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This study embarks on an evaluation of the efficacy of six supervised machine learning 

algorithms in the classification of land cover in Casablanca, Morocco, utilizing Landsat 

satellite imagery. Employing the Google Earth Engine (GEE) platform for data collection, 

the research encompasses meticulous pre-processing steps and the application of various 

supervised algorithms, followed by a comprehensive evaluation of their performance. The 

city of Casablanca, characterized by rapid urbanization and evolving land-use patterns, 

presents an exemplary case for scrutinizing the algorithms' ability to accurately classify 

different land zones. These zones encompass water bodies, urban areas, agricultural lands, 

barren terrains, and forests. The algorithms under scrutiny include Support Vector Machine 

(SVM), Random Forest (RF), Classification and Regression Trees (CART), Minimum 

Distance (MD), Decision Tree (DT), and Gradient Tree Boosting (GTB). The assessment 

of classification outcomes leverages multiple accuracy indicators, namely overall accuracy 

(OA), Kappa coefficient, user accuracy (UA), and producer accuracy (PA). Results indicate 

that the Random Forest algorithm exhibits superior performance, achieving an accuracy of 

95.42%, while the Support Vector Machine algorithm lags with a lower accuracy of 83%. 

This investigation underscores the critical role of advanced machine learning algorithms in 

land cover classification, a pivotal aspect for urban and regional planning, natural resource 

management, and risk assessment in rapidly changing environments. 
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1. INTRODUCTION

In the domain of environmental monitoring and land cover 

analysis, the application of supervised algorithms for 

classifying Landsat satellite imagery [1] stands as a critical and 

rapidly evolving area of research. This investigation aims to 

conduct a comprehensive assessment of the effectiveness of 

various supervised algorithms in the classification of Landsat 

images, with a specific emphasis on the urban landscape of 

Casablanca, Morocco [2]. Characterized by its rapid 

urbanization and intricate land-use dynamics, Casablanca 

provides a complex setting for this analysis, marked by a wide 

array of urban structures and evolving land-use patterns. 

The imperative for this study emerges from the increasing 

necessity to establish robust classification methodologies 

capable of delineating distinct land cover types within dynamic 

urban environments. The consequences of hasty urban 

expansion necessitate an in-depth examination of spatial 

transformations, particularly for applications in natural 

resource management, urban planning, and environmental 

challenge mitigation. 

This research explores a spectrum of state-of-the-art 

supervised classification algorithms [3, 4], namely SVM [5], 

RF [6], GTB [7], DT [8], MD [9], and CART [8]. Each 

algorithm possesses unique attributes; however, their aptitude 

in the specific context of Casablanca's variable and complex 

environmental conditions necessitates a thorough evaluation. 

The study aims to transcend mere analysis of overall 

accuracy, delving into finer aspects such as sensitivity to varied 

land cover classes, resilience under spatial and temporal 

variations, and generalizability across diverse urban settings. 

Land cover classification is integral to informed decision-

making in sustainable development, urban planning, and 

environmental preservation. Nevertheless, the task is 

challenged by the complexity and rapid transformation of land 

characteristics and the demand for precise large-scale data 

acquisition. 

Land use classification stands as a fundamental element in 

urban planning [10-12], natural resource management, and risk 

assessment. The ability to discern how land is utilized in 

different regions is imperative for informed decision-making 

processes related to sustainable development. Yet, achieving 

precision in land use classification is laden with challenges. 

The accuracy of land use classification is paramount. It 

ensures that the information employed in decision-making, 

encompassing urban planning, environmental conservation, or 

natural risk management, is relevant and reliable. The primary 

difficulties in this endeavor arise from the complexity and rapid 
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evolution of soil characteristics, coupled with the necessity of 

procuring accurate data on a substantial scale. 

In addressing these challenges, the role of satellite 

technology, particularly Landsat 8 OLI, is indispensable. These 

satellites provide critical data for land cover classification, 

facilitating extensive observation and consistent data collection 

on a large scale. 

To effectively tackle the intricacies of land classification, 

the deployment of specific algorithms is essential. This study 

will evaluate the efficacy of algorithms such as SVM [5], RF 

[6], GTB [7], DT [8], MD [9], and CART [8]. These algorithms 

will be assessed for their ability to accurately classify land 

cover in varying contexts. 

SVM: SVMs are a type of supervised learning algorithm 

employed for both classification and regression challenges. 

Their primary objective is to identify an optimal hyperplane 

that categorizes the data into distinct classes, maximizing the 

margin between these classes. This separation is key to SVM's 

efficacy in handling various classification tasks. 

CART: CART algorithms utilize tree structures for 

decision-making, based on specific data characteristics. They 

function by recursively segmenting data into homogeneous 

subgroups, thereby facilitating precise classification or the 

prediction of continuous variables. This method is particularly 

effective in scenarios where decision rules can be hierarchically 

structured. 

RF: RF comprises an ensemble of decision trees, each 

constructed using a random subset of the training data. This 

approach enhances the model's accuracy and robustness by 

mitigating the variance typically associated with individual 

decision trees, making it a robust choice for complex 

classification tasks. 

GTB: GTB involves sequentially building multiple models, 

often weak decision trees, to rectify errors from preceding 

models. This cumulative approach results in a more effective 

overall model, proving valuable in scenarios requiring nuanced 

error correction and refinement. 

DT: DTs are a form of tree structure that represent various 

decisions and their potential outcomes. Each node signifies a 

feature, each branch symbolizes a decision pathway, and each 

leaf denotes a final output or classification. This method is 

widely used for its simplicity and interpretability. 

MD: The Minimum Distance classifier operates by 

categorizing objects based on their proximity to predefined 

prototypes. It computes the similarity between the 

characteristics of an object and those of the prototypes, 

classifying the object into the class of the nearest prototype. 

This technique is particularly useful in applications where 

proximity to known categories is a reliable indicator of class 

membership. 

The principal aim of this research is to critically compare and 

assess the performance of selected algorithms when applied to 

Landsat 8 OLI imagery within the Casablanca region. Utilizing 

the Google Earth Engine platform [13], the study evaluates the 

capability of these algorithms to accurately categorize various 

land cover types, including Forest, Barren, Built-Up, Water, 

and Cropped areas. This comprehensive assessment endeavors 

to elucidate the efficacy, suitability, and limitations of each 

algorithm in the context of land cover classification in 

Casablanca. 

The significance of this investigation lies in its potential to 

furnish decision-makers, urban planners, and environmentalists 

with essential insights regarding the reliability and precision of 

land use data derived from these algorithms. Such information 

is crucial for making informed decisions in urban development 

and environmental conservation. 

This document is methodically structured to facilitate a clear 

understanding of the research process: Section 2 offers a review 

of prior studies in the realm of satellite image classification. 

Section 3 introduces the study area and delineates the data 

sources, providing a solid foundation for the research. Section 

4 outlines the experimental methodology employed in this 

study. Section 5 is dedicated to the interpretation and analysis 

of the results, including a thorough discussion of the 

experimental findings. The final section, Section 6, articulates 

the conclusions drawn from this investigative endeavor. 

 

 

2. RELATED WORK 

 

Numerous studies by Gorelick et al. [14] have addressed 

land cover classification using machine learning techniques, 

underscoring the significance of automated monitoring 

programs based on remote sensing for resource management 

and decision-making. The advent of AI integration within the 

Google Earth Engine (GEE) [13], Ma [15] has enhanced 

processing capabilities and scalability. However, the literature 

indicates various challenges in land cover classification. These 

include transitioning from basic algebraic methods to more 

complex AI-based approaches, such as Machine Learning and 

Deep Learning [16-18], aimed at generating precise data about 

settlement areas. The extraction of information and 

classification of images represent considerable challenges, 

leading researchers to develop innovative systems for 

classifying input image pixels. Furthermore, the literature 

highlights the importance of time series satellite images and 

effective temporal aggregation methods in achieving enhanced 

classification accuracies [4, 9, 19, 20]. 

Previous research [3, 21-23], particularly in European and 

Asian regions, has extensively utilized GEE and various 

algorithms for land cover classification, providing valuable 

insights into the effectiveness of remote sensing technologies 

and machine learning algorithms in identifying land cover 

dynamics. The research community has employed GEE to 

examine diverse landscapes and land use patterns, contributing 

to an understanding of environmental changes and ecosystem 

dynamics. 

Despite the global scope of this research, there is a noticeable 

gap in studies specifically focused on Morocco, particularly the 

city of Casablanca. Casablanca's unique urban landscape, 

characterized by rapid urbanization and varied land use patterns, 

presents specific challenges and opportunities for land cover 

classification. The paucity of dedicated studies in this 

geographical context presents a significant research 

opportunity to enhance the understanding of classification 

methodologies tailored to the Moroccan landscape [3]. To 

address this gap, the current study evaluates six supervised 

machine learning algorithms, expanding beyond the commonly 

employed RF, SVM, and CART. This research aims to provide 

insights into the land cover dynamics of Casablanca, 

contributing to more comprehensive land use studies in the 

region. By investigating these algorithms, the study not only 

enriches the understanding of land cover dynamics in 

Casablanca but also demonstrates the potential of advanced 

classification methods in addressing unique regional 

challenges.
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3. STUDY AREA AND DATASET 

 

3.1 Study area 

 

Casablanca is a vibrant city located in the western part of 

Morocco, situated on the Atlantic coast. Its geographical 

coordinates are approximately 33.5731° N latitude and 7.5898° 

W longitude. Figure 1 shows Casablanca area. As the largest 

city in Morocco and one of the major cities in North Africa, 

Casablanca serves as an essential economic, cultural, and 

industrial hub in the region. 

The surrounding areas of Casablanca consist of suburbs, 

agricultural lands, and natural features, making it an ideal 

study area for assessing land cover dynamics and urban growth 

using satellite imagery. 

 

 
 

Figure 1. Casablanca study area 

 

3.2 Overview of Landsat 8 OLI satellite data used 

 

The Landsat 8 OLI satellite data used in this study were 

acquired over multiple time periods, enabling temporal 

analysis to monitor changes in land cover over time. The 

spatial resolution of Landsat 8 OLI imagery ranges from 15 

meters for the panchromatic band to 30 meters for the 

multispectral bands. Table 1 shows an overview of temporal 

and spatial resolution of Landsat 8. 

 
Table 1. Spatial and temporal resolution of the Landsat 8 

OLI imagery [24]  

 

Name 
Spatial Resolution 

(meters) 
Temporal Resolution 

B3 30 

Landsat 8 orbits the Earth every 99 

minutes, providing images with a 

high temporal frequency. 

B4 30 

B5 30 

B6 30 

B7 30 

 
Prior to analysis, the Landsat 8 OLI satellite data [24] 

underwent necessary preprocessing steps, such as atmospheric 

correction and radiometric calibration, to ensure data accuracy 

and reliability. These preprocessed images served as the 

foundational dataset for applying supervised algorithms [25] 

to classify land cover in the Casablanca region. 

The Landsat 8 OLI satellite data, with its high-resolution 

and multispectral capabilities, provides a valuable resource for 

understanding land cover dynamics, urban expansion, and 

environmental changes in Casablanca, contributing to 

informed decision-making for sustainable development and 

resource management in the city. 
 

 

4. METHODOLOGY 

 

To achieve precise land cover classification in the 

designated study area, the methodology for using supervised 

algorithms in the classification satellite image within Google 

Earth Engine follows a systematic approach. By adhering to 

the process illustrated in Figure 2, researchers can effectively 

employ supervised machine learning algorithms, using Google 

Earth Engine, to classify Landsat satellite images. This 
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facilitates the acquisition of valuable insights into land use 

dynamics, enabling informed decision-making in the realms of 

urban planning and environmental management. The 

procedural breakdown is as follows. 

 

4.1 Data acquisition and preprocessing 

 

The first step was to download Landsat 8 OLI satellite 

imagery [26] from the Google Earth Engine (GEE) [14] for the 

targeted region, Casablanca, Morocco.  Subsequently, the 

imagery underwent preprocessing and filtering to rectify 

atmospheric distortions and ensure radiometric calibration, 

thereby guaranteeing data quality and consistency. The 

timeframe selected for analysis spanned from January 1, 2021, 

to December 31, 2021, capturing various land cover conditions 

and changes over the specified period. 

 

 
 

Figure 2. Workflow of the methodology used 

4.2 Data preparation and feature extraction 

 

Following data acquisition, the process transitioned to data 

preparation and feature extraction. As shown in Table 2, five 

classes were defined based on study objectives and specific 

characteristics of the study area. Geometric points (features) 

were collected for each class from the composite image, and 

training data were generated by randomly partitioning this 

feature collection into 80% for training and 20% for validation. 

 

4.3 Model training 

 

At this stage, six supervised algorithms were chosen to 

undertake land cover classification, in correspondence with 

the six classes identified in the previous step (built-up, 

cultivated, forest, barren and aquatic areas). The algorithms, 

namely RF SVM [5], RF [6], GTB [7], DT [8], MD [9], and 

CART [8], were selected for implementation in the Google 

Earth Engine platform. The previously prepared data were 

used to train these algorithms, enabling them to learn to 

associate the extracted features with the corresponding land 

use classes. More specifically, the training data was divided 

into training and validation sets, in order to assess model 

performance during training and prevent over-fitting. 

 

4.4 Model assessment 

 

We measured the accuracy and generalization capabilities a 

model trained on the validation dataset. To assess the 

performance of each algorithm, evaluation measures such as 

accuracy and confusion matrices [27] were used. We followed 

a process to evaluate and calculate the accuracy of each 

classification method, i.e. the accuracy of a classified map. 

This process involves creating a set of random points from real 

terrain data sets, which we then compare to the classified data 

(classified map) using a confusion matrix. This matrix 

summarizes the prediction results for a specific classification 

problem, by comparing the actual data for a target variable 

with the model's predictions. Correct and incorrect predictions 

are identified and classified by class, enabling comparison 

with predefined values. The importance of this matrix lies in 

its ability to detect specific errors made by a prediction 

algorithm. Figure 3 shows an example of a confusion matrix, 

and Table 5 illustrates the kappa coefficient and overall 

accuracy for each classification. 

 

 
 

Figure 3. Confusion matrix form [28] 

 

4.5 Classification of land cover 

 
The final phase of our study involved the creation of land-

use maps and the visualization of results to assess model 

performance and identify classification errors and ambiguities. 

Based on the classification results, we generated detailed land 
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use maps, assigning each pixel a specific land cover category. 

These maps provide an accurate visual representation of the 

spatial distribution of the different classes, facilitating an 

overall understanding of landscape dynamics in Casablanca.  

The methodology used to classify Landsat satellite images 

in Casablanca using supervised algorithms via Google Earth 

Engine is systematic and structured. Data acquisition and 

preprocessing are involved in the process, in which Landsat 8 

OLI imagery for Casablanca is obtained, preprocessed, and 

filtered to ensure data quality. The subsequent step includes 

data preparation and feature extraction, defining five land 

cover classes and creating training data for supervised 

algorithms such as Random Forest, CART, SVM, Decision 

Tree, MD, and GTB. Following the data preparation, the 

models are trained using the prepared training dataset, 

associating extracted features with corresponding land-use 

classes. Model evaluation is conducted using a validation 

dataset, employing accuracy and confusion matrices to assess 

the performance of each algorithm. This evaluation process is 

crucial in detecting specific errors made by the prediction 

algorithms. Finally, land cover classification is executed, 

resulting in the generation of land-use maps and visualization 

outputs for evaluating results and identifying any 

classification errors or ambiguities.  

The outlined methodology provides a comprehensive 

framework for accurate land cover classification in the study 

area, facilitating valuable insights for urban planning and 

environmental management decisions. 

Spectral indices, also known as spectral ratios, are 

mathematical formulas used in remote sensing and image 

analysis to extract specific information about the Earth's 

surface from satellite or aerial imagery [2]. These indices are 

designed to enhance certain features or characteristics that are 

not easily distinguishable in individual spectral bands [29]. 

They provide valuable insights for various applications, 

including agriculture, environmental monitoring, and urban 

planning. Table 1 shows the names of these bands and their 

spatial and temporal resolution. 

·NIR: Near-Infrared band 

·Red: Red band 

·Green: Green band 

·SWIR: Shortwave Infrared band. 

 

Table 2. Equations of spectacles indices 

 

 
5. RESULTS AND DISCUSSION  

 
The experimental results highlight the varying performance 

of the different classification algorithms evaluated. Each of 

these algorithms presents strengths and weaknesses that merit 

in-depth analysis to guide the selection of the most appropriate 

model for specific applications. Figure 4 shows the overall 

accuracy (OA) of different methods. 

Various metrics [35] have been used to assess the 

performance of each classification method [4], including 

overall accuracy, user accuracy for each class, manufacturer 

accuracy for each class and the Kappa coefficient obtained 

from the confusion matrix. The equations used to calculate 

these indicators are shown in Table 5. To assess the accuracy 

of classified land cover maps produced by supervised machine 

learning algorithms in GEE [11, 12]. 

We carried out an in-depth analysis of the confusion matrix 

for each method. The results are presented in Tables 3 and 4, 

which give a comprehensive overview of the accuracy 

assessment. 

The confusion matrix is an essential tool for assessing the 

performance of a classification model [36], providing a 

detailed insight into how it classifies data according to its 

reality. It is generally square in shape, with the entries 

representing the different possible outcomes of a classification, 

as shown in Figure 3. In the case of a binary classification 

problem (with two classes), it is generally divided into four 

boxes [27]: 

·True positives (VP): The model has correctly predicted 

that the element belongs to the positive class (actual and 

predicted values are both positive). 

·True negatives (VN): The model has correctly predicted 

that the element does not belong to the positive class (actual 

and predicted values are both negative). 

·False positives (FP): The model has incorrectly predicted 

that the element belongs to the positive class when it doesn't 

Index Spectral Equation Description 

(NDVI) Normalized 

Difference Vegetation 

Index 
NDVI =

NIR − RED

NIR + RED
 

It is a widely used spectral index to assess vegetation health and density. It quantifies 

the abundance of healthy green vegetation by calculating the difference between near-

infrared (NIR) and red spectral bands, divided by their sum. NDVI values range from -1 

to +1, where positive values indicate healthy vegetation, zero represents non-vegetated 

surfaces like bare soil or water, and negative values indicate non-vegetated features like 

clouds or snow [30, 31]. 

(MNDWI) Modified 

Normalized 

Difference Water 

Index 

MNDWI

=
Grⅇⅇn − SWIR1

Grⅇⅇn + SWIR1
 

It is used to identify and map water bodies and wet areas. It is an enhanced version of 

NDWI that uses the green and shortwave infrared (SWIR) bands. The formula involves 

calculating the difference between green and SWIR bands, divided by their sum. Higher 

MNDWI values suggest the presence of water, while lower values indicate land 

surfaces [32]. 

(BSI) 

Bare Soil Index 
BSI =

Grⅇⅇn + NIR

Grⅇⅇn − NIR
 

It highlights areas with bare soil or unvegetated surfaces. It is calculated by using the 

SWIR and red bands to assess the presence of soil. The formula involves dividing the 

difference between SWIR and red bands by their sum, and then applying a quadratic 

function. Higher BSI values indicate bare soil or sparse vegetation, while lower values 

indicate dense vegetation [33]. 

(NDBI) Normalized 

Difference Built-up 

Index 
NDBI =

SWIR − NIR

SWIR + NIR
 

It is used to detect and map built-up or urban areas. It compares the SWIR and NIR 

bands to identify built-up surfaces. The formula involves calculating the difference 

between SWIR and NIR bands, divided by their sum. Positive NDBI values suggest 

built-up areas, while negative values indicate non-built-up areas [34]. 
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(actual value is negative and predicted is positive). 

·False negatives (FN): The model has wrongly predicted 

that the element does not belong to the positive class, when in 

fact it does (actual value is positive and predicted is negative). 

To improve the classification results, spectral indices such as 

NDVI [37], BSI, MNDWI and NDBI were incorporated. These 

indices were used during the feature extraction phase and 

included in the training data, helping to improve the classifier's 

performance. This approach enabled more accurate 

identification of land use categories. 

 

 
 

Figure 4. Overall accuracy (OA) of different methods 

 

 
Figure 5. Legend of classification results 

 

Random Forest clearly emerged as the leading algorithm, 

posting a remarkable overall accuracy of 95.42%. This high 

performance can be attributed to the ensemble nature of this 

model, which combines predictions from multiple decision 

trees to reduce over-fitting and improve generalization. This is 

particularly beneficial in complex contexts such as land cover 

classification. However, it is crucial to assess the model's 

sensitivity to variations in the training data, and to test its 

robustness in the face of different data sets. In addition, the 

impact of hyperparameters, such as the number of trees in the 

forest, should be examined to optimize model performance.  

Minimum Distance also stands out, with an overall accuracy 

of 94.77%. Its strength lies in its conceptual simplicity and 

efficiency, particularly in class discrimination. However, the 

performance of this algorithm may be sensitive to the spatial 

distribution of the data and differences in class variability. 

Further analysis of the discriminating features identified by the 

MD could help to understand the underlying mechanisms of 

classification. It could also help identify scenarios where the 

simplicity of the MD approach might be preferable to more 

complex models. 

 

Table 3. References data /classes  

 

Classes Quantities of Geometric Points 

Water_area 115 

Barren_area 150 

Cropped_area 119 

Built-up_area 130 

Forest_area 174 

Total numbers 688 
 

Table 4. Land cover evaluation metrics of each method 
 

Classification and Regression Trees (Cart) 

 Producer 

Accuracy 

User 

Accuracy 

Overall 

Accuracy 

Kappa 

coefficient 

Water_area 100 100 

91.50 0.89 

Barren_area 95.12 97.5 
Forest_area 89.65 81.25 

Built-up_area 76.92 83.33 
Cropped_area 92.30 92.30 

Support Vector Machine (SVM) 

 
Producer 

Accuracy 
User 

Accuracy 
Overall 

Accuracy 
Kappa 

coefficient 
Water_area 100 100 

83 0.78 

Barren_area 100 77.35 
Forest_area 82.75 75 

Built-up_area 69.23 81.81 
Cropped_area 50 86.66 

Random Forest (RF) 

 
Producer 

Accuracy 
User 

Accuracy 
Overall 

Accuracy 
Kappa 

coefficient 
Water_area 100 100 

95.42 0.94 Barren_area 97.56 100 
Forest_area 93.10 90 

Built-up_area 84.61 91.66   
Cropped_area 100 92.85 

Gradient Tree Boost (GTB) 

 
Producer 

Accuracy 
User 

Accuracy 
Overall 

Accuracy 
Kappa 

coefficient 
Water_area 100 100 

93.46 0.91 

Barren_area 97.56 100 
Forest_area 79.31 92 

Built-up_area 88.46 79.31 
Cropped_area 100 92.85 

Decision Trees (DT) 

 
Producer 

Accuracy 
User 

Accuracy 
Overall 

Accuracy 
Kappa 

coefficient 
Water_area 100 100 

91.50 0.89 

Barren_area 95.12 97.5 
Forest_area 89.65 81.25 

Built-up_area 76.92 83.33 
Cropped_area 92.30 92.30 

Minimum Distance (MD) 

 
Producer 

Accuracy 
User 

Accuracy 
Overall 

Accuracy 
Kappa 

coefficient 
Water_area 100 100 

94.77 0.93 

Barren_area 95.12 100 
Forest_area 86.20 92.59 

Built-up_area 92.30 88.88 
Cropped_area 100 89.65 
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Figure 6. Land cover classification map for Casablanca 

SVM RF 

CART DT 

GTB MD 
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Figure 7. The producer’s accuracy (PA), and the user’s accuracy (UA) values of each classifier 
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Table 5. Kappa coefficient and overall accuracy for land use 

classification of each classifier used 

 
Classifier Overall Accuracy % Kappa Coefficient 

SVM 83 0.78 

Cart 91.50 0.89 

RF 95.42 0.94 

GTB 93.46 0.91 

DT 91.50 0.89 

MD 94.77 0.93 

 
Table 6. Equations of evaluation metric 

 
Metrics Equation 

(PA) 

Producer 

Accuracy 

PA =
Corrⅇct imprⅇvious surfacⅇ pixⅇl

Total imprⅇvious pixⅇls
 

Kappa Coefficient 𝐾 =  
paccord − PHasard

1 − PHasard
 

(OA) 

Overall Accuracy 

OA

=
Numbⅇr of corrⅇctly classifiⅇd samplⅇs

Numbⅇr of samplⅇs
 

(UA) 

User Accuracy 
UA =

Corrⅇct imprⅇvious surfacⅇ pixⅇl

Corrⅇct + Misclassifiⅇd pixⅇl
 

 
Although the SVM achieved 100% accuracy for the "Water" 

class, its overall accuracy of 83% raises questions about its 

ability to handle variability in other classes. SVM is renowned 

for its ability to handle high-dimensional data, but its success 

often depends on the judicious choice of kernels and 

parameters. A thorough analysis of support vectors and 

separation margin could reveal information about the relative 

difficulty of classification for different classes. Optimization of 

SVM parameters could also be explored to improve its 

performance. 

Gradient Tree Boost presents an interesting balance between 

producer and user accuracy, with an overall accuracy of 

93.46%. This algorithm can adjust its predictions based on 

previous errors, which can be advantageous in scenarios where 

classes are unbalanced. However, GTB's interpretability may 

be less than that of other, simpler algorithms, raising questions 

about the model's transparency. For applications where model 

explicability is crucial, GTB-specific interpretation techniques 

could be explored [7]. 

Decision trees (CART and DT) have shown solid 

performance, albeit inferior to that of RF. Their simplicity and 

interpretability make them attractive candidates in contexts 

where understanding the decision process is crucial. However, 

the propensity of decision trees to overfitting can be a challenge, 

and regularization techniques may be needed to improve their 

generalizability. The use of cross-validation and other model 

validation strategies could help alleviate this problem. Table 3 

and 4 illustrate the Kappa coefficient and Overall accuracy for 

land use classification of each classifier used. 

Integrating the results of previous studies [3, 19, 22, 26, 37-

42] and our own research, the main achievement of this study 

lies in the successful adaptation of the methodology to land use 

mapping and evaluation in different geographical contexts. 

The results underline the superiority of the Random Forest 

classifier over other classifiers, with an impressive accuracy of 

95.42% and a Kappa coefficient of 0.94, underscoring its 

substantial superiority over random classification. Figure 5 

shows the legend of classification results and Figure 6 gives a 

visual presentation of the classified cards. 

In summary, this research has contributed significantly by 

successfully adapting the methodology for mapping and 

assessing land use in diverse regions or countries. The results 

underlined the importance of spectral indices in improving 

classification accuracy and highlighted the need to consider 

the inherent complexity of land cover classification in diverse 

contexts. Figure 7 shows the producer’s accuracy (PA), and 

the user’s accuracy (UA) values of each classifier. 

 

 

6. CONCLUSION AND FUTURE WORK 
 

In conclusion, this paper has embarked on a comprehensive 

exploration of the effectiveness of six supervised algorithms 

in the classification satellite images, specifically within the 

dynamic urban landscape of Casablanca, Morocco. The 

selected algorithms, including Random Forest, Classification 

and Regression Trees, Support Vector Machine, Decision 

Trees, Minimum Distance, and Gradient Tree Boost, were 

implemented on the Google Earth Engine platform, leveraging 

its computational capabilities. This study produced significant 

results, highlighting the superiority of the Random Forest 

classifier in land use mapping in Casablanca, with an accuracy 

of 95.42% and a Kappa coefficient of 0.94. The integration of 

spectral indices, such as NDVI and BSI, considerably 

improved classification accuracy, demonstrating the relevance 

of this approach in a variety of contexts. These results are of 

crucial importance for the accurate mapping of urban areas, 

with practical implications for resource management and 

urban planning. The real-world applications of this research 

can be seen in the increased ability to understand and monitor 

changes in land use, particularly in areas such as natural 

resource management, disaster prevention and urban planning 

decision-making. The spectral indices used in this study offer 

a promising approach to discriminating different land cover 

characteristics, paving the way for more specific applications 

such as early detection of changes in forest areas or monitoring 

of expanding urban areas. 

For future work, it is recommended to further explore the 

use of new data sources, including higher resolution satellite 

images, as well as emerging techniques such as deep learning. 

The exploration of hybrid methods, combining supervised and 

unsupervised approaches, could also help improve the 

robustness of classification models. In addition, the integration 

of temporal data could provide a deeper understanding of 

seasonal and long-term changes in land cover. These 

recommendations are aimed at further optimizing the accuracy 

of classifications and extending the scope of applications in 

fields such as environmental management and urban change 

monitoring. 
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