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Nowadays, ontologies are backbone of Semantic Web. Several domains use ontologies as 

knowledge models. As their number is constantly increasing, designers are opting to reuse 

some of those that exist to build new ones. When it is impossible to reuse a part depending 

on its organization, they import the whole ontology and this makes the manipulation 

cumbersome especially if the ontology has large concepts. Therefore, segmenting 

ontologies into partitions, if they are not yet, becomes a constant challenge for designers. 

This paper presents an approach to modularize ontology using hidden Markov model. 

Ontology triples are extracted within ontology through SPARQL queries and labelled with 

integers. The labelled triples constituted a Markov chain where ontology concepts are states 

and ontology relationships are symbols. This set is used to initialize HMM parameters such 

as states transition probabilities and symbols observation probabilities matrix and initial 

states probabilities vector. The transition probabilities matrix of HMM is then used as input 

of K-Means algorithm to generated modules of ontology concepts. This approach does not 

handled ontology axioms, which characterize heavy ontologies, and only lightweight 

ontologies are considered. Experiment on eighteen ontologies, obtained modules satisfied 

ontology modularization criteria such as independence, non-redundancy, correctness and 

completeness. 
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1. INTRODUCTION

Ontologies are considered as the heart of the architecture of 

the semantic web and among the use of ontologies we have 

resource annotations (documents, images, videos, etc.). 

Formally, Gruber defined ontology as "Ontology is an explicit 

specification of a conceptualization" [1]. This definition was 

completed by Borst as “Ontology is an explicit and a formal 

specification of a shared conceptualization” [2]. With these 

definitions, we can outline that ontology is a set of concepts 

and axioms which describe certain domain knowledge. Hence, 

ontology contents are: classes or concepts, relationships 

(properties), instances (individuals) and axioms. Concepts 

represent a set of entity classes within the domain. 

Relationships specify the interaction among classes. Instances 

indicate the concrete examples of classes within the domain 

and axioms denote statements which are always true [3]. The 

construction of these ontologies follows a life cycle whose 

essential points are specification, conception, implementation, 

validation and maintenance. Validation step requires 

reasoning on the knowledge represented and maintenance step 

needs a probable evolution. Most of ontologies thus built are 

monolithic, that is to say, the concepts of these ontologies are 

in a single block and one concept can be linked to any concept. 

With this type of ontologies, especially if they contain several 

concepts (large) or are complex in their organization, it is 

sometimes difficult to ensure scalability or to conduct efficient 

reasoning. With a plethora of ontologies for the same domain, 

the authors opt for a reuse of part of ontology to keep persistent 

definitions of the concepts, which is not easy with monolithic 

ontologies, if so it is necessary to reuse all the ontology. To 

deal with these difficulties on monolithic ontologies, the 

authors opt for modular ontologies either by composition 

(building small independent partitions of ontologies and 

merging them) or by decomposition (partitioning monolithic 

ontologies into coherent modules) [4]. Regardless of the axis 

chosen, it must follow the goals concerning scalability for 

querying data and efficient reasoning on ontologies, scalability 

for evolution and maintenance, complexity management, 

understandability, context-awareness, personalization and 
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reuse. These goals are more described in studies [4-6] and 

maintain by evaluation criteria outlined in the study of 

d’Aquin et al. [7], such as correctness, completeness, 

connectedness, module cohesion, richness of representation, 

which are applied for technique validation. 

In the literature, we distinguish five categories of ontology 

modularization techniques subdivided into two groups 

according to the chosen axis. The axis of composition of 

ontology modules includes Distributed Description Logics, 𝜀-

Connexions, Package-based Descriptive Logics and the 

Conservative Extensions and for the axis of decomposition we 

have Graph-based Ontology Segmentation [4]. In the field of 

Graph-based Ontology Segmentation, five approaches [8-12] 

have been illustrated and the best known are PATO [8] and 

OAPT [11] which are interested in the partitioning of 

hierarchically organized concepts. However, these ontology 

segmentation approaches come up against limits, in particular 

the redundancy of ontology concepts in the modules, the 

manual assignation of isolated concepts to the modules, the 

merging of modules whose number of elements does not reach 

the fixed threshold and sometimes lack of semantics. 

Since managing knowledge represented by ontologies using 

machine learning tools becomes increase, authors introduced 

possibility to capture ontology characteristics through hidden 

Markov Model (HMM) [13] and proposed in the study of 

Warda et al. [14] an approach to turn ontology into HMM 

based on ontology triples produced by SPARQL queries on it. 

As a result, this study aims to propose a method to 

modularize lightweight ontologies using machine learning 

technique more precisely the hidden Markov model. Ontology 

axioms are avoided in this approach and then heavy ontologies 

are not considered because they are characterized with axioms. 

However, if heavy ontologies are used, axioms are not handled. 

Ontology triples are extracted within ontology through 

SPARQL queries and are used to initialize a HMM parameters 

such as states transition probabilities distribution matrix, 

symbols observation probabilities distribution matrix and 

initial states probabilities distribution vector via some 

equations. Ontology concepts are considered as HMM states 

and ontology relationships as HMM symbols. Since 

partitioning ontology consists in dividing its concepts into 

partitions, only the state transition probability distribution 

matrix of the HMM will be used as input for the K-Means 

algorithm to compute ontology modules. The rest of this paper 

is organized as follow: state of the art regarding HMM 

definition and related works are described in Section 2. The 

proposed method is detailed in Section 3. Section 4 focuses on 

experimental findings and discussion. The last Section is 

devoted to the conclusion and potential future trends and 

challenges. 
 
 

2. STATE OF THE ART 

 

2.1 Hidden Markov Model (HMM) 

 

A Markov model is a stochastic phenomenon. This model 

verifies a certain number of properties such as: the model 

changes state at determined instants of time (the space of time 

is discrete) and the Markovian property (the current state of 

the model depends only on the last known state). HMM 

expression is used when the states of Markov model are hidden. 

HMMs were introduced in the 1960s - 1970s by Baum and his 

collaborators [15]. The formal definition of a Hidden Markov 

Model (HMM) denoted as λ, which consists of the set {N, B, 

A, B, π}, is provided by Warda et al. [14]. 

(1) N is the number of HMM states, we note S =
{S1, S2, . . . , SN} the set of states; 

(2) M is the number of HMM symbols, we note 𝑉 =
{𝑣1, 𝑣2, . . . , 𝑣𝑀} the set of symbols; 

(3) 𝐴 = [𝑎𝑖𝑗], 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , is the states’ transition 

probabilities distribution matrix of the model;  

(4) 𝐵 = [𝑏𝑗(𝑘)], 1 ≤ 𝑘 ≤ 𝑀 , is the observation symbols 

probabilities distribution matrix of the model; 

(5) 𝜋 = [𝜋𝑖], 1 ≤ 𝑖 ≤ 𝑁 , is the initial states probabilities 

distribution of the model. 

HMMs are models used in several areas of daily life 

including speech processing, handwritten text recognition, 

biological sequence analysis, image recognition, medical 

signal modelling and many others. They solve three main 

types of problems: evaluation, decoding and learning. The 

evaluation problem consists in calculating the probability of 

observing a sequence knowing the model and is solved with 

the Forward-Backward algorithm. The decoding problem is to 

determine the best possible sequence of states from the model. 

This optimal sequence is obtained with the Viterbi algorithm. 

As for the learning problem, it consists in improving the 

parameters A, B and  of the model with respect to a given 

sequence of observations and this is done with the Baum-

Welch algorithm [16]. HMMs have been used either to 

populate ontologies or combine them together to build systems 

[14]. Indeed, HMMs are models that preserve the semantics 

between elements and their graphical representation brings 

them closer to ontology, which would widely contribute to the 

modularization of ontologies. 

 

2.2 Related works 

 

The first reference approach was introduced in 2006 by 

Schlicht and Stuckenschmidt [8]. They proposed PATO, an 

approach for large hierarchical concepts partitioning. This 

approach is based on tree main steps. In the first step, they 

created a dependency graph extracted from ontology file. The 

second step concerned the determination of dependencies 

strength between the concepts in the graph and in the last step, 

they detected sets of concepts which formed modules. These 

principal steps are followed by two additional steps. The 

fourth step is reserved to the assignation of isolated concepts 

to the appropriated existed module and in the fifth step, for 

some modules where the size (obtained by some formulas) is 

under a threshold, they are merged into adjacent module with 

a lower size. This approach is the commonly used by authors 

for ontology modularization problems. Guided by some 

properties of modules, Ensan and Du [17, 18] proposed a 

framework to develop modular ontology through interfaces-

based formalism. To achieve their goal, they supposed that a 

modular ontology is a set of independent modules which are 

interfaces-based joined. Designers are free to develop each 

module independently to each other’s language and signature 

and modules can cover separate domain knowledge. Similarly, 

Doran [19] began by revisiting principles of ontology 

modularization and discussed about some of techniques. Then 

he proposed an approach to extract ontology module. To 

achieve this goal, firstly, he defined competency of module to 

be extract. Secondly he selected target ontology based on 

ontology evaluation. At the end he selected appropriate 

module. Based on ontology organization, Özacar et al. [20] 

proposed Anemone, a methodology for modular ontology 

development. The modular ontology obtained with this 
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methodology behaves like a monolithic ontology which is 

organized into modules classed into layers. The bottom layer 

module (small ontology) imports the directly above layer 

module. Another approach reposed in classification-based 

learning was proposed by Alaya et al. [9]. They defined five 

steps. In the first step, they used hierarchical classification to 

partitioning ontology concepts by identifying their 

dependences. In the second step, they enriched each partition 

resulted in the previous step by adding appropriated axioms 

and others properties for the whole ontology to be modularized. 

When there is redundancy between modules (partitions) 

according to a certain threshold, in the third step, these 

modules are fused. In the fourth step, they update modules by 

adding entities of whole ontology which are not treat during 

previous steps. In the last step, they mapped modules to 

established semantic links among them. In the study of Ahmed 

et al. [10], a graph partitioning approach was proposed by 

Soraya et al. This methodology turned around five steps. At 

the first step, OWL constructors (classes, relationships, 

properties, axioms) are extracted within the ontology. The 

second step concerned the creation of Dijkstra-based 

algorithm level graph. They compute similarity measures (six 

measures) between classes in the third step. Based on these 

similarity measures, the fourth step is devoted to the clustering 

process using K-Means algorithm with some adjustments. The 

last step concerned the validation of the approach. To deal with 

the limits of previous approaches, Alsayed et al. proposed 

OAPT [11], an Ontology Analysis and Partitioning Tool, 

which regrouped five components. In the pre-processing 

component, they checked the input format of ontology and if 

it is necessary, they parsed and represented it into concept 

graph. The analysis component concerned the determination 

of ontology design metrics referred to structural, semantic and 

syntactic categories. These metrics helped them to evaluate the 

richness of the ontology. The next components referred to the 

modularization and determination of optimal number of 

modules. To do it, they began by ranking each concept, 

determined the heads of clusters and then performed partitions 

using seed-based algorithm and finished by generating 

modules. In the last component, they evaluated the 

methodology. Guided by the plethora number of ontologies in 

BioPortal, Alsayed and Birgitta [12], experimented the 

possibility for partitioning these ontologies. These 

experiments are based in four steps. Firstly, they used 

BioPortal to get all accessible ontologies and transformed 

them into OWL or OBO formats using OWL API in the second 

step. In the third step, they partitioned these ontologies through 

PATO, OAPT and AD algorithms before analysing these 

results in the last step. Recently, Shimizu et al. widely 

contributed to ontology modularization by developing MODL 

in the study of Shimizu et al. [21], a modular ontology design 

library. It is a collection of documented ODP (ontology design 

patterns). An ODP is a small and reusable set of concepts and 

axioms which solve an invariant problem in various domains. 

They collected five categories of ODP and documented them. 

Based on these components, they developed again CoModIDE 

in the study of Shimizu and Hammar [22, 23], a 

Comprehensive Modular Ontology Engineering IDE, which is 

a plugging for Protégé. It is composition of ODP. Le Clair and 

Khedri [24] developed algebraic technique based on logical 

technique to propose a modularization approach. The modules 

derived from set of Boolean sub-algebras which covered 

evaluation metrics for ontology modularization techniques: 

local correctness and local completeness. Finally, Shimizu et 

al. [23], proposed a method which automated the type-based 

generation of abstraction modules. They created five 

algorithms associated to the five defined types of abstraction: 

axiom abstraction, vocabulary abstraction, high-level 

abstraction, weighted abstraction and feature expressiveness. 

The approaches here mentioned are not the only ones but the 

most cited in the literature. Nevertheless, others are cited in the 

study of d’Aquin et al. [7, 25-27]. Among these approaches 

hereinbefore cited, only those described by Schlicht and 

Stuckenschmidt [8-12] concerned the top-down method which 

refers to the splitting up of ontology into modules. One of the 

common limits of these approaches is the manual assignation 

of isolated concepts to modules. At the end of steps, on the one 

hand, it happens that there are some concepts that remain 

isolated [8-10, 12]. They therefore assigned to modules 

according to the defined criterion. On the other hand, the 

number of concepts in some modules does not reach a fixed 

threshold. A module in this condition is systematically merged 

with the one that is close [8, 9, 12]. Among the modularization 

criteria, the non-redundancy of concepts is a determining 

factor, yet this criterion is not fully taken into account in the 

approaches proposed by Algergawy et al. [11, 12] because 

sometimes concepts are present in several modules. The last 

point that the OAPT approach comes up against is the loss of 

semantics [11]. The approach described here overcomes these 

limitations. Indeed, the ontology triples extracted from the 

ontology guarantee the semantics of the ontology and the 

incidence matrix corresponding to the state transition 

probability distribution matrix of the HMM highlights the 

different relationships between the concepts. The application 

of the K-means algorithm leads to the disjunction of the 

modules and any assignation of the concepts to the modules is 

automatically done. The modules obtained are formed 

according to the relationships that exist between the different 

concepts and the size of the modules is consequently linked. 

Table 1 summarized and outlined these limits. 

 

Table 1. Decomposition-based approaches and their limits  
 

Approaches Main Idea MAC  FMM R LST 

[8] 

Partitioning of 

large 

hierarchical 

concepts 

(PATO) 

Yes Yes No No 

[9] 
Classification-

based learning 
Yes Yes No No 

[10] 

Partitioning 

ontology due 

adapted K-

Means 

Algorithm 

Yes No No Yes 

[11] 

Partitioning 

ontology based 

on the seeding-

based scheme 

(OAPT) 

No No Yes No 

[12] 

Portioning of 

BioPortal 

ontologies 

Yes Yes Yes No 

(MAC: Manual assignation of concepts, FMM: Fusion or merging modules, 

R: Redundancy, LST: Lack of semantics from triples) 
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3. PROPOSED APPROACH 

 

The Figure 1 describes the steps of this approach. 

 

 
 

Figure 1. HMM-based process of ontology partitioning 

 

3.1 Step 1: Transformation of ontology into HMM 

 

Ontology can be seen as a set of triples. A triple is a (subject, 

predicate, object) set where subject and object are classes; 

predicate denotes the relationship between subject and object. 

Various methods for learning ontology properties using 

HMMs have been discussed in the study by Warda et al. [14]. 

The following step is adapted from their findings [14]: 

(1) Firstly, they extracted ontology triples. These triples 

derived from SPARQL queries. Triples can be filter according 

to the type of predicate.  

(2) Secondly, they labelled obtained triples to replace 

concepts and predicates names (string type) by numbers to 

facilitate manipulations. 

(3) Thirdly, they initiated HMM parameters with the 

labelled triples using Eqs. (1)-(3). 

 

number of triples (i  subject and j  object)

number of triples (i   subject)  
ija



= =
=

= +
 (1) 

 

In Eq. (1), 𝑎𝑖𝑗  is the ratio of the number of ontology triples 

where concept i is the subject and concept j is the object by the 

number of ontology triples having concept i as the subject. 

This ratio corresponds to the probability that there are relations 

between the concepts numbered respectively with i and j 

consequently it is the probability that there is transition 

moving from the states i to j of the HMM. 

 

number of triples (j  subject and k  predicate)
( )

number of triples (k  predicate) ε
jb k

= =
=

= +
 (2) 

 

Similarly, in Eq. (2), 𝑏𝑗(𝑘) corresponds to the ratio of the 

number of ontology triples where concept j is the subject and 

relationship k is the predicate. This ratio is the probability that 

there are relations resulting from the concept numbered by j 

consequently it is the probability of observing the symbol k in 

state i of the HMM. 

 

number of triples (i  subject)

total number of triples  
i



=
=

+
 (3) 

 

In the same manner, in Eq. (3), 𝝅𝒊 
corresponds to the ratio 

of the number of ontology triples where concept i is the subject 

by the total number of ontology triples. This ratio is the 

probability that the concept numbered with i is the subject of 

the triples and consequently it is the probability that i is an 

initial state of the HMM. 

Since 𝑎𝑖𝑗 , 𝑏𝑗(𝑘)  and𝜋𝑖  are probabilities distributions, by 

adding 𝜀 to the denominator of Eqs. (1)-(3), probabilities laws 

are not satisfied. Hence the rest value to reach 1 is equitably 

redistributed to each of them. 

All these steps are more detailed in the study of Warda et al. 

[14] and this approach has been used here to turn ontology into 

HMM. 

 

3.2 Step 2: Clustering 

 

In this step, states transition matrix (A) of obtained HMM 

is used as a set of vectors in which the clustering algorithm 

should be applied. The following configurations are 

considered: 

(1) The transition matrix (A) of the obtained HMM is 

divided into set of vectors: 𝐴 = [𝐴𝑗], 1 ≤ 𝑗 ≤ 𝑁 , where 𝐴𝑗 =

[𝑎𝑖𝑗], 1 ≤ 𝑖 ≤ 𝑁, is a vector.  

(2) The set of states, 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁}, is equivalent to 

the set of ontology concepts coming from the SPARQL 

queries. States are independent because associate concepts are 

different. 

(3) For each 𝑆𝑗 , 1 ≤ 𝑗 ≤ 𝑁 , component of S, we can obtain 

all the transition probabilities to other states. These 

probabilities correspond to the vector 𝐴𝑗 of transition matrix. 

Hence ⟨𝑆1, 𝑆2, . . . , 𝑆𝑁⟩  is considered as a basis where each 

vector 𝐴𝑗 can be expressed. 

(4) Clustering algorithm is then applied and vectors to be 

partitioned are 𝐴 = [𝐴𝑗], 1 ≤ 𝑗 ≤ 𝑁 . Appropriate distance 

measures and number of clusters can be defined. 

Among the clustering algorithms described by Xu et al. [28, 

29], K-Means is the most widely used in the literature for 

ontology segmentation. The organization of the data (concepts) 

to be partitioned represented by the different vectors from the 

HMM incidence matrix (A) conforms to the K-Means input. 

We could not apply the hierarchical grouping because in 

addition to the hierarchical organization, the ontology 

concepts are linked by other relations like object Property type. 

So our focus was on K-Means and distance measures can be 

changed to analyse the behaviour of the results. Several 

distance measures can be applied: Euclidean, Cosine similarity, 

Dice, etc. The optimal number of clusters is obtained by the 

Elbow method integrated to the K-Means algorithm [30]. 

 

3.3 Step 3: Validation 

 

This step consists to validate the proposed approach. 

Several criteria come from software engineering and are 

outlined in d’Aquin et al. [7] and some of them can be applied: 

Independence: the proposed approach partitions a set of 

concepts generated by ontology triples. The resultant clusters 

are independent according to K-Means algorithm. 

Local correctness and local completeness: all concepts 

inside each module and its signature generated by this 

approach belonged to the huge used ontology because the 

triples were generated within this ontology. 

Size: Since Elbow method is used to determine the number 

of clusters, the size of each module is consequently related to 

the organization of target ontology. 
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Intra-module distance and connectedness: since the 

components axy  of vectors are probabilities distributions, if 

this value rich 1, it means that class represented by x and class 

represented by y are strongly linked with a certain predicate 

(hierarchical link or object property). To ensure this validation 

metric, we defined a value of module distance: 

 

,

1
M xyx y M

W a
m 

=   (4) 

 

In this formula, M is the module which the intra-module is 

computed and m is the number of elements in module M. If 

𝑊𝑀 reach 1 then the module is coherent. At the end, for all 

modules, we defined a weight 𝑊 which refers to the average 

of their intra-module distances: 

 

1

K

k

k

W W
=

=  (5) 

 

where, K is the number of modules obtained by the Elbow 

method before partitioning huge ontology. This value gives the 

degree of the modules quality. 

Non-redundancy: intrinsically, this criterion is ensured by 

the proposed approach. All modules are disjoined according to 

the description of this methodology. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Experiments on ontologies 

 

To experiment this approach, we used eighteen ontologies 

freely download on BioPortal website 

(https://bioportal.bioontology.org/ontologies). The SPARQL 

queries used for these experiments are: 

 

Table 2. Queries used for experiments 

 
Query 1 Query 2 

SELECT ?s ?o  

WHERE{ 

             ?s rdfs:subClassOf ?o . 

                 ?s a owl:Class . 

                 ?o a owl:Class . 

               } 

SELECT ?s ?p ?o  

WHERE{ ?s a owl:Class .  

                 ?o a owl:Class .  

               ?p a owl:ObjectProperty . 

                 ?p rdfs:domain ?s .  

                 ?p rdfs:range ?o . 

             } 

 

In Table 2, Query 1 extracts ontology triples where the 

predicate is the subclass relationship, the subject is subclass 

and the object is the associate parent class. In other word, this 

query brings out the hierarchical relationship among ontology 

concepts. Query 2 extracts ontology triples where the predicate 

is an object property relationship, the subject is the domain of 

this object property and the object is its range. There are not 

only these queries that we can used. Someone can add own 

queries and produces the associated triples. It is important to 

note that the number of relationships between ontology classes 

influences the quality of ontology modules. The higher 

number of relationships means better quality of modules and 

if this number rich 1, the ontology is seen like a hierarchical 

classification of concepts. 

For these experiments, two distance measures were used for 

the K-Means algorithm: Euclidean Distance and Cosine 

Similarity. 

The numbers of modules (obtained with Elbow method), 

concepts per module and intra-module distances are 

summarized in Table 3 (for Cosine Similarity) and Table 4 (for 

Euclidean Distance). These tables show also the numbers of 

ontology classes and relationships among these classes 

derived from the triples obtained with the above queries. The 

number of modules can change according to the distance 

measure chosen. For instance, for OntoRepliCov ontology, 

with Euclidean Distance, the number of partitions is 4 and it is 

6 with Cosine Similarity. User can directly define the number 

of partitions however the results cannot satisfy modularization 

criteria. During the validation step, it is easy to compare results 

related to the number of relationships within the ontology 

based only on module size criterion. Qualities of obtained 

modules for this experiment are strongly influenced by the 

expansion of hierarchical organization of these ontologies. 

Thus, the subclass relationship among classes subdued others 

relationships or properties, hence influenced the number of 

concepts per module.  

The comparative study of Tables 3 and 4 shows that three 

ontologies (1.5 Covid19-IBO, Bspo and OntoRepliCov) have 

higher module numbers with Cosine Similarity than with 

Euclidean Distance. The choice of the number of partitions for 

a clustering algorithm often causes a problem because a large 

number K can lead to too fragmented partitioning, limiting the 

discovery of interesting data patterns; on the other hand, a 

number K that is too small potentially leads to too general 

clusters containing a lot of data. Thus, the results obtained for 

the proposed modularization approach with the Euclidean 

Distance are better than those obtained with the Cosine 

Similarity because the number of clusters obtained gives intra-

module distances very close to 1 and then ensure modules 

quality. 

Browsing Table 3 and Table 4, the number of modules and 

the number of concepts per module for each ontology are the 

same for some ontologies and for the two tables, sometimes, 

the first module has the high number of ontology classes (1.5 

Covid19-IBO, Biotope, Bspo …). This situation consequently 

depends to the influence of subclass relationship in these 

ontologies. To deal with this situation, user can avoid this 

relationship and consider only object properties if they can be 

sufficient to extract the most quantity of ontology concepts 

through SPARQL queries. Furthermore, ontologies with small 

number of concepts are not strongly influenced with subclass 

relationship (e.g. OntoRepliCov, Syndromes, Hom).  

A comparison is taken between two ontologies: Hio (495 

classes) and Hom (65 classes). Each of these two ontologies 

has only one relationship: subclass relationship. In the case of 

Hio, distribution of concepts among modules follows level 

distributions of concepts in ontology whereas this situation is 

not the same in the case of Hom. Although this relationship 

has influenced the distributions of ontology concepts among 

modules, the weights of modules show that intra-module 

distance defined hereinbefore are acceptable. 

 

4.2 Discussion 

 

The contribution of modularization is not to be 

demonstrated in the field of ontology management. 

Furthermore, HMM is a machine learning tool which ensures 

links among events of elements. Thus learning knowledge 

within ontology with HMM can help applications and users to 

more precisely handle deservedly this knowledge. The 

approach presented here attempts to overcome previous papers 
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limits concerning redundancy, manual assignation of ontology 

concepts to partitions and sometimes lack of semantics. Using 

ontology triples extracted within ontologies, the semantics is 

preserved if and only if optimal queries are used. On the one 

hand, the reminder is that axioms, which are the restrictions on 

concepts, are not handled and if the richness of ontology 

reposes in its axioms, then all the semantics will not be took 

into account. 

On the other hand, as is mentioned hereinbefore, the number 

of relationships among ontology concepts influences the 

quality of modules by biasing them. Experiencing this 

approach on some freely download ontologies, we realized 

that the subclass relationship which describes hierarchical 

organization of ontology concepts has real impact on results.  

To attempt to overcome these two situations which can 

constitute the drawbacks of this approach, some dispositions 

can be taken to ameliorate it: (1) adding another types of 

relations such as data properties or OWL constructors such as 

equivalence class to reduce the number of ontology concepts 

before turning it into HMM, (2) axioms can be handled when 

extracting ontology triples with queries by splitting the object 

as single concept although the axioms also come to increase 

the number of triples having the relation of subclass like 

predicate and (3) subclass relationship can be avoided when 

others relations can be sufficient to extract the maximum of 

ontology concepts with queries. 

 

Table 3. Number of classes, relationships and classes per modules for ontologies with Cosine Similarity  

 

No. Ontologies C R Number of Modules 
Concepts per Module 

W 
1st 2nd 3rd 4th 5th 6th 

1 1.5 Covid19-IBO 159 34 5 129 9 6 10 5 / 0.88 

2 Biotope 337 22 4 300 9 18 10 / / 0.97 

3 Bspo 172 30 6 97 23 20 14 12 6 0.69 

4 Cvdo 290 42 5 29 22 205 8 26 / 0.84 

5 FishOntology 385 14 6 314 12 21 18 12 8 1.00 

6 Hio 495 1 4 446 26 12 11 / / 1.00 

7 Hom 65 1 5 8 13 5 35 4 / 0.46 

8 Htn 600 65 4 523 27 36 14 / / 0.94 

9 InBiOn 361 10 4 305 16 22 18 / / 0.99 

10 Ontobio_01072013 185 23 5 138 9 7 23 8 / 0.89 

11 OntoFood 289 19 3 256 22 11 / / / 0.97 

12 OntoPBM 177 2 4 134 22 7 14 / / 0.95 

13 OntoRepliCov 85 10 6 6 15 22 18 16 8 2.17 

14 Pco 219 32 3 6 16 197 / / / 1.00 

15 PlantDiversityOntology 380 22 5 256 25 46 25 19 / 1.00 

16 Ppo 443 14 2 56 387 / / / / 0.86 

17 Syndromes 171 12 4 42 88 24 17 / / 0.74 

18 vio_merged 79 24 2 64 15 / / / / 0.95 
(C: number of classes, R: number of relationships, W: average intra-module distance) 

 
Table 4. Number of classes, relationships and classes per modules for ontologies with Euclidean Distance  

 

No. Ontologies C R Number of Modules 
Concepts per Module 

W 
1st 2nd 3rd 4th 5th 6th 

1 1.5 Covid19-IBO 159 34 4 137 9 10 3 / / 0.97 

2 Biotope 337 22 4 300 9 18 10 / / 0.97 

3 Bspo 172 30 4 115 14 20 23 / / 0.74 

4 Cvdo 290 42 5 29 22 205 8 26 / 0.84 

5 FishOntology 385 14 6 314 12 21 18 12 8 1.00 

6 Hio 495 1 4 446 26 12 11 / / 1.00 

7 Hom 65 1 5 8 13 5 35 4 / 0.46 

8 Htn 600 65 4 523 27 36 14 / / 0.94 

9 InBiOn 361 10 4 305 16 22 18 / / 0.99 

10 Ontobio_01072013 185 23 5 138 9 7 23 8 / 0.90 

11 OntoFood 289 19 3 256 22 11 / / / 0.98 

12 OntoPBM 177 2 4 134 22 7 14 / / 0.95 

13 OntoRepliCov 85 10 4 34 15 22 14 / / 0.94 

14 Pco 219 32 3 6 16 197 / / / 1.00 

15 PlantDiversityOntology 380 22 5 265 25 46 25 / / 1.00 

16 Ppo 443 14 2 55 388 / / / / 0.87 

17 Syndromes 171 12 4 42 88 24 17 / / 0.74 

18 vio_merged 79 24 2 64 15 / / / / 0.95 
(C: number of classes, R: number of relationships, W: average intra-module distance) 

 

 

5. CONCLUSION  

 

In this paper, we proposed a HMM-based method for 

ontology modularization. It is a partitioning approach which 

handles lightweight ontologies. This technique used ontology 

triples extracted within ontology using defined SPARQL 

queries to initialise a HMM parameters for capturing 

knowledge stored in ontology. A parameter of this HMM 

(transition states probabilities distribution matrix) is used as 

vectors for input of a clustering algorithm – K-Means 
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algorithm – to generated ontology modules. Modules 

generated overcome drawbacks of existing approaches such as 

automatic assignation of all ontology concepts to target 

module, avoiding redundancy of ontology concepts, module 

size and independence, which are some criteria of ontology 

modularization techniques. With experiments, we noted that 

the clustering using Euclidean distance gave better results that 

once using cosine similarity and subclass relationship among 

ontology concepts can influence quality and size of generated 

modules and then alter this technique. Future trends will 

explore the possibilities to overcome mentioned limitations by 

taking into account axioms and others types of relationships 

among concepts when extracting triples within complex 

ontologies. 
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