods. One of the major 

contributions in face detection techniques is the algorithm of 

Viola and Jones [5] that works in real-time with high accuracy. 

It is one of the first face detection methods suitable for real-

world applications that combines integral images, cascade 

classifiers, Haar-like features, and AdaBoost. It addresses the 

challenges of real-time face detection, setting a benchmark for 

efficiency and accuracy in the field. Some of its drawbacks 

include sensitivity to illumination conditions, a fixed-size 

window, limited resilience to pose variations, reliance on 
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Haar-like features, and computational cost during training. 

Despite these limitations, the Viola and Jones algorithm has 

paved the way for subsequent advancements in face detection. 

These reasons constitute the basis for our selection in the 

current paper. 

In the second step of face recognition, feature extraction 

plays a pivotal role by identifying discriminative information 

and well-defined features that enhance the accuracy of the 

subsequent classification process [6]. This step stands as one 

of the most explored aspects in pattern recognition, as the 

efficacy of classification heavily relies on the meaningfulness 

of data extracted from the facial image. Feature extraction 

methods are broadly categorized into two main approaches: 

feature-based and appearance-based [7]. Feature-based 

methods focus on geometric aspects and distinctive facial 

characteristics, aiming to capture specific facial details. On the 

other hand, appearance-based methods take a holistic 

approach, considering the overall facial appearance and 

structure. 

The choice between these two categories involves a tradeoff 

between precision and computational efficiency. Feature-

based methods may excel in capturing fine details but can be 

computationally intensive, while appearance-based methods 

provide a more holistic understanding of facial features but 

might overlook subtle nuances. In our approach, we opted for 

an appearance-based methodology due to its capacity to 

capture global facial patterns efficiently, aligning with our 

objective of achieving robust face recognition.  

The feature-based approach distinguishes features such as 

nose, eyes, mouth using location and distance between them 

[8, 9]. This approach analyzes each feature as well as its spatial 

location with respect to other features. This information is 

provided to the next step, feature classification, with a standard 

error rate. As a result, more computations are required to 

locate facial features, while any error during component 

localization can lead to a substantial drop in accuracy. 

Moreover, feature-based methods suffer from many 

drawbacks. They tend to have limited global context thus 

lacking a holistic understanding of the overall appearance, 

making them less effective in scenarios where global context 

is crucial. In addition, these methods present a sensitivity to 

parameter settings such as the threshold for feature detection, 

eventually requiring further fine-tuning. Finally, these feature-

based methods have limited representational power because 

they extract only specific points or structures. Approaches 

under the feature-based technique include Elastic Bunch 

Graph Matching (EBGM) [10], Local Binary Pattern (LBP) 

[11], Gradient Direction Pattern (GDP) [12], and Gabor Filter 

[13]. 

The appearance-based approach [14, 15], on the other hand, 

considers the facial intensity, texture color or gradient 

direction in order to determine the feature patterns. The feature 

extraction process must be efficient in terms of computing 

time and efficiency. The feature extraction is independent of 

the location of facial organs and thus makes it more popular 

and more effective against environmental changes. This 

approach has been able to manage changes in illumination 

conditions, shape, pose and reflectance and to sometimes 

handle translation and partial occlusions. Additionally, this 

approach is considered efficient due to its ability to retain only 

the significant information of images; it indeed yielded good 

features extraction with accurate recognition rate.  

The appearance-based methods have some drawback: they 

suffer from computational complexity as they may have higher 

computational demands, especially when dealing with high-

dimensional data, which can affect real-time performance. 

They may be less robust to local changes or occlusions since 

they do not focus on specific, distinctive features. The 

transformed features might be less interpretable, making it 

challenging to understand the exact characteristics 

contributing to the recognition. Additionally, they suffer when 

there is significant variability in the training data, especially 

when dealing with large datasets with diverse conditions. 

Despite these limitations, appearance-based methods are more 

suitable for face recognition because of their holistic character. 

For this reason, we chose this approach in our method. Among 

appearance-based approaches, we find Linear Discriminant 

Analysis (LDA) [16], Principal Component Analysis (PCA) 

[16], Locality Preserving Projections (LPP) [17] and Discrete 

Wavelet Transform (DWT) [18]. 

The third step in the face recognition process, feature 

classification, is devoted to establishing the class to which the 

unknown input query face image belongs, with the utmost 

accuracy and efficiency. A diverse range of classifiers comes 

into play, each with its unique strengths. Classifiers like 

Convolutional Neural Networks (CNNs) [19], Support Vector 

Machines (SVMs) [20], and deep learning methods [21] play 

a crucial role in feature classification. 

CNNs are designed to automatically learn hierarchical 

features from input images through convolutional layers when 

used in feature extraction. The convolutional layers use filters 

to detect low-level features like edges and gradually build up 

to more complex features. The features extracted by the 

convolutional layers are then fed into fully connected layers 

for classification. Large datasets are typically required for 

training. CNNs excel in tasks like image classification, object 

detection, and image segmentation. They are widely used in 

face recognition, among others [19].  

Support Vector Machines (SVMs) are very popular in face 

recognition and classification tasks. They discern individuals 

based on facial features extracted from images. Trained on 

facial feature datasets, SVMs establish optimal decision 

boundaries for effective class segregation. SVMs adapt to non-

linear feature relationships using a kernel, demonstrating 

resilience to high-dimensional data and proficiency with 

modest training samples. While effective in well-structured 

scenarios, SVM-based face recognition systems require 

diverse, high-quality training data and may encounter 

challenges with large datasets. SVMs excel in finding optimal 

decision boundaries in high-dimensional feature spaces, 

enhancing the precision of classification. In our exploration, 

the choice of classifiers was guided by the complexity of facial 

features and the need for a robust and adaptable system. For 

these reasons, we have chosen SVM as our classifier [20]. 

Ultimately, deep learning, including deep neural networks, 

stand out as a versatile approach that integrates the processes 

of learning and feature extraction. The capacity to 

automatically learn hierarchical representations from data 

makes this approach particularly effective in handling intricate 

patterns and variations within facial images. The use of deep 

learning signifies a departure from traditional methods by 

allowing the system to autonomously discern relevant features 

for classification [21].  

In summary, a standard face recognition system initiates 

with face detection, identifying faces, followed by feature 

extraction to generate a distinctive representation for each 

face. The concluding step encompasses the comparison of 

these features with a database for recognition and 
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classification. The integration of these three steps guarantees 

precise and efficient face recognition across diverse 

applications such as surveillance, security, and authentication 

systems. 

In this paper, we address the issue of feature extraction of 

noisy face images. It is widely admitted that face recognition 

systems always suffer from natural degradations such as noise. 

Therefore, recognizing noisy images is a complex task for 

machines. As a result, efficient descriptors are needed.  

We propose the so-called Histogram of Enhanced Gradients 

(HEG) as a new fast descriptor, whose main function is to 

ensure a tradeoff between recognition performance like 

runtime and standard metrics, such as precision, accuracy, 

recall and F-score, while addressing some issues faced by the 

Histogram of Oriented Gradients (HOG) such as the block size 

used for dividing images [22]. 

We attempt to improve HOG because it is one of the most 

powerful descriptors, so far. Its power comes from the fact that 

it uses magnitude as well as angle of gradient to compute the 

features. However, one of the drawbacks of the HOG 

descriptor is that its performance in both the feature extraction 

step and the classification step is highly impacted by noise. In 

order to improve the HOG descriptor, we apply a method 

based on coupling anisotropic diffusion and shock filter for 

different gradient values on each block of face image. The 

extracted features are the distribution of oriented smoothed 

gradients of face image [23]. 

The local object appearance is described by the distribution 

of intensity gradient and its direction. As a result, three types 

of areas are identified: edges (fine features) correspond to 

large gradient values, details (small features) correspond to 

medium gradient values, and the flat areas (large features) 

correspond to smaller gradient values. The separation of 

different regions in each block of face image requires an 

adaptive denoising method to be performed according to the 

region type. Consequently, the HEG descriptor is found to be 

more powerful than HOG. 

This paper seeks to achieve the following contributions: 

(1) Enhance the HOG descriptor by adding an adaptive 

anisotropic diffusion filter to recover degraded features. Use 

an enhanced gradient map and compute the orientation map of 

each block in the face image, thus generating a new compact 

feature vector of the noisy face image for fast classification.  

(2) Include the denoising task within the feature extraction 

step to enhance the different objects and extract more 

discriminative features so that the novel descriptor can 

efficiently filter noisy features.  

(3) Use a thresholding algorithm to process 3 types of 

features for each block of image.  

(4) Use the HEG descriptor in a standard supervised 

machine scheme with SVM as the classifier with a linear 

kernel to undertake a comparison between the proposed 

descriptor and nine well-known descriptors, namely 

Histogram of Oriented Gradients (HOG) [22], Local Ternary 

Patterns (LTP) [24], Local Gradient Code (LGC) [25], Local 

Phase Quantization (LPQ) [26], Local Directional Number 

(LDN) [27], Local Gradient Pattern (LGP) [28], Local Binary 

Pattern (LBP) [11], Principal Component Analysis (PCA) 

[16], and Gabor Filter [13]. 

(5) Use three datasets such as Extended CK+ color dataset 

[29] as well as gray scale datasets like Extended Yale B [30] 

and ORL [31], for experiments.  

The rest of this paper is organized as follows. Section 2 

describes related works. Section 3 describes the proposed 

approach. The experimental results as well as discussions are 

presented in Section 4. Finally, Section 5 concludes the paper 

and proposes some potential future research avenues. 

 

 

2. RELATED WORKS 
 

Before delving into specific methods, it is essential to 

establish a broader context surrounding the intricate 

challenges faced by facial feature extraction. This step plays a 

pivotal role in face recognition systems, involving the 

identification and extraction of distinctive facial 

characteristics for subsequent analysis. This process is critical 

for the accurate classification of facial images and plays a 

central role in the overall effectiveness of face recognition. In 

this section, we elucidate key contributions in the field, 

outlining notable descriptors that hold widespread 

significance. The subsequent descriptions report the most 

popular descriptors. 

The Local Binary Pattern (LBP) [11] is one of the most 

popular local region-based feature descriptors, adopted for 

both objects and human face. This method consists in 

comparing the pixel gray level with those of its neighbors. It 

assigns a binary code to a pixel according to its neighborhood. 

This method recognizes certain local binary patterns 

considered as uniform. However, the LBP method has the 

drawback of losing global spatial information. To address this 

issue, many variants of LBP have been developed, with 

various degrees of success for many tasks: LBP Variance 

(LBPV) [32] and Local Gabor Binary Pattern Histogram 

Sequence (LGBPHS) [33]. 

Additionally, the Local Gradient Code (LGC) [25], a variant 

of the LBP, describes the gradient of the horizontal, vertical, 

and diagonal details of the facial image. On the other hand, the 

Local Ternary Patterns (LTP) [24] stands as another 

generalization of the LBP. It is reported to be more 

discriminant and less sensitive to noise in uniform regions. 

LTP relies on two main components: the integration of 

Principal Component Analysis (PCA) for feature extraction, 

on the one hand, and additional sources, namely Gabor 

wavelets and LBP, on the other hand. It was found that this 

combination gave better accuracy [24]. With all these 

offshoots, LBP gained a good ranking among the 

discrimination techniques for face extraction. 

Local Phase Quantization (LPQ) [26] is another well-

known feature-based technique. It builds on the blur 

invariance property of short time Fourier transform to extract 

the image features. This technique ends up with more accurate 

and stable classification results. However, one limitation of 

LPQ is its slowness in some cases, especially when the number 

of features is high. 

The LDN method [27] compactly converts the directional 

information of face's textures, in an attempt to produce a more 

discriminative code than other descriptors. The structure is 

evaluated for each micro-pattern using a compass mask that 

extracts directional information. The encoding of such 

information is done using the prominent direction indices 

(directional numbers) and sign. This latter allows the 

distinction between similar structural patterns with different 

intensity transitions. The face is divided into several regions. 

These features are then concatenated into a feature vector and 

tested with different masks. 

The Scale Invariant Feature Transform (SIFT) [34] 

performs best in the context of matching and recognition, due 
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to its invariance to scaling and rotations. Several attempts to 

improve the SIFT descriptor have been proposed in the 

literature, such as PCA-SIFT [35]. 

Another feature extraction method is proposed using 

wavelet packet frame decomposition and Gaussian-mixture-

based classifier to assign each pixel to the class [36]. Each 

subnet of the classifier is modeled by a Gaussian mixture 

model and each texture image is assigned to the class to which 

the pixels of the image belong mostly. 

The Weber Local Descriptor (WLD) [37] is based on the 

fundamental concept that human perception of patterns is 

intricately tied to the change of a stimulus. This idea holds 

particular significance in the context of the WLD method as it 

aligns with the manner in which distinctive facial features are 

perceived and processed. Human visual perception is highly 

attuned to changes and variations in patterns, and the WLD 

method enhances this cognitive aspect to capture meaningful 

information from facial images. 

In the Local Directional Pattern (LDP) method [38], the 

feature is obtained through the evaluation of the edge response 

values for each pixel position in all eight directions. A code is 

then generated from the relative strength magnitude. Each bit 

of code sequence gains robustness in noisy situations since it 

is based on the local neighborhood. An LDP code, which is 

rotation invariant, is introduced which uses the direction of the 

most prominent edge response. Finally, an image description 

is obtained for the image by the accumulation of the 

occurrence of LDP feature over the whole input image. 

Experimental results show that LDP gives better results than 

Gabor-wavelet and LBP. 

Some statistical methods that are insensitive to blur, have 

been used for feature extraction. However, these methods are 

not rotation invariant, like Gabor Filter [13] and wavelet 

transform [18]. Other discriminative techniques were also 

explored in feature classification such as Local Gradient 

Pattern (LGP) [28], Gradient Direction Pattern (GDP) [12], 

Eigenfaces based PCA [16], Linear Discriminant Analysis 

(LDA) [16], and Histogram of Orientation Gradient (HOG) 

[22]. 

3. HEG DESCRIPTION

3.1 Motivation 

In this section, providing insights into the primary 

motivations, we introduce the innovative HEG descriptor. The 

initial phase of the conventional HOG involves calculating the 

gradient magnitude at each pixel, followed by dividing the 

face image into for n×m blocks. Each block is then represented 

by a histogram capturing the local distribution of orientations 

and gradient amplitudes. However, as we provide details about 

the HEG descriptor, we address certain limitations inherent in 

the traditional HOG approach. 

One notable limitation we address is related to the block size 

in HOG. While the optimal block size for pedestrian detection 

has been identified as for 3×3 blocks [22], our experimentation 

reveals improved classification performance with larger for 

8×8 blocks. This adjustment enhances the block area by a 

factor of 7, resulting in a reduction in runtime, logically 

aligning with the need for efficiency in facial feature 

extraction. Additionally, another limitation of the HOG 

descriptor that we address is its sensitivity to noise. The HEG 

descriptor incorporates an adaptive anisotropic diffusion step, 

refining the features extracted by HOG based on the type of 

pixel, namely edge, detail, or flat region. This ad hoc 

enhancement process mitigates the impact of noise on feature 

extraction, ensuring that the HEG descriptor maintains robust 

performance in the presence of challenging conditions. 

Hence, the HEG descriptor, while enhancing runtime 

efficiency through optimized block sizes, improves the 

robustness of feature extraction by reducing sensitivity to 

noise. By adapting the approach to tackle these specific 

limitations, the HEG descriptor emerges as a refined and more 

effective alternative to traditional HOG in facial feature 

extraction. 

3.2 Overall architecture 

The HEG descriptor is used within a broader supervised 

learning scheme, comprising the two main classical phases of 

training and classification. Figure 1 shows the overall 

architecture where the HEG descriptor is used. 

Figure 1. Diagram of proposed framework 

3.2.1 Training phase 

In any supervised learning scheme, the training phase 

comes first. Here, after detecting the image, using the Viola & 

Jones algorithm [5], the HEG descriptor is applied for the 

whole face in order to create its enhanced feature vector 

through extraction followed by normalization. Then, the image 

is saved in the database with its corresponding class, using 

SVM classifier [20]. 

3.2.2 Classification phase 

In the classification step, the unknown query image is 

represented by a vector by applying HEG descriptor. The 

enhanced feature vector is normalized as in the training phase, 

and then fed into the SVM classifier to determine the best 

match between the query and previous training images. The 

details of the HEG descriptor operation are given in the sub-

section below.  

3.3 HEG steps 

HEG obeys the following steps (see Figure 2): 

Step 1. Decompose the whole input noisy image into n×m 

non-overlapping blocks. Then, calculate the gradient of each 

pixel in the block. The gradient magnitude at each pixel of a 

block is used for feature separation as it discriminates between 

the different types of features such as edges, details, and 

homogeneous regions. The norm of the gradient in a pixel is 

useful information because the magnitude is large around 

edges due to abrupt changes in intensity which keeps more 

information about the object shape than flat regions. 
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As a result, these regions have to be processed differently to 

obtain good classification. For doing so, a block is subdivided 

into three types of regions using a threshold segmentation 

method based on gray level gradient histogram that defines 

two thresholds T1 and T2, proper to each block [39]. Each 

block is therefore segmented into three regions: large gradients 

(greater than T2) describing boundaries of different objects, 

while medium gradients (between T1 and T2) determining 

textures and details, finally, small gradients (lower than T1) 

representing flat regions of the image. 

Step 2. Represent each block by a histogram with 3 gradient 

bins, each one determining the interval that can describe edges, 

details or flat regions. In this step, the enhanced features are 

provided by HEG that denoises each block according to the 

type of features. An adaptive diffusion denoising step is 

initiated to properly recover each region in a block in 

accordance with its type. For edges, a shock-type backward 

diffusion is applied in the gradient direction. A soft backward 

diffusion is performed to enhance image details preserving a 

natural transition. Moreover, an isotropic diffusion is used to 

smooth homogeneous areas simultaneously. Therefore, each 

pixel is represented with enhanced intensity in the respective 

direction. 

Step 3. Represent features on magnitudes and orientation 

maps in polar coordinates system (G, θ). The enhanced 

magnitude (G) values of each block in the histogram are the 

votes and the orientation maps values (θ) are represented with 

9 orientation bins. The magnitude G and angle θ, are given by: 

 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2  (1) 

 

𝜃 = 𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
)  (2) 

 

where, Gx and Gy represent gradients in horizontal and vertical 

directions respectively.  

Step 4. Normalize all enhanced histograms blocks to finally 

obtain the feature vectors. Each face image in the training set 

is saved as a features vector that will be used in the 

classification phase. The orientation of a pixel in each block is 

placed into one of 9 orientation bins weighted by its magnitude 

to create a weighted histogram for each block. Concatenating 

all normalized histograms produces the extracted feature 

vector which is used to prepare the input noisy face image for 

the SVM classifier. Finally, the HEG descriptor concatenates 

all normalized histograms. 

Note that, in our case, noise doesn't affect the performance 

of face recognition since the denoising is performed with an 

adaptive diffusion filter, based on partial differential equations, 

which is an efficient tool of enhancement and restoration of 

edge and details information. 

 

 
 

Figure 2. Main steps of HEG descriptor 

 

For illustration purposes of the HEG descriptor image 

enhancement, Figure 3 shows the original image and the 

corresponding HEG results, as outputs produced by the 

descriptor. Figure 3(a) shows the noisy input image to be 

processed, Figure 3(b) shows the magnitude gradient result 

and Figure 3(c) shows the orientation map result. It is to be 

noted that the enhancements are destined to the computer 

program and not to be used for immediate normal human 

visual purposes. 

 

 
 

Figure 3. (a) Noisy image (b) HEG magnitude result (c) 

HEG orientation result 

 

 

4. EXPERIMENTS AND DISCUSSION 

 

All subsequent experiments were carried out on a laptop 

with Intel Core™ i5-6200U CPU 2.40GHz, 8 GB RAM, using 

Windows™ 10, 64-bit system. For implementation, we used 

Python and the sklearn library (https://scikit-learn.org/stable/) 

to facilitate coding of machine learning. 
 

4.1 Chosen competitors and datasets 
 

A comparative assessment is undertaken between the HEG 

descriptor and nine other descriptors using three different 

datasets in grayscale as well as in color. The main experiment 

is the same for all datasets, namely to classify a noisy face 

image with various descriptors using the SVM classifier. This 

latter is used because it was proved to produce the best 

classification in the shortest time. 

(1) The chosen competitors are: LTP [24], LGC [25], LPQ 

[26], LDN [27], LGP [28], LBP [11], PCA [16], HOG [22] and 

Gabor Filter [13].  

(2) The datasets used are: Extended Cohn-Kanade (CK+) 

dataset [29], Extended Yale B dataset [30], and ORL dataset 

[31]. 

 

4.2 Evaluation metrics 

 

To compare descriptors, we rely on the usual standard 

metrics of image recognition. Our goal is to find a tradeoff 

between these conflictual metrics. 

 

4.2.1 Standard metrics 

All descriptors are tested using the well-known standard 

metrics, namely accuracy, precision, recall and F-score, 

widely used in many areas. We added runtime, i.e., the time 

needed to accomplish the final classification phase. 

 

4.2.2 Similarity metrics 

In addition, we also rely on similarity metrics [40, 41] such 

as: Mean Square Error (MSE), Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM), Features 

Similarity Index Matrix (FSIM), Three-component SSIM (3-

SSIM) and Normalized Absolute Error (NAE).  

 

4.2.3 HEG descriptor gain 

As for HEG descriptor gain, we have to distinguish between 

two cases:  
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(1) Metrics to be maximized, i.e., all standard metrics above 

in addition to SSIM, FSIM, PNSR. In this case, the gain is 

defined as the ratio of the HEG descriptor metric value divided 

by the corresponding competitor's metric value. For example, 

for ORL dataset, F-score gain of HEG w.r.t. 

LTP=92.25/41.77=2.21, meaning that HEG descriptor F-score 

is 2.21 times better than that of LTP. 

(2) Metrics to be minimized, i.e., runtime, MSE, and NAE. 

The HEG descriptor gain is now defined as the ratio of the 

competitor's metric value divided by HEG descriptor metric 

value. For example, runtime gain of HEG w.r.t. PCA, for ORL 

dataset is 18.76, meaning that HEG descriptor is 18.76 faster 

than PCA. Note that the gain has to be strictly greater than 

unity.  

 

4.3 Experiments on ORL dataset 

 

ORL dataset [31] is a publicly available and widely adopted 

benchmark for the evaluation of face recognition. This dataset 

contains 400 images from 40 distinct subjects. For some 

subjects, the images were taken at different times, varying the 

lighting, facial expressions (open/closed eyes, smiling / not 

smiling) and facial details (glasses/no glasses). All images are 

taken against a dark homogeneous background with subjects 

in an upright, frontal position (with tolerance for some side 

movement). The size of each image is 92×112 pixels, with 256 

grey levels per pixel. Figure 4 shows sample images of the 

ORL dataset. 

 

 
 

Figure 4. Samples of ORL dataset 

 

4.3.1 Convenient size of blocks  

 

 
 

Figure 5. HEG accuracy for different block sizes with ORL 

dataset 

 

We carried out different experiments on ORL dataset to 

determine the convenient size of blocks that contain various 

regions. This preliminary experiment allowed us to correctly 

separate these regions into blocks, so that we can perform the 

enhancement processing efficiently. We further studied the 

impact of block size on classification accuracy. The HEG 

descriptor was applied to blocks of different sizes: 2×2, 4×4, 

8×8, 16×16 and 32×32. The results are reported on Figure 5; 

clearly showing that a block of size 8×8 gives the best 

accuracy for an image of 92×112 with HEG descriptor. Note 

that the small block dimension ignored the edges and fine 

details. 

 

4.3.2 Noisy inputs  

We then added a white additive Gaussian noise with 

different values of variance (0, 0.2, 0.4, 0.8, 1.2). This 

experiment was done in order to check the HEG stability in a 

noisy environment and to evaluate the performance of the 

denoising process in each block. After the denoising process, 

we estimated the quality of recovered image using 3-SSIM and 

FSIM metrics, measured as the average of 3-SSIM and FSSIM 

values of blocks on image. Table 1 illustrates the results. Note 

that the first value shows that the image is not corrupted by 

noise; it is considered as a reference image. 

From Table 1, we can see that the metrics 3-SSIM and 

FSSIM give consistent results, because the denoising process 

is performed according to the type of each region in the block. 

The quality of the image, as measured by FSSIM, is between 

0.991 and 0.978, and, with 3-SSIM, between 0.990 and 0.977 

with noise variance less than unity. The results are acceptable 

for noise variance up to 1.2, where HEG descriptor achieves 

the best contribution. 

 

Table 1. FSSIM and 3-SSIM measures before and after 

applying HEG on ORL dataset 

 
 Before HEG After HEG 

variance 3-SSIM FSSIM 3-SSIM FSSIM 

0 0.992 0.994 0.994 0.995 

0.2 0.985 0.987 0.990 0.991 

0.4 0.978 0.981 0.984 0.987 

0.6 0.972 0.976 0.978 0.983 

0.8 0.967 0.968 0.977 0.978 

1.2 0.928 0.915 0.942 0.948 

 

4.3.3 Descriptors standard metrics on ORL dataset 

We evaluated the performance of our model on ORL dataset 

using an image corrupted by white additive Gaussian noise 

with variance 0.8 as test image, and the remaining images used 

as training set for the SVM classifier. Table 2 and Figure 6 

show the performance comparison results of different 

descriptors (LTP, LGC, LPQ, LDN, LGP, LBP, PCA, HOG, 

Gabor Filter) on ORL database.  

 

Table 2. Descriptors standard metrics and corresponding 

HEG descriptor gains (ORL dataset) 

 

Descriptor Accuracy F-Score 
Accuracy 

Gain 

F1-Score 

Gain 

LTP 40.82 41.77 2.26 2.21 

LGC 78.85 76.38 1.17 1.21 

LPQ 72.25 70.04 1.27 1.32 

LDN 65.54 48.34 1.40 1.91 

LGP 80.45 78.98 1.14 1.17 

LBP 64.45 63.24 1.43 1.46 

PCA 39.22 40.17 2.35 2.30 

HOG 89.07 88.1 1.03 1.05 

Gabor Filter 88.85 89.19 1.04 1.03 

HEG 92.05 92.25 1.00 1.00 
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Table 2 shows the accuracy, F-score of related descriptors, 

HEG accuracy gain and HEG F-score gain on the ORL dataset. 

It is noted that HEG attains high accuracy with 92.05% and 

high F-score with 92.25% immediately followed by HOG 

descriptor. This remains to the acquisition conditions of 

images on ORL database. For easy readability, in Table 2 and 

in all subsequent tables, the best results are indicated in bold. 

Figure 6. HEG descriptor gain on standard metrics (ORL 

dataset) 

Figure 6 shows the HEG gains in terms of accuracy and F-

score, in comparison with all competitors. The HEG descriptor 

improves the accuracy by a factor ranging from 1.03 (w.r.t. 

HOG) and 2.35 (w.r.t. PCA). This means that the HEG 

descriptor improves HOG accuracy by 3% and PCA accuracy 

by 135%. Additionally, it improves the F-score by a factor 

from 1.03 (Gabor Filter) and 2.30 (PCA): the improvement in 

F-score is 3% over Gabor Filter and 130% over PCA.

4.3.4 Descriptors similarity metrics on ORL dataset 

To measure the classification rate, we compute the 

similarity between the query face and each training face in the 

class using similarity metrics: MSE, PSNR, SSIM, FSSIM and 

NAE. Table 3 reports the similarity metrics values of all 

descriptors. Figure 7 shows the PSNR, SSIM and FSSIM gains 

of all descriptors. We can easily notice that the HEG descriptor 

outperforms all competitors: it attains the highest FSSIM and 

SSIM of 0.98 and 0.97. On the other hand, HEG also achieves 

the lowest MSE (4.29), and the lowest NAE (0.08).  

Table 3. Descriptors similarity metrics (ORL dataset) 

Descriptor MSE PSNR SSIM FSSIM NAE 

LTP 11.68 37.45 0.795 0.712 0.65 

LGC 9.04 38.56 0.875 0.810 0.25 

LPQ 10.00 38.13 0.840 0.790 0.32 

LDN 10.98 37.72 0.810 0.742 0.34 

LGP 6.89 39.74 0.895 0.855 0.20 

LBP 11.25 37.61 0.802 0.705 0.60 

PCA 12.98 36.99 0.745 0.697 0,61 

HOG 5.81 40.48 0.952 0.945 0.088 

Gabor Filter 6.54 39.97 0.938 0.904 0.11 

HEG 4.29 41.80 0.974 0.978 0.079 

The proposed method demonstrates a stronger similarity 

with the ORL dataset, where HEG achieves the highest FSSIM 

score across all testing images in our experiments. These 

results substantiate the capability of HEG in recognizing a 

person's face captured under noise. This effectiveness can be 

attributed to the denoising filter's performance, which is 

applied in each block based on the specific characteristics of 

each feature.  

Figure 7. HEG descriptor gain on 3 similarity metrics (ORL 

dataset) 

4.3.5 Descriptors runtime on ORL dataset 

Table 4 and the corresponding Figure 8 illustrate the 

runtime for all descriptors under study, for the ORL dataset. 

The last column on the right in Table 4 shows the runtime gain 

of the HEG. For instance, it is shown that the HEG descriptor 

achieves the lowest runtime 0.53s, improving its immediate 

competitor runtime (Gabor Filter) by 64%. It further improves 

HOG descriptor runtime by 86% and is approximately 29 

times faster than the farthest competitor (LTP). We notice that 

the runtime significantly decreases with the feature extraction 

method. 

Table 4. Descriptors runtime and HEG descriptor time gain 

(ORL dataset) 

Descriptor Runtime (s) HEG Gain 

LTP 15.52 29.56 

LGC 4.05 7.71 

LPQ 4.07 7.74 

LDN 5.88 11.21 

LGP 1.13 2.14 

LBP 5.47 10.43 

PCA 9.85 18.76 

HOG 0.98 1.86 

Gabor Filter 0.86 1.64 

HEG 0.53 1.00 

Figure 8. Descriptors runtime and HEG descriptor time gain 

(ORL dataset) 

4.4 Experiments on CK+ dataset 

The Extended Cohn-Kanade (CK+) dataset contains 593 

video sequences from a total of 123 different subjects, ranging 

from 18 to 50 years of age with a variety of genders and 

heritage [33]. Each video shows a facial shift from the neutral 

expression to a targeted peak expression, recorded at 30 

frames per second with a resolution of either 640×490 or 

640×480 pixels. Out of these videos, 327 are labeled with one 
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of seven expression classes: anger, contempt, disgust, fear, 

happiness, sadness, and surprise. These images are resized to 

92×128 pixels with grayscale representation that helps in 

simplifying computational requirements. Figure 9 shows 

samples of CK+ dataset. 

Figure 9. Samples of CK + dataset 

4.4.1 Descriptors standard metrics on CK+ dataset 

We evaluated the performance of all descriptors in terms of 

standard metrics on CK+ dataset. We used different face 

images corrupted by white additive Gaussian noise of variance 

0.8. As shown in Table 5 and Figure 10, the HEG descriptor 

achieves both the highest accuracy (91.63%) and the highest 

F-score (91.78%). More precisely, the HEG descriptor

improves both the accuracy and the F-sore of its immediate

competitor (HOG) by 5% and 8%, respectively. On the other

extreme, the HEG descriptor improves the accuracy of LTP by

136% and the F-score of PCA by 139%.

Table 5. Descriptors standard metrics and corresponding 

HEG descriptor gains (CK+ dataset) 

Descriptors Accuracy 
F-

Score 

Accuracy 

Gain 

F-Score

Gain

LTP 38.85 40.48 2.36 2.27 

LGC 77.37 76.3 1.18 1.20 

LPQ 70.42 69.57 1.30 1.32 

LDN 68.41 68.12 1.34 1.35 

LGP 80.95 81.02 1.13 1.13 

LBP 43.91 40.15 2.09 2.29 

PCA 39.10 38.39 2.34 2.39 

HOG 86.77 85.12 1.05 1.08 

Gabor Filter 85.25 84.28 1.07 1.09 

HEG 91.63 91.78 1.00 1.00 

Figure 10. HEG descriptor gain on standard metrics (CK+ 

dataset) 

Based on these results, it can be observed that HEG, which 

is based on adaptive diffusion of gradients, outperforms the 

related descriptors. This can be attributed to the effective 

techniques employed for both feature segmentation using 

gradient maps and feature restoration through anisotropic 

diffusion. 

As a result, HEG demonstrates promising performance in 

handling degraded facial images when compared to other 

conventional descriptors on the CK+ database. 

4.4.2 Descriptors similarity metrics on CK+ dataset 

We further evaluated the similarity metrics, described 

above, on CK+ dataset. According to Table 6 and Figure 11, it 

is noted that HEG descriptor achieves the highest SSIM 

similarity measure (0.964), the highest FSSIM (0.978), the 

highest PSNR (41.30). On the other hand, HEG also achieves 

the lowest MSE (5.00), and the lowest NAE (0.081). The 

classification is carried out at feature level where no 

information is lost. 

As far as similarity metrics are concerned the HEG 

descriptor is proved to be an efficient descriptor for face 

recognition on CK+ dataset. It is noted that the Gabor Filter 

results are close to standard HOGs results. This is so, because 

the Gabor Filter applies a wavelets-based filter prior to feature 

extraction. 

Table 6. Descriptors similarity metrics (CK+ dataset) 

Descriptor MSE PSNR SSIM FSSIM NAE 

LTP 18.92 35.36 0.789 0.704 0.68 

LGC 15.95 36.10 0.845 0.781 0.34 

LPQ 16.45 35.96 0.824 0.765 0.45 

LDN 17.25 35.76 0.818 0.742 0.48 

LGP 11.36 37.57 0.876 0.805 0.19 

LBP 17.89 35.60 0.801 0.719 0.62 

PCA 18.68 35.41 0.792 0.711 0.64 

HOG 6.90 39.73 0.935 0.945 0.099 

Gabor Filter 7.69 39.26 0.918 0.897 0.108 

HEG 5.00 41.30 0.964 0.978 0.081 

Figure 11. HEG descriptor gain on 3 similarity metrics (CK+ 

dataset) 

4.4.3 Descriptors runtime on CK+ dataset 

Figure 12. Descriptors runtime and HEG descriptor time 

gain (CK+ dataset) 
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We finally evaluated the runtime of the HEG descriptor on 

CK+ dataset. Figure 12 shows the runtime of all descriptors. 

The shortest runtime is obtained by HEG (0.561s), and is 

proved to be 65% faster than its immediate competitor (HOG, 

with runtime of 0.925s). As seen in Table 7, HEG is 

approximately 25.9 times faster than the slowest descriptor 

(LTP, with a runtime of 14.52s). 

 

Table 7. Descriptors runtime and HEG descriptor time gain 

(CK+ dataset) 

 
Descriptor Runtime (s) HEG Gain 

LTP 14.52 25.88 

LGC 3.182 5.67 

LPQ 4.565 8.14 

LDN 5.588 9.96 

LGP 1.825 3.25 

LBP 8.984 16.01 

PCA 11.205 19.97 

HOG 0.925 1.65 

Gabor Filter 1.147 2.76 

HEG 0.561 1.00 

 

4.5 Experiments on Extended Yale B dataset 

 

The Extended Yale B dataset contains 2414 frontal-face 

images with size 192×168 over 38 subjects and about 64 

images per subject [34]. The images were captured under 

different lighting conditions and various facial expressions. In 

our work, we only considered the frontal images. Figure 13 

presents samples of this dataset. 

 

 
 

Figure 13. Samples of Extended Yale B dataset 

 

4.5.1 Descriptors standard metrics on Extended Yale B dataset 

 

Table 8. Descriptors standard metrics and corresponding 

HEG descriptor gains (Extended Yale B dataset) 

 

Descriptor Accuracy 
F-

Score 

Accuracy 

Gain 

F-Score 

Gain 

LTP 39.85 38.58 2.33 2.39 

LGC 64.82 63.77 1.43 1.44 

LPQ 65.95 64.96 1.41 1.42 

LDN 66.43 66.31 1.40 1.39 

LGP 75.31 75.12 1.23 1.22 

LBP 65.87 64.98 1.41 1.42 

PCA 40.15 40.55 2.31 2.27 

HOG 85.77 84.61 1.08 1.09 

Gabor 

Filter 
86.42 85.16 1.07 1.08 

HEG 92.82 92.24 1.00 1.00 

 

We evaluated the performance of all descriptors on 

Extended Yale B dataset, with different face images corrupted 

by white additive Gaussian noise of variance 0.8. Table 8 and 

Figure 14 report the results. Based on the values displayed, we 

can see that the HEG descriptor gives the highest accuracy 

(92.82%) and the highest F-score (92.24%). We clearly 

observe that the HEG descriptor improves the F-score of 

Gabor filter and HOG by 8% and 9%, respectively. Besides, 

the HEG descriptor F-score gain is 2.39 better than LTP, i.e., 

it improves LTP F-score by 139% on Extended Yale B images. 

As for the accuracy, the HEG descriptor improves its 

immediate competitor (Gabor Filter) by 7% and its farthest one 

(LTP) by 133%. 

 

 
 

Figure 14. HEG descriptor gain on standard metrics 

(Extended Yale B dataset) 

 

These results enhance the feature segmentation method 

employed in our study, leading to improved classification 

performance by utilizing the enhanced gradient map generated 

by HEG. Consequently, the proposed feature extraction 

operator demonstrates increased efficiency. 

 

4.5.2 Descriptors similarity metrics on Extended Yale B 

dataset 

 

 
 

Figure 15. HEG descriptor gain on 3 similarity metrics 

(Extended Yale B dataset) 

 

Table 9. Descriptors similarity metrics (Extended Yale B 

dataset) 

 
Descriptor MSE PSNR SSIM FSSIM NAE 

LTP 15.84 36.13 0.789 0.712 0.69 

LGC 12.78 37.06 0.804 0.745 0.35 

LPQ 11.32 37.59 0.810 0.761 0.46 

LDN 10.46 37.93 0.815 0.782 0.48 

LGP 8.28 38.94 0.880 0.855 0.22 

LBP 9.34 38.42 0.852 0.810 0.45 

PCA 14.26 36.58 0.792 0.765 0,65 

HOG 6.91 39.73 0.910 0.894 0.12 

Gabor Filter 5.99 40.35 0.928 0.945 0.115 

HEG 5.08 41.09 0.946 0.978 0.079 

 

We used similarity metrics to evaluate the descriptors on the 

Extended Yale B dataset. Table 9 and Figure 15 display the 
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results. Note that HEG has the best values across all similarity 

metrics on Extended Yale B dataset with the smallest MSE 

(5.08) and NAE (0.08) The HEG descriptor attains the highest 

PSNR, SSIM and FSSIM with 41.09, 0.95 and 0.98, 

respectively. It is clearly a tangible achievement for noisy face 

recognition in a dataset of this size and complexity. The HEG 

descriptor is immediately followed by Gabor Filter, for all 

similarity metrics. The minimum improvement is 2% for all of 

SSIM FSSIM and PNSR. The maximum improvement is 20% 

for SSIM, 14% for FSSIM and 37% for PNSR, w.r.t. LTP. 

4.5.3 Descriptors runtime on Extended Yale B dataset 

We compared the runtime of all descriptors on the Extended 

Yale B dataset. Table 10 and the corresponding Figure 16 

show that the HEG descriptor has the shortest time as 

compared with other descriptors. It achieves 0.76 seconds, 

improving its immediate competitor runtime (Gabor Filter) by 

approximately 28%. It further improves HOG descriptor by 33% 

and is approximately 18 times faster than its farthest 

competitor (LTP). 

Figure 16. Descriptors runtime and HEG descriptor time 

gain (Extended Yale B dataset) 

Table 10. Descriptors runtime and HEG descriptor time gain 

(Extended Yale B dataset) 

Descriptor Run Time (s) HEG Gain 

LTP 14,75 19,28 

LGC 3,815 4,98 

LPQ 5,825 7,61 

LDN 5,143 6,72 

LGP 1,258 1,64 

LBP 8,654 11,31 

PCA 10,451 13,66 

HOG 1,018 1,33 

Gabor Filter 0,984 1,28 

HEG 0,765 1,00 

The comparison of descriptors runtime demonstrates the 

effectiveness of the HEG descriptor in performing fast 

classification on Extended Yale B dataset. We note that all 

descriptors consume much longer time than the HEG 

descriptor. 

4.6 Discussion 

In this study, we aimed to develop a model for accurate 

classification of face images captured under noisy conditions. 

We used SVM as the machine learning algorithm and 

implemented a descriptor based on HOG with adaptive 

diffusion (HEG) to improve feature extraction and 

recognition. Key lessons learned from this work include: 

(1) Face recognition systems often encounter degradations

like noise due to the inherent difficulties in capturing perfect 

images. Consequently, machine-based recognition of these 

images becomes a complex task. To improve accuracy, 

efficient descriptors are essential for classifying noisy face 

images. In this work, we implemented a descriptor based on 

HOG with adaptive diffusion, creating an enhanced feature 

vector that yielded the best classification results. 

(2) The study explored the impact of block size on feature

recovery and classification. By considering various block 

structures, the features were effectively recovered, resulting in 

efficient classification. 

(3) The proposed model identified noisy face images

through experimental testing using different levels of variance 

in noise. The quality of denoised images after applying HEG 

was assessed using the 3-SSIM evaluation metric, which 

considers three regions (edges, details, and homogeneous 

regions). The results indicated that HEG effectively described 

corrupted faces, leading to superior classification 

performance. 

(4) The proposed approach was compared to nine standard

descriptors. The performance evaluation of the proposed 

descriptor demonstrated significant improvements in 

accuracy, F1-score, MSE, NAE, PSNR, SSIM and FSSIM 

across three face databases. Notably, the HEG model 

outperformed other descriptors in both color and grayscale 

spaces. Additionally, HEG exhibited increased efficiency and 

significantly reduced execution time. 

Based on the experiments conducted, HEG outperforms other 

operators in terms of feature extraction and noisy face 

recognition. 

5. CONCLUSIONS

In this article, we presented the HEG descriptor, designed 

and evaluated for the efficient and rapid recognition of noisy 

facial images. The methodology is based on the extraction of 

enhanced features through a two-step process. Initially, the 

HOG method is utilized to capture both orientation and 

intensity information across facial regions. The selection of the 

HOG descriptor is based on its capability in capturing detailed 

gradient information, effectively emphasizing facial features. 

Subsequently, an adaptive anisotropic diffusion is applied, 

fine-tuning the enhancement, on the basis of pixel 

characteristics: edge, detail, or flat region. This differentiation 

is achieved through a thresholding algorithm based on 

magnitude gradient and orientation maps. The subsequent 

adaptive anisotropic diffusion refines this information, 

customizing the enhancement process to the specific 

characteristics of different facial regions. This dual-stage 

approach allows the HEG descriptor to efficiently recognize 

noisy facial features. As shown in the experiments, the 

integration of these methods significantly enhances the 

recognition process.  

Experimental validation on diverse datasets, including color 

(Extended CK+) and grayscale (ORL, Extended Yale B 

datasets), involved a comprehensive comparison with nine 

state-of-the-art descriptors for facial feature extraction and 

classification. The results, obtained under varying levels of 

noise variance, unequivocally demonstrated the superiority of 

the HEG descriptor. It not only gave the fastest runtime but 

also outperformed all competitors across multiple metrics such 
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as accuracy, F-score, MSE, NAE, PSNR, SSIM, and FSSIM, 

in both color and grayscale contexts. 

Looking ahead, we propose future exploration of deep 

learning-based feature extraction methods for cascade 

classification in real-time recognition of noisy facial images. 

This avenue holds promise for advancing the capabilities of 

facial recognition systems, particularly in handling 

challenging scenarios characterized by noise and variability. 
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