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A functional equation is one of the most important and fascinating areas of mathematics,
which involves simple algebraic manipulations and can lead to a variety of interesting
results. In recent decades, numerous authors have studied different types of functional
equation and its stability, such as Hyers-Ulam Stability, Hyers-Ulam-Rassias Stability,
and generalized Hyers-Ulam Stability. The stability of functional equations and mixed-
type functional equations has been extensively explored by numerous researchers across
various spaces, yielding intriguing results primarily in the classical (Archimedean)
setting. In recent years, attention has shifted towards investigating the Hyers-Ulam
stability (HUS) of generalized Quadratic functional equations in non-Archimedean

normed spaces. This article demonstrates the Hyers-Ulam Stability (HUS) of Quadratic
functional equations. g(3x —y) + g(x + 3y) = 10g(x) + 10g(y), glvx —
)+ glx +vy) = W + 1)g(x) + (v + 1)g(),for any integer v # 0, in NAN
space by using the direct method. Also, we have given some suitable counterexamples.

1. INTRODUCTION

The inquiry into the stability of functional equations
originated from a query posed by Ulam [1] in 1940 when
considering the stability of group homomorphisms. The
question of Ulam is as follows. “Given two groups H; and H,
with the metric d(.,.) on H, and for € > 0, does there exist
6 >0 such that if a mapping G:H,; — H, satisfies the
inequaltiy d(G(a, b),G(a)G (b)) < & for all a,b € H,, then
there exist a homomorphism G':H; - H, with
d(G(a),G'(a)) < € for every a € H;?.” Every solution of
Cauchy functional equation f(x +y) = f(x) + f(y) is said
to be an additive mapping. Hyer's [2] responded to Ulam's
question regarding Banach spaces in 1941. Let f be a mapping
from E — E' between Banach spaces such that

Ifx+y)—fx) - fOI<$

for every x,y € E, and for some § > 0. Then there exists a
single additive mapping T: E — E' such that

Il f(x)—Tx)lI<sforallx € E.

Furthermore, T is linear if f(tx) is continuous int € R for
each fixed x € E.

Rassias [3] extended Hyer's theorem in 1978 by permitting
the Cauchy difference to be unbounded. Gajda [4] in 1991,
answered the question of Rassias for the case p > 1. In 1994,
Gavruta [5] gave the generalization of the Rassias theorem by
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replacing unbounded Cauchy difference with the general
control function. Bae and Kim [6] investigated the HUS of the
Q.F equation for three variables in 2001.

Moslehian and Rassias [7] showed the solution of the
generalized Ulam-Hyers stability of the Cauchy functional
equation in 2007. Hyer’s Ulam-Rassias stability problem of
the Q.F equations in NAN spaces has been proved by many
researchers ([8-11]). Bae et al. [12] introduced different types
of Q.F equations in 2021.

A normed space without Archimedean properties has been
introduced by Hensel [13] in 1897 which is called as NAN
space. Over the past thirty years, numerous physicists have
found non-Archimedean space theory to be a compelling area
of study for their research, especially in the realms of quantum
physics, p-adic strings, and superstrings [14]. Despite the
existence of non-Archimedean counterparts to many classical
normed space theory, the proofs in this context are
fundamentally distinct, requiring a wholly new perspective
[9-11, 15, 16].

Many researchers have extensively investigated the stability
of various functional equations, with particularly intriguing
findings emerging in the classical (Archimedean) case. The
stability problem for these functional equations has been
studied in non-Archimedean spaces in recent years.

The aim of this research is to investigate the Hyers-Ulam
stability (HUS) of the generalized quadratic functional
equation within a NAN space.

In this current article, we prove the following Q.F equations
in NAN space using direct method.
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gBx —y) + g(x +3y) —10g(x) — 10g(y)=0.

gx —y) + glx +vy) — @* + Dg(x) — W + Dg((y)=0.

2. PRELIMINARIES

This section will provide an overview of some fundamental
facts concerning Non-Archimedean spaces and discuss several
preliminary results cited in references [16-20].

A valuation is a mapping | .| from the field % to the non-
negative real numbers, denoted as [0,), satisfying the
following properties:

i.  0isthe unique element in K with a valuation of 0.

ii.  The valuation of the product of two elements |r| and
|s] is equal to the product of their valuations |rs| =
I7].]s].

iii.  The triangle inequality holds:

[r+s| <|r|l+|s|,Vr,seX.

A field I is called a valued field if K carries a valuation.
The usual absolute values of R and C are example of
valuations.

Definition 2.1 A Valuation on X (a field) is a function
|.|: % - [0, ) which satisfies the following conditions:

(i) |r| = 0, and equality holds if and only if r = 0;

(ii) |rs| = |r|.|s| forany r,s € K and

(iii) |r + s| < max{|r|, |s|} (stronger triangle inequality)
is said to be a non-Archimedean Valuation.

Definition 2.2 [21] Let X be a linear space over a non-
Archimedean field I equipped with a non-trivial valuation |..
A function norm defined from X to X is considered a non-
Archimedean norm if it adheres to the following conditions:

Nl rl=0and=0iffr =0,

(ilarl=lalllrl,a e X,reX,

@iii) lIr + s I<max{ll r I, s I}, ,s € X.
Then (X, ||| is called a NAN space.

Definition 2.3 A sequence {x,} in a NAN space is considered
convergent if there exists an x € X such that

lim |l x, — x ll= 0 for every x € X.
n—-oo
In this case, we call that {x,} = x (or) limx, = x.
n—oo

Definition 2.4 A sequence {x,} in a NAN space (X, II.Il) is
known as the Cauchy sequence, if there exists x € X
such that

lim |l xp41
n—-oo

—x, =0

Definition 2.5 A sequence {x,} is Cauchy in a non-
Archimedean space if and only if the sequence {x,;, — x,}
converges to zero. In the context of a complete non-
Archimedean space, completeness implies that every Cauchy
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sequence in the space converges.

p-adic numbers stand out as significant examples of non-
Archimedean spaces. A characteristic of p-adic numbers is the
deviation from the Archimedean axiom, as they do not adhere
to the condition: for x,y > 0, there exists an n in the set of
natural numbers (N) such that x is less than ny.

In this article, we introduce the generalized quadratic
functional equation as follows:

Dg(x,y) = glux —y) + gx + vy) — v* + Dg(x)
-+ Dg)

In particular,

Eg(x,y) =gBx —y) + g(x +3y) —10g(x) — 10g(y)

Consider the functional inequalities

IEgCx, Ml < §(x,y) (1)

and

IDg (x, I < $(x,y) 2

for an upper bound function &: X2 — [0, o).

3. STABILITY OF THE Q.F EQUATIONS

In this section, it is presumed that X represents a NAN space,
while X' denotes a non-Archimedean Banach space.

Theorem 3.1 Let g: X —» X' be a function that fulfills the
inequality (1) and g(0) = 0.
Let &: X2 — [0, o0) be a mapping such that

N, an
lim @ x4™y)

ol =0,Vx,y €X.

A3)

n—oo

Then, there is only one quadratic function @, (x) from X to
X' exists and

hg(x) —Q(x) I sup {|16|n+1§(4"x 4"x)} Vx€EX. 4)
Proof:
Substitute y by x in (1), we arrive

llg(2x) + g(4x) — 10g(x) — 10g(x)|| < &(x,x)
Q)
lg(4x) — 16g(0)|| < &(x,x),vx € X.

”g(4X) ()” |16|f(xx)

Replacing x by 4™x in (5), we get

lg(4.4"x) — 16g(4™x)|| < £(4"x,4"x)
” g(4™1x)  g™x) (4™ x,4™y)
16n+1 16T [167+1

(6)

gun

Hence the sequence { } is Cauchy.



Therefore {g} is convergent.

Let
s g(d™x)
Qz(x) - Tlll—I;I(?O 16M .
Consider,
ICHED)
|45 - 9
_ llae™ g™ x) g(4x)
_||16—"_ T (x)”
(4"x) g 'x) (4%)
<max{A e i gy
< max{m“‘l AV f(xx)}
- [16]™ R BT
m m
< sup {Wx—M} Vn€Nandall x € X.
0sm<n |16]

Taking limit n — oo on bothsides, we get

I g(x) — 0,(x) lI< sup{ £(4nx, 4nx)},Vx €X.

1
[16]7+1

Now, by putting x and y as 4™x and 4™y respectively, in
(1), we get

lg(3.4"x — 4™y) + g(4™x + 3.4™y) — 10g(4™x) — 10g(4"y)l|
< §{(@"x,4%y)

”g(4”(3x - y)) + g(4"(x + 3y)) —10g(4"x) — 109(4”3/)”
< &(4™x,4™y)

9(4"Bx—y)) 94" +3y)) 10g(4™x) 109(4")

6™ 16" 16™ 16m
§@™x4"y)
< e Vx,y € X.

Taking limit n — o on bothsides,

llo,(3x - ») + 9,(x + 3y) — 109, (x) — 100,(»)||

< lim M =0.
T n-oowo |16|™
Therefore Q, is quadratic mapping.
To prove uniqueness:
[ Qz(x) Qz(x) I
< —{l1Q2(4"x) — g(4")|l, lg(4™x) — Q3 (4™x) ||}

|16|"
Sup {W f(4"+1x, 4"+1x)}.

Taking limit n — oo on bothsides, @, (x)
Hence, uniqueness of Q, is proved.

= Q7(x).

Theorem 3.2 Let g: X — X' be a function that fulfills the

inequality (1) and g(0) = 0.
Let &: X2 — [0, o0) be a mapping such that
lim |16|"§(4n,4n) 0,Vx,y € X. (8)

Then, there is only one quadratic function @, (x) from X to
X' exists and
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I g(x) —Q,(x) II< sup{|16|"+1f (i i)} Vx € X. )

Proof:
Substitute y by x in (1), we get

llg(2x) + g(4x) — 10g(x) — 10g ()l < & (x,x)
(10)
lg(4x) — 1690l < &(x,x), vx € X.

Replacing x by —— in (10), we get
||g ( 4"+1) —16g (4"+1) | =< (4;“ '4;“)
leG)-10GHI =iGmmm)

16720 (55) - 16°0 (55)

Hence the sequence {16”g ( )} is Cauchy.

Therefore {16"g ( )} is convergent.
Let

4n+1

(11)

< |16|n€ (4"+1 ’ 4"11 )

9,(x) = lim16"g (7).

Consider,

167+ () o)
_ ||16n+1 (ﬁ) —16"g (:‘—n) + 16" —16"1g (4:_1) +
169 (¥) - 9|
S N ) 0
< max{|16|nf (4n+1'4n+1 2 |16|0€ (E'E
8 oi‘iﬁn {|16|m+1€ (4m+2’4':+2)}
vn€Nandall x € X.

< max{

Taking limit n — oo on bothsides, we get

< 16| ad X \4 X
1 9(0) = 0200 I sup ] |f(4n+1,m)}, x €X.

Now, by putting x and y as g - and

(1), we get

o (35

1
||g 4ntl
||16n.g(

16" 10g(

respectively, in

4n+1

+3. 4n+1) —10g (4n+1) -
109 (35)|| = ¢ (7750

1 X
(3x — y)) +g <4n+1 (x + 3y)> — 10g (4n+1) —
y x y
10g (4n+1) | S E (4n+1 ’4n+1)

n+1(3x—y))+16“ (1 (x+3y)>—

n+1
n+1) - 16n 10g ( n+1)

Yy
| < ners (75.75)
Taking limit n — oo on both sides,

4_n+1) +9 (4_n+1

fant1




|lo,3x = y) + 9,(x + 3y) — 100, (x) — 100, ||
< |16|"f(4n+1,4n+1) =0.

Therefore Q, is quadratic mapping.
To prove uniqueness:

I1Q2(x) — Q2(x)
< max|16|n{“Qz (i) -9 (41") !

< sup{|16|n+1+15( x

4n+] 4n+]

(fn) -%(5)

J

Taking limit n — oo on bothsides, 9, (x)
Hence, uniqueness of @, is proved.

= Q2(x).

Corollary 3.3
Let g: X —» X' be a quadratic function that fulfills the
inequality,

I EgCe,») 1< 8(llxlI™ + Iyl + Iy 1)V x,y € X,

wherer,s,§ € Rt
Then,
(i) For r + s > 2, there is only one quadratic function
Q,(x): X - X' such that

— r+s
= Jlx

1gG) = Q,(x) I 2

(if) For r + s < 2, there is only one quadratic function
Q,(x): X - X' such that
I g(x) — Q2(x) I< [16] 36 ||x||"**

Proof:
Consider,

I EgCe,y) 1< 8(llxlI™* + NIyl + llxII"lylI*) V x,y € X.
Given

§Ce,y) = SClxN™ + Iy ™ + ™yl (13)

Case (i) Replacing x and y by 4™x and 4™x respectively in
(8), we get

§(4™x, 4"x) = 6 ([|4™x|I* + [|4™x([I"* +

147x||" (1475 = 38|14 x||"** (14)

From Theorem (3.1),
1
lg@) = 20l < sup {1

&E(4Mx, 4"x)} Vx € X.

< sup {7 3814"x[|"** | {using (14)}

neN
[lll”™* n[(r+s)-2]
sup {|4] }
N

= 36—
1412

If r + s > 2, then we obtain,

r+s

lg(x) = Q) < 11|

|16|

Case (ii) Replacing x and y by fn and ;—n respectively in
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(13), we get
£(55)=5(
lgC) = Q2COll < sup {1161 € (3 n)} Vx € X,

< sup

{l r+s
16 }
neN

=36 ||x||r+ssup{|4|z |4|n[2—(r+s)] }
neN

T+s r+s r s

X

4n

X

4n

X

4n

x

4n

X

)

4n’ 4

If r + s < 2, then we obtain,

r+s

llg(x) — 0, ()l < 38 |16 | |Ix]|

In the situation where r+s=2,
counterexample is applicable.

the following

Example 3.4 Consider a prime number p > 2 and g: Q, —
Q, be defined by g(x) = x*+ 1. For alln € N, |2"], = 1,
for § > 0, we obtain

IE g, I = 1201 < 1 < (X" + lylI™* + lxlI" 1y 11

Vxy€EX.
and
gi™x) g4
H Tenti e =115 #0
g(4™x)
which implies { } is not a Cauchy sequence.

4. STABILITY OF THE GENERAL Q.F EQUATION

Theorem 4.1 Let g be a function X to X’ that satisfies (2) and
g(0) = 0. Let &: X% — [0, o) be a mapping such that

ux, u"
limu= 0,vx,y € X,whereu=v + 1.

noco [uz|n

(15)

Then, there is only one quadratic function @, from X to X’
exists and

1
l9() =020l < sup {rzrer £ u)

(16)
vxe€EX.
Proof:
Putting y = x in (2), we arrive
llg(ux) —u?g ()l < §(x,x) 7)
Substituting x by u™x in (4.3), we get
lg@™*x) —ulg ™)l < §(u™x, u"x)
g™ x) gl _ §@"x, u'x)
uzn+z  g2n = |ulzt? (18)
Hence the sequence { ga” } is Cauchy.



Therefore {Q} is convergent.

Let
. (u™x)

Q,(x) = lim £
Consider,
g™x)
15— 9@

l[g@w™) g™ )| |lgQux)
max I u2n w22 ||’ | 02 —9(x)

(19)

™ Ixu™ 1x) E(x,x)
< max{ e B }
m m
< sup {%}Vne Nand x € X.
osm<n

Taking limit n — oo on bothsides, we get

1
I 9(x) = Q2() I sup {Wf(u X u x)},Vx €X.

Now, by substituting x by u™x and y by u™y respectively,
in (2), we get

lg(u — Du" x —u"y) + g™ x + (u — Du"y)
—(w-1D*+1Dg"x) — ((u - 1>+ Dg" ||
< &Wx,u™y)

hg((w—1%+D((w-Dx-y)+g(w-1)*+1)
(x+ @@-Dy) - ((u-D*+Dg(u—-1? + Dx
—((w—-1D?+Dg(w—-D? + Dy I< Ex,u"y)

((u-1)2+1)g(u™x)
uzn -

((w-1)2+1)gu"y)
uzn

||g(u"(u—1)x—y) n g+ -1)y))
uzn uzn
Smxumy)
[u?™

Taking limit n — oo on bothsides,

102 (1 = D =) +Q20r + (u = 1)y) = (= 1? + 1) ©2(x) ~
(=1 + DM < Jim 2D — o,

Therefore Q, is quadratic mapping.

To prove uniqueness:

I 02(x) — Q4(x) i< maxﬁ{" 0, (u"x) — g(ux) |l

I g(u™x) — Q5 (u"x) I}
I Q2(x) = Q50) IS sup (s € (W™ x,u™ ) .
JEN

Taking limit n — oo on bothsides, @, (x)
Hence, uniqueness of Q, is proved.

= Q7(x).

Theorem 4.2 Let g be a function X to X' that satisfies (2) and
9(0) = 0. Let &: X2 — [0, o) be a mapping such that

(— l)—OnyEX

lim [u]|?"¢ (— o

n—-oo

(20)

where, u=v+1, then, there is only one quadratic function Q,
from X to X' exists and
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I g(x) — Q,(x) ||<sup{|u2|n+1g( Lol vryex. @i

Proof:
Putting y = x in (2), we arrive
llg(ux) —u?g ()l < §(x,x) (22)

Substituting x by —-

in (22), we get
o (vmm) - o (7o) < € (G )

g i) g ()] = e ()

Hence the sequence {lulzn (u )} is Cauchy.

Therefore {lulzn (u )}
Let

ynti1

(23)

is convergent.

X
= 1i 2n
Q,(x) = lim [u|*"g (u")

Consider

||u2(n+1)g(un+1) g(x)”
N ]
< max {Iulzrzg (un+1,uf+1), o ulzne Gg)}

sup {Iulz(m“)f (uzﬂ'#)}

osm<n

e

24
<

vn € Nand x € X.

*_and y by u™y respectively,

ynti

Now, by substituting x by
in (2), we get

g (v.—

Dg (

u"+1) ( :+1 n+1) - (UZ +
2= @+ D (25) 1< € (2 )

Tunti

<

1

9 (7 0x =) + g (e x4+ 3)) - 07 +
)g( "+1) N (U + 1)9( n+1) I < E(ﬁ,#)

( i (vx—y)> +u? g(%(vx +y)) -
? + Du?rg (un+1) W? + 1)u2“g( n+1)

w'¢ (e i)
1Q2(vx — ¥) + Q2 (x +vy) — (W? + Q2 (x) — (v* + D Wl
< 11m |u|2”§<

||u2n

un+1’ un+1) = 0
Therefore Q, is quadratic mapping.
To prove uniqueness:

10,0 - Q4|
< maxlul? {1 0, (%) - 9 (=) I lg (&) - 22 (5) 1}

< SUP{|u|2(n+]+1)f( x )}

JeN unti’ yn+j

Taking limit n — oo on bothsides, @, (x) = 95 (x).



Hence, uniqueness of @, is proved.

Corollary 4.3
Let g: X —» X' be a quadratic function that fulfills the
inequality,

Il DgCx,y) 1< SCIxN™ + llyll™* + lIxI"lylI*)V x,y € X,
wherer,s,§ € Rt

Then,
(i) For r + s > 2, there is only one quadratic function
Q,(x): X » X' such that

1900 = Qo) 1< 255 1™

(i) For r +s < 2, there is only one quadratic function
Q,(x): X — X' such that

I g(x) = Qx(x) I [ul? 36 [lx|I™**.

Proof:
Consider,

I Eg(x, y) 1< 8CllxlI™* + lylI™** + llx|I"lylI*)
Vx,y€X.

(25)
Given &(x,y) = S(llx /™ + Ny lI™* + llx "y lI)

Case (i) Replacing x and y by u™x and u™x respectively in

(20), we get

£ x,umx) = S(urxlIT + el + 2
el ) = 3sunefrrs (26)
From Theorem 4.1,

lgC0) = 200Nl < sup {7 £ xum )} v x € X,
< sup {W 36| |umx||"ts } using (4.12)}

neN +
llx |l

=36
|ul?

n[(r+s)-2]
sup {Jul }

IIXII

If r + s > 2, then we obtain, ||g(x) — Q,(x)|| < 36

Case (ii) Replacing x and y by ;—n and ;—n respectively in (25),
we get

() = (

r+s r+s r

X X

un
T+s

X

un

X

)

un un

X

un

36

lg() = 20l < sup {lu*™ ¢ n,un)} VxeEX.
< sup {

r+s}
neN

=38 ”x”r+s sup {luln [2— (r+s)]}
neN

If r + s < 2, then we obtain,

r+s

llg () = Q2(I < 38 [ul? [Ix]|
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For the scenario where r + s = 2, we present the following
counterexample.

Example 4.4 Consider a prime number p > 2 and g: Q, —
Q, be defined by g(x) = x* + 1. For alln € N, |2"], = 1,
for § > 0, we obtain

IDgCe, M = vI? <1 < 8CUxII™* + yll™** + llx "Nyl

Vx,ye€ELX.
and
g™ gwy|| _ [1-v?|
|| u2n+2 u2n T uj2nt2 # 0,
gu™x)

where u = v + 1, which implies {
sequence.

} is not a Cauchy

uzn

5. CONCLUSION

In recent years, numerous authors have deliberated on the
HUS (Hyers-Ulam stability) of functional equations in NAN
space. In the present article, we delve into the HUS of the
generalized Q.F. equation

gx —y)+ gx +vy) — @+ Dg(x) — @* + Dg®)

in NAN space. Also, we proved the theorem using direct
method. This method plays a major role in proving the stability
problems. Also, we have proved the result for particular case
with some suitable counter examples. This work contributes to
the broader understanding of stability problems in the context
of NAN spaces and functional equations.
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