
A Hidden Markov Model-Based Approach for Lightweight Ontology Modularization Using

K-Means Clustering

Lazarre Warda1* , Soraya Setti Ahmed2 , Oumarou Hayatou3 , Guidedi Kaladzavi4 , Amaria Samdalle1 ,

Kolyang3

1 Department of Mathematics and Computer Science, Faculty of Sciences, The University of Maroua, Maroua 814, Republic of

Cameroon
2 Department of Computer Science, Faculty of Exact Sciences, Mascara University, Mascara 29000, Algeria
3 Department of Computer Science, Higher Teachers’ Training College, The University of Maroua, Maroua 55, Republic of

Cameroon
4 Department of Computer Science and Telecommunications, National Advanced School of Engineering, The University of

Maroua, Maroua 58, Republic of Cameroon

Corresponding Author Email: lzwarda2015@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290107 ABSTRACT

Received: 4 May 2023

Revised: 26 August 2023

Accepted: 11 October 2023

Available online: 27 February 2024

Nowadays, ontologies are backbone of Semantic Web. Several domains use ontologies as

knowledge models. As their number is constantly increasing, designers are opting to reuse

some of those that exist to build new ones. When it is impossible to reuse a part depending

on its organization, they import the whole ontology and this makes the manipulation

cumbersome especially if the ontology has large concepts. Therefore, segmenting

ontologies into partitions, if they are not yet, becomes a constant challenge for designers.

This paper presents an approach to modularize ontology using hidden Markov model.

Ontology triples are extracted within ontology through SPARQL queries and labelled with

integers. The labelled triples constituted a Markov chain where ontology concepts are states

and ontology relationships are symbols. This set is used to initialize HMM parameters such

as states transition probabilities and symbols observation probabilities matrix and initial

states probabilities vector. The transition probabilities matrix of HMM is then used as input

of K-Means algorithm to generated modules of ontology concepts. This approach does not

handled ontology axioms, which characterize heavy ontologies, and only lightweight

ontologies are considered. Experiment on eighteen ontologies, obtained modules satisfied

ontology modularization criteria such as independence, non-redundancy, correctness and

completeness.

Keywords:

semantic web, ontology, modularization,

hidden Markov model, RDF triple, ontology

module, K-means clustering

1. INTRODUCTION

Ontologies are considered as the heart of the architecture of

the semantic web and among the use of ontologies we have

resource annotations (documents, images, videos, etc.).

Formally, Gruber defined ontology as "Ontology is an explicit

specification of a conceptualization" [1]. This definition was

completed by Borst as “Ontology is an explicit and a formal

specification of a shared conceptualization” [2]. With these

definitions, we can outline that ontology is a set of concepts

and axioms which describe certain domain knowledge. Hence,

ontology contents are: classes or concepts, relationships

(properties), instances (individuals) and axioms. Concepts

represent a set of entity classes within the domain.

Relationships specify the interaction among classes. Instances

indicate the concrete examples of classes within the domain

and axioms denote statements which are always true [3]. The

construction of these ontologies follows a life cycle whose

essential points are specification, conception, implementation,

validation and maintenance. Validation step requires

reasoning on the knowledge represented and maintenance step

needs a probable evolution. Most of ontologies thus built are

monolithic, that is to say, the concepts of these ontologies are

in a single block and one concept can be linked to any concept.

With this type of ontologies, especially if they contain several

concepts (large) or are complex in their organization, it is

sometimes difficult to ensure scalability or to conduct efficient

reasoning. With a plethora of ontologies for the same domain,

the authors opt for a reuse of part of ontology to keep persistent

definitions of the concepts, which is not easy with monolithic

ontologies, if so it is necessary to reuse all the ontology. To

deal with these difficulties on monolithic ontologies, the

authors opt for modular ontologies either by composition

(building small independent partitions of ontologies and

merging them) or by decomposition (partitioning monolithic

ontologies into coherent modules) [4]. Regardless of the axis

chosen, it must follow the goals concerning scalability for

querying data and efficient reasoning on ontologies, scalability

for evolution and maintenance, complexity management,

understandability, context-awareness, personalization and

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 57-64

Journal homepage: http://iieta.org/journals/isi

57

https://orcid.org/0000-0002-1206-1789
https://orcid.org/0009-0008-3072-9843
https://orcid.org/0000-0001-6895-9291
https://orcid.org/0000-0002-8414-214X
https://orcid.org/0000-0003-1652-5410
https://orcid.org/0000-0003-1554-1187
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290107&domain=pdf

reuse. These goals are more described in studies [4-6] and

maintain by evaluation criteria outlined in the study of

d’Aquin et al. [7], such as correctness, completeness,

connectedness, module cohesion, richness of representation,

which are applied for technique validation.

In the literature, we distinguish five categories of ontology

modularization techniques subdivided into two groups

according to the chosen axis. The axis of composition of

ontology modules includes Distributed Description Logics, 𝜀-

Connexions, Package-based Descriptive Logics and the

Conservative Extensions and for the axis of decomposition we

have Graph-based Ontology Segmentation [4]. In the field of

Graph-based Ontology Segmentation, five approaches [8-12]

have been illustrated and the best known are PATO [8] and

OAPT [11] which are interested in the partitioning of

hierarchically organized concepts. However, these ontology

segmentation approaches come up against limits, in particular

the redundancy of ontology concepts in the modules, the

manual assignation of isolated concepts to the modules, the

merging of modules whose number of elements does not reach

the fixed threshold and sometimes lack of semantics.

Since managing knowledge represented by ontologies using

machine learning tools becomes increase, authors introduced

possibility to capture ontology characteristics through hidden

Markov Model (HMM) [13] and proposed in the study of

Warda et al. [14] an approach to turn ontology into HMM

based on ontology triples produced by SPARQL queries on it.

As a result, this study aims to propose a method to

modularize lightweight ontologies using machine learning

technique more precisely the hidden Markov model. Ontology

axioms are avoided in this approach and then heavy ontologies

are not considered because they are characterized with axioms.

However, if heavy ontologies are used, axioms are not handled.

Ontology triples are extracted within ontology through

SPARQL queries and are used to initialize a HMM parameters

such as states transition probabilities distribution matrix,

symbols observation probabilities distribution matrix and

initial states probabilities distribution vector via some

equations. Ontology concepts are considered as HMM states

and ontology relationships as HMM symbols. Since

partitioning ontology consists in dividing its concepts into

partitions, only the state transition probability distribution

matrix of the HMM will be used as input for the K-Means

algorithm to compute ontology modules. The rest of this paper

is organized as follow: state of the art regarding HMM

definition and related works are described in Section 2. The

proposed method is detailed in Section 3. Section 4 focuses on

experimental findings and discussion. The last Section is

devoted to the conclusion and potential future trends and

challenges.

2. STATE OF THE ART

2.1 Hidden Markov Model (HMM)

A Markov model is a stochastic phenomenon. This model

verifies a certain number of properties such as: the model

changes state at determined instants of time (the space of time

is discrete) and the Markovian property (the current state of

the model depends only on the last known state). HMM

expression is used when the states of Markov model are hidden.

HMMs were introduced in the 1960s - 1970s by Baum and his

collaborators [15]. The formal definition of a Hidden Markov

Model (HMM) denoted as λ, which consists of the set {N, B,

A, B, π}, is provided by Warda et al. [14].

(1) N is the number of HMM states, we note S =
{S1, S2, . . . , SN} the set of states;

(2) M is the number of HMM symbols, we note 𝑉 =
{𝑣1, 𝑣2, . . . , 𝑣𝑀} the set of symbols;

(3) 𝐴 = [𝑎𝑖𝑗], 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , is the states’ transition

probabilities distribution matrix of the model;

(4) 𝐵 = [𝑏𝑗(𝑘)], 1 ≤ 𝑘 ≤ 𝑀 , is the observation symbols

probabilities distribution matrix of the model;

(5) 𝜋 = [𝜋𝑖], 1 ≤ 𝑖 ≤ 𝑁 , is the initial states probabilities

distribution of the model.

HMMs are models used in several areas of daily life

including speech processing, handwritten text recognition,

biological sequence analysis, image recognition, medical

signal modelling and many others. They solve three main

types of problems: evaluation, decoding and learning. The

evaluation problem consists in calculating the probability of

observing a sequence knowing the model and is solved with

the Forward-Backward algorithm. The decoding problem is to

determine the best possible sequence of states from the model.

This optimal sequence is obtained with the Viterbi algorithm.

As for the learning problem, it consists in improving the

parameters A, B and  of the model with respect to a given

sequence of observations and this is done with the Baum-

Welch algorithm [16]. HMMs have been used either to

populate ontologies or combine them together to build systems

[14]. Indeed, HMMs are models that preserve the semantics

between elements and their graphical representation brings

them closer to ontology, which would widely contribute to the

modularization of ontologies.

2.2 Related works

The first reference approach was introduced in 2006 by

Schlicht and Stuckenschmidt [8]. They proposed PATO, an

approach for large hierarchical concepts partitioning. This

approach is based on tree main steps. In the first step, they

created a dependency graph extracted from ontology file. The

second step concerned the determination of dependencies

strength between the concepts in the graph and in the last step,

they detected sets of concepts which formed modules. These

principal steps are followed by two additional steps. The

fourth step is reserved to the assignation of isolated concepts

to the appropriated existed module and in the fifth step, for

some modules where the size (obtained by some formulas) is

under a threshold, they are merged into adjacent module with

a lower size. This approach is the commonly used by authors

for ontology modularization problems. Guided by some

properties of modules, Ensan and Du [17, 18] proposed a

framework to develop modular ontology through interfaces-

based formalism. To achieve their goal, they supposed that a

modular ontology is a set of independent modules which are

interfaces-based joined. Designers are free to develop each

module independently to each other’s language and signature

and modules can cover separate domain knowledge. Similarly,

Doran [19] began by revisiting principles of ontology

modularization and discussed about some of techniques. Then

he proposed an approach to extract ontology module. To

achieve this goal, firstly, he defined competency of module to

be extract. Secondly he selected target ontology based on

ontology evaluation. At the end he selected appropriate

module. Based on ontology organization, Özacar et al. [20]

proposed Anemone, a methodology for modular ontology

development. The modular ontology obtained with this

58

methodology behaves like a monolithic ontology which is

organized into modules classed into layers. The bottom layer

module (small ontology) imports the directly above layer

module. Another approach reposed in classification-based

learning was proposed by Alaya et al. [9]. They defined five

steps. In the first step, they used hierarchical classification to

partitioning ontology concepts by identifying their

dependences. In the second step, they enriched each partition

resulted in the previous step by adding appropriated axioms

and others properties for the whole ontology to be modularized.

When there is redundancy between modules (partitions)

according to a certain threshold, in the third step, these

modules are fused. In the fourth step, they update modules by

adding entities of whole ontology which are not treat during

previous steps. In the last step, they mapped modules to

established semantic links among them. In the study of Ahmed

et al. [10], a graph partitioning approach was proposed by

Soraya et al. This methodology turned around five steps. At

the first step, OWL constructors (classes, relationships,

properties, axioms) are extracted within the ontology. The

second step concerned the creation of Dijkstra-based

algorithm level graph. They compute similarity measures (six

measures) between classes in the third step. Based on these

similarity measures, the fourth step is devoted to the clustering

process using K-Means algorithm with some adjustments. The

last step concerned the validation of the approach. To deal with

the limits of previous approaches, Alsayed et al. proposed

OAPT [11], an Ontology Analysis and Partitioning Tool,

which regrouped five components. In the pre-processing

component, they checked the input format of ontology and if

it is necessary, they parsed and represented it into concept

graph. The analysis component concerned the determination

of ontology design metrics referred to structural, semantic and

syntactic categories. These metrics helped them to evaluate the

richness of the ontology. The next components referred to the

modularization and determination of optimal number of

modules. To do it, they began by ranking each concept,

determined the heads of clusters and then performed partitions

using seed-based algorithm and finished by generating

modules. In the last component, they evaluated the

methodology. Guided by the plethora number of ontologies in

BioPortal, Alsayed and Birgitta [12], experimented the

possibility for partitioning these ontologies. These

experiments are based in four steps. Firstly, they used

BioPortal to get all accessible ontologies and transformed

them into OWL or OBO formats using OWL API in the second

step. In the third step, they partitioned these ontologies through

PATO, OAPT and AD algorithms before analysing these

results in the last step. Recently, Shimizu et al. widely

contributed to ontology modularization by developing MODL

in the study of Shimizu et al. [21], a modular ontology design

library. It is a collection of documented ODP (ontology design

patterns). An ODP is a small and reusable set of concepts and

axioms which solve an invariant problem in various domains.

They collected five categories of ODP and documented them.

Based on these components, they developed again CoModIDE

in the study of Shimizu and Hammar [22, 23], a

Comprehensive Modular Ontology Engineering IDE, which is

a plugging for Protégé. It is composition of ODP. Le Clair and

Khedri [24] developed algebraic technique based on logical

technique to propose a modularization approach. The modules

derived from set of Boolean sub-algebras which covered

evaluation metrics for ontology modularization techniques:

local correctness and local completeness. Finally, Shimizu et

al. [23], proposed a method which automated the type-based

generation of abstraction modules. They created five

algorithms associated to the five defined types of abstraction:

axiom abstraction, vocabulary abstraction, high-level

abstraction, weighted abstraction and feature expressiveness.

The approaches here mentioned are not the only ones but the

most cited in the literature. Nevertheless, others are cited in the

study of d’Aquin et al. [7, 25-27]. Among these approaches

hereinbefore cited, only those described by Schlicht and

Stuckenschmidt [8-12] concerned the top-down method which

refers to the splitting up of ontology into modules. One of the

common limits of these approaches is the manual assignation

of isolated concepts to modules. At the end of steps, on the one

hand, it happens that there are some concepts that remain

isolated [8-10, 12]. They therefore assigned to modules

according to the defined criterion. On the other hand, the

number of concepts in some modules does not reach a fixed

threshold. A module in this condition is systematically merged

with the one that is close [8, 9, 12]. Among the modularization

criteria, the non-redundancy of concepts is a determining

factor, yet this criterion is not fully taken into account in the

approaches proposed by Algergawy et al. [11, 12] because

sometimes concepts are present in several modules. The last

point that the OAPT approach comes up against is the loss of

semantics [11]. The approach described here overcomes these

limitations. Indeed, the ontology triples extracted from the

ontology guarantee the semantics of the ontology and the

incidence matrix corresponding to the state transition

probability distribution matrix of the HMM highlights the

different relationships between the concepts. The application

of the K-means algorithm leads to the disjunction of the

modules and any assignation of the concepts to the modules is

automatically done. The modules obtained are formed

according to the relationships that exist between the different

concepts and the size of the modules is consequently linked.

Table 1 summarized and outlined these limits.

Table 1. Decomposition-based approaches and their limits

Approaches Main Idea MAC FMM R LST

[8]

Partitioning of

large

hierarchical

concepts

(PATO)

Yes Yes No No

[9]
Classification-

based learning
Yes Yes No No

[10]

Partitioning

ontology due

adapted K-

Means

Algorithm

Yes No No Yes

[11]

Partitioning

ontology based

on the seeding-

based scheme

(OAPT)

No No Yes No

[12]

Portioning of

BioPortal

ontologies

Yes Yes Yes No

(MAC: Manual assignation of concepts, FMM: Fusion or merging modules,

R: Redundancy, LST: Lack of semantics from triples)

59

3. PROPOSED APPROACH

The Figure 1 describes the steps of this approach.

Figure 1. HMM-based process of ontology partitioning

3.1 Step 1: Transformation of ontology into HMM

Ontology can be seen as a set of triples. A triple is a (subject,

predicate, object) set where subject and object are classes;

predicate denotes the relationship between subject and object.

Various methods for learning ontology properties using

HMMs have been discussed in the study by Warda et al. [14].

The following step is adapted from their findings [14]:

(1) Firstly, they extracted ontology triples. These triples

derived from SPARQL queries. Triples can be filter according

to the type of predicate.

(2) Secondly, they labelled obtained triples to replace

concepts and predicates names (string type) by numbers to

facilitate manipulations.

(3) Thirdly, they initiated HMM parameters with the

labelled triples using Eqs. (1)-(3).

number of triples (i subject and j object)

number of triples (i subject)
ija



= =
=

= +
 (1)

In Eq. (1), 𝑎𝑖𝑗 is the ratio of the number of ontology triples

where concept i is the subject and concept j is the object by the

number of ontology triples having concept i as the subject.

This ratio corresponds to the probability that there are relations

between the concepts numbered respectively with i and j

consequently it is the probability that there is transition

moving from the states i to j of the HMM.

number of triples (j subject and k predicate)
()

number of triples (k predicate) ε
jb k

= =
=

= +
 (2)

Similarly, in Eq. (2), 𝑏𝑗(𝑘) corresponds to the ratio of the

number of ontology triples where concept j is the subject and

relationship k is the predicate. This ratio is the probability that

there are relations resulting from the concept numbered by j

consequently it is the probability of observing the symbol k in

state i of the HMM.

number of triples (i subject)

total number of triples
i



=
=

+
 (3)

In the same manner, in Eq. (3), 𝝅𝒊
corresponds to the ratio

of the number of ontology triples where concept i is the subject

by the total number of ontology triples. This ratio is the

probability that the concept numbered with i is the subject of

the triples and consequently it is the probability that i is an

initial state of the HMM.

Since 𝑎𝑖𝑗 , 𝑏𝑗(𝑘) and𝜋𝑖 are probabilities distributions, by

adding 𝜀 to the denominator of Eqs. (1)-(3), probabilities laws

are not satisfied. Hence the rest value to reach 1 is equitably

redistributed to each of them.

All these steps are more detailed in the study of Warda et al.

[14] and this approach has been used here to turn ontology into

HMM.

3.2 Step 2: Clustering

In this step, states transition matrix (A) of obtained HMM

is used as a set of vectors in which the clustering algorithm

should be applied. The following configurations are

considered:

(1) The transition matrix (A) of the obtained HMM is

divided into set of vectors: 𝐴 = [𝐴𝑗], 1 ≤ 𝑗 ≤ 𝑁 , where 𝐴𝑗 =

[𝑎𝑖𝑗], 1 ≤ 𝑖 ≤ 𝑁, is a vector.

(2) The set of states, 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁}, is equivalent to

the set of ontology concepts coming from the SPARQL

queries. States are independent because associate concepts are

different.

(3) For each 𝑆𝑗 , 1 ≤ 𝑗 ≤ 𝑁 , component of S, we can obtain

all the transition probabilities to other states. These

probabilities correspond to the vector 𝐴𝑗 of transition matrix.

Hence ⟨𝑆1, 𝑆2, . . . , 𝑆𝑁⟩ is considered as a basis where each

vector 𝐴𝑗 can be expressed.

(4) Clustering algorithm is then applied and vectors to be

partitioned are 𝐴 = [𝐴𝑗], 1 ≤ 𝑗 ≤ 𝑁 . Appropriate distance

measures and number of clusters can be defined.

Among the clustering algorithms described by Xu et al. [28,

29], K-Means is the most widely used in the literature for

ontology segmentation. The organization of the data (concepts)

to be partitioned represented by the different vectors from the

HMM incidence matrix (A) conforms to the K-Means input.

We could not apply the hierarchical grouping because in

addition to the hierarchical organization, the ontology

concepts are linked by other relations like object Property type.

So our focus was on K-Means and distance measures can be

changed to analyse the behaviour of the results. Several

distance measures can be applied: Euclidean, Cosine similarity,

Dice, etc. The optimal number of clusters is obtained by the

Elbow method integrated to the K-Means algorithm [30].

3.3 Step 3: Validation

This step consists to validate the proposed approach.

Several criteria come from software engineering and are

outlined in d’Aquin et al. [7] and some of them can be applied:

Independence: the proposed approach partitions a set of

concepts generated by ontology triples. The resultant clusters

are independent according to K-Means algorithm.

Local correctness and local completeness: all concepts

inside each module and its signature generated by this

approach belonged to the huge used ontology because the

triples were generated within this ontology.

Size: Since Elbow method is used to determine the number

of clusters, the size of each module is consequently related to

the organization of target ontology.

60

Intra-module distance and connectedness: since the

components axy of vectors are probabilities distributions, if

this value rich 1, it means that class represented by x and class

represented by y are strongly linked with a certain predicate

(hierarchical link or object property). To ensure this validation

metric, we defined a value of module distance:

,

1
M xyx y M

W a
m 

=  (4)

In this formula, M is the module which the intra-module is

computed and m is the number of elements in module M. If

𝑊𝑀 reach 1 then the module is coherent. At the end, for all

modules, we defined a weight 𝑊 which refers to the average

of their intra-module distances:

1

K

k

k

W W
=

= (5)

where, K is the number of modules obtained by the Elbow

method before partitioning huge ontology. This value gives the

degree of the modules quality.

Non-redundancy: intrinsically, this criterion is ensured by

the proposed approach. All modules are disjoined according to

the description of this methodology.

4. EXPERIMENTAL RESULTS

4.1 Experiments on ontologies

To experiment this approach, we used eighteen ontologies

freely download on BioPortal website

(https://bioportal.bioontology.org/ontologies). The SPARQL

queries used for these experiments are:

Table 2. Queries used for experiments

Query 1 Query 2

SELECT ?s ?o

WHERE{

 ?s rdfs:subClassOf ?o .

 ?s a owl:Class .

 ?o a owl:Class .

 }

SELECT ?s ?p ?o

WHERE{ ?s a owl:Class .

 ?o a owl:Class .

 ?p a owl:ObjectProperty .

 ?p rdfs:domain ?s .

 ?p rdfs:range ?o .

 }

In Table 2, Query 1 extracts ontology triples where the

predicate is the subclass relationship, the subject is subclass

and the object is the associate parent class. In other word, this

query brings out the hierarchical relationship among ontology

concepts. Query 2 extracts ontology triples where the predicate

is an object property relationship, the subject is the domain of

this object property and the object is its range. There are not

only these queries that we can used. Someone can add own

queries and produces the associated triples. It is important to

note that the number of relationships between ontology classes

influences the quality of ontology modules. The higher

number of relationships means better quality of modules and

if this number rich 1, the ontology is seen like a hierarchical

classification of concepts.

For these experiments, two distance measures were used for

the K-Means algorithm: Euclidean Distance and Cosine

Similarity.

The numbers of modules (obtained with Elbow method),

concepts per module and intra-module distances are

summarized in Table 3 (for Cosine Similarity) and Table 4 (for

Euclidean Distance). These tables show also the numbers of

ontology classes and relationships among these classes

derived from the triples obtained with the above queries. The

number of modules can change according to the distance

measure chosen. For instance, for OntoRepliCov ontology,

with Euclidean Distance, the number of partitions is 4 and it is

6 with Cosine Similarity. User can directly define the number

of partitions however the results cannot satisfy modularization

criteria. During the validation step, it is easy to compare results

related to the number of relationships within the ontology

based only on module size criterion. Qualities of obtained

modules for this experiment are strongly influenced by the

expansion of hierarchical organization of these ontologies.

Thus, the subclass relationship among classes subdued others

relationships or properties, hence influenced the number of

concepts per module.

The comparative study of Tables 3 and 4 shows that three

ontologies (1.5 Covid19-IBO, Bspo and OntoRepliCov) have

higher module numbers with Cosine Similarity than with

Euclidean Distance. The choice of the number of partitions for

a clustering algorithm often causes a problem because a large

number K can lead to too fragmented partitioning, limiting the

discovery of interesting data patterns; on the other hand, a

number K that is too small potentially leads to too general

clusters containing a lot of data. Thus, the results obtained for

the proposed modularization approach with the Euclidean

Distance are better than those obtained with the Cosine

Similarity because the number of clusters obtained gives intra-

module distances very close to 1 and then ensure modules

quality.

Browsing Table 3 and Table 4, the number of modules and

the number of concepts per module for each ontology are the

same for some ontologies and for the two tables, sometimes,

the first module has the high number of ontology classes (1.5

Covid19-IBO, Biotope, Bspo …). This situation consequently

depends to the influence of subclass relationship in these

ontologies. To deal with this situation, user can avoid this

relationship and consider only object properties if they can be

sufficient to extract the most quantity of ontology concepts

through SPARQL queries. Furthermore, ontologies with small

number of concepts are not strongly influenced with subclass

relationship (e.g. OntoRepliCov, Syndromes, Hom).

A comparison is taken between two ontologies: Hio (495

classes) and Hom (65 classes). Each of these two ontologies

has only one relationship: subclass relationship. In the case of

Hio, distribution of concepts among modules follows level

distributions of concepts in ontology whereas this situation is

not the same in the case of Hom. Although this relationship

has influenced the distributions of ontology concepts among

modules, the weights of modules show that intra-module

distance defined hereinbefore are acceptable.

4.2 Discussion

The contribution of modularization is not to be

demonstrated in the field of ontology management.

Furthermore, HMM is a machine learning tool which ensures

links among events of elements. Thus learning knowledge

within ontology with HMM can help applications and users to

more precisely handle deservedly this knowledge. The

approach presented here attempts to overcome previous papers

61

limits concerning redundancy, manual assignation of ontology

concepts to partitions and sometimes lack of semantics. Using

ontology triples extracted within ontologies, the semantics is

preserved if and only if optimal queries are used. On the one

hand, the reminder is that axioms, which are the restrictions on

concepts, are not handled and if the richness of ontology

reposes in its axioms, then all the semantics will not be took

into account.

On the other hand, as is mentioned hereinbefore, the number

of relationships among ontology concepts influences the

quality of modules by biasing them. Experiencing this

approach on some freely download ontologies, we realized

that the subclass relationship which describes hierarchical

organization of ontology concepts has real impact on results.

To attempt to overcome these two situations which can

constitute the drawbacks of this approach, some dispositions

can be taken to ameliorate it: (1) adding another types of

relations such as data properties or OWL constructors such as

equivalence class to reduce the number of ontology concepts

before turning it into HMM, (2) axioms can be handled when

extracting ontology triples with queries by splitting the object

as single concept although the axioms also come to increase

the number of triples having the relation of subclass like

predicate and (3) subclass relationship can be avoided when

others relations can be sufficient to extract the maximum of

ontology concepts with queries.

Table 3. Number of classes, relationships and classes per modules for ontologies with Cosine Similarity

No. Ontologies C R Number of Modules
Concepts per Module

W
1st 2nd 3rd 4th 5th 6th

1 1.5 Covid19-IBO 159 34 5 129 9 6 10 5 / 0.88

2 Biotope 337 22 4 300 9 18 10 / / 0.97

3 Bspo 172 30 6 97 23 20 14 12 6 0.69

4 Cvdo 290 42 5 29 22 205 8 26 / 0.84

5 FishOntology 385 14 6 314 12 21 18 12 8 1.00

6 Hio 495 1 4 446 26 12 11 / / 1.00

7 Hom 65 1 5 8 13 5 35 4 / 0.46

8 Htn 600 65 4 523 27 36 14 / / 0.94

9 InBiOn 361 10 4 305 16 22 18 / / 0.99

10 Ontobio_01072013 185 23 5 138 9 7 23 8 / 0.89

11 OntoFood 289 19 3 256 22 11 / / / 0.97

12 OntoPBM 177 2 4 134 22 7 14 / / 0.95

13 OntoRepliCov 85 10 6 6 15 22 18 16 8 2.17

14 Pco 219 32 3 6 16 197 / / / 1.00

15 PlantDiversityOntology 380 22 5 256 25 46 25 19 / 1.00

16 Ppo 443 14 2 56 387 / / / / 0.86

17 Syndromes 171 12 4 42 88 24 17 / / 0.74

18 vio_merged 79 24 2 64 15 / / / / 0.95
(C: number of classes, R: number of relationships, W: average intra-module distance)

Table 4. Number of classes, relationships and classes per modules for ontologies with Euclidean Distance

No. Ontologies C R Number of Modules
Concepts per Module

W
1st 2nd 3rd 4th 5th 6th

1 1.5 Covid19-IBO 159 34 4 137 9 10 3 / / 0.97

2 Biotope 337 22 4 300 9 18 10 / / 0.97

3 Bspo 172 30 4 115 14 20 23 / / 0.74

4 Cvdo 290 42 5 29 22 205 8 26 / 0.84

5 FishOntology 385 14 6 314 12 21 18 12 8 1.00

6 Hio 495 1 4 446 26 12 11 / / 1.00

7 Hom 65 1 5 8 13 5 35 4 / 0.46

8 Htn 600 65 4 523 27 36 14 / / 0.94

9 InBiOn 361 10 4 305 16 22 18 / / 0.99

10 Ontobio_01072013 185 23 5 138 9 7 23 8 / 0.90

11 OntoFood 289 19 3 256 22 11 / / / 0.98

12 OntoPBM 177 2 4 134 22 7 14 / / 0.95

13 OntoRepliCov 85 10 4 34 15 22 14 / / 0.94

14 Pco 219 32 3 6 16 197 / / / 1.00

15 PlantDiversityOntology 380 22 5 265 25 46 25 / / 1.00

16 Ppo 443 14 2 55 388 / / / / 0.87

17 Syndromes 171 12 4 42 88 24 17 / / 0.74

18 vio_merged 79 24 2 64 15 / / / / 0.95
(C: number of classes, R: number of relationships, W: average intra-module distance)

5. CONCLUSION

In this paper, we proposed a HMM-based method for

ontology modularization. It is a partitioning approach which

handles lightweight ontologies. This technique used ontology

triples extracted within ontology using defined SPARQL

queries to initialise a HMM parameters for capturing

knowledge stored in ontology. A parameter of this HMM

(transition states probabilities distribution matrix) is used as

vectors for input of a clustering algorithm – K-Means

62

algorithm – to generated ontology modules. Modules

generated overcome drawbacks of existing approaches such as

automatic assignation of all ontology concepts to target

module, avoiding redundancy of ontology concepts, module

size and independence, which are some criteria of ontology

modularization techniques. With experiments, we noted that

the clustering using Euclidean distance gave better results that

once using cosine similarity and subclass relationship among

ontology concepts can influence quality and size of generated

modules and then alter this technique. Future trends will

explore the possibilities to overcome mentioned limitations by

taking into account axioms and others types of relationships

among concepts when extracting triples within complex

ontologies.

REFERENCES

[1] Gruber, R.T. (1993). A translation approach to portable

ontology specifications. Knowledge Systems Laboratory,

5(2): 199-220. https://doi.org/10.1006/knac.1993.1008

[2] Brost, W.N. (1997). Construction of engineering

ontology for knowledge sharing and reuse. Phd thesis,

University of Twente, Enschede.

[3] Subhashini, R., Akilandeswari, J. (2011). A survey on

ontology construction methodologies. International

Journal of Enterprise Computing and Business Systems,

1(1): 60-72.

[4] Pathak, J., Johnson, T.M., Chute, C.G. (2009). Survey of

modular ontology techniques and their applications in the

biomedical domain. Integrated Computer-Aided

Engineering, 16(3): 225-242.

https://doi.org/10.3233/ICA-2009-0315

[5] Abbes, S.B., Sheuermann, A., Meilender, T., d’Aquin, M.

(2012). Characterizing modular ontologies. In 7th

International Conference on Formal Ontologies in

Information Systems-FOIS 2012, pp. 13-25.

[6] Parent, C., Spaccapietra, S. (2009). An overview of

modularity. In: Stuckenschmidt, H., Parent, C.,

Spaccapietra, S. (eds) Modular Ontologies. Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg,

5445: 5-23. https://doi.org/10.1007/978-3-642-01907-

4_2

[7] d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.

(2009). Criteria and evaluation for ontology

modularization techniques. Modular Ontologies:

Concepts, Theories and Techniques for Knowledge

Modularization, 67-89. https://doi.org/10.1007/978-3-

642-01907-4_4

[8] Schlicht, A., Stuckenschmidt, H. (2008). A flexible

partitioning tool for large ontologies. In 2008

IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, Sydney,

NSW, Australia, pp. 482-488.

https://doi.org/10.1109/WIIAT.2008.398

[9] Alaya, N., Yahia, S.B., Lamolle, M. (2012). Modlson:

Une nouvelle approche de modularisation d'ontologies à

grande échelle. In EGC, pp. 279-284.

https://www.researchgate.net/publication/277685144_M

ODLSON.

[10] Ahmed, S.S., Malki, M., Benslimane, S.M. (2015).

Ontology partitioning: Clustering based approach.

International Journal of Information Technology and

Computer Science, 7(6): 1-11.

https://doi.org/10.5815/ijitcs.2015.06.01

[11] Algergawy, A., Babalou, S., Klan, F., König-Ries, B.

(2020). Ontology modularization with OAPT. Journal on

Data Semantics, 9: 53-83.

https://doi.org/10.1007/s13740-020-00114-7

[12] Algergawy, A., König-Ries, B. (2019). Partitioning of

BioPortal ontologies: An empirical study. In

SWAT4HCLS, pp. 84-93.

[13] Lazarre, W., Guidedi, K., Amaria, S., Kolyang. (2022).

Modular ontology design: A state-of-art of diseases

ontology modeling and possible issue. Revue

d'Intelligence Artificielle, 36(3): 497-501.

https://doi.org/10.18280/ria.360319

[14] Warda, L., Kaladzavi, G., Samdalle, A., Kolyang. (2022).

Integration of ontology transformation into hidden

Markov model. Information Dynamics and Applications,

1(1): 2-13. https://doi.org/10.56578/ida010102

[15] Rabiner, L., Juang, B. (1986). An introduction to hidden

Markov models. IEEE ASSP Magazine, 3(1): 4-16.

https://doi.org/10.1109/MASSP.1986.1165342

[16] Bréhélin, L., Gascuel, O. (2000). Modèles de Markov

cachés et apprentissage de séquences. Le temps, l’espace

et l’évolutif en sciences du traitement de l’information,

Eds. Cépaduès.

[17] Ensan, F., Du, W. (2008). An interface-based ontology

modularization framework for knowledge encapsulation.

In International Semantic Web Conference, Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 517-532.

https://doi.org/10.1007/978-3-540-88564-1_33

[18] Ensan, F., Du, W. (2010). A modular approach to

scalable ontology development. In: Du, W., Ensan, F.

(eds) Canadian Semantic Web. Springer, Boston, MA, pp.

79-83. https://doi.org/10.1007/978-1-4419-7335-1_4

[19] Doran, P. (2009). Ontology modularization: Principles

and practice. Doctoral dissertation, University of

Liverpool.

[20] Özacar, T., Öztürk, Ö., Ünalır, M.O. (2011). ANEMONE:

An environment for modular ontology development.

Data & Knowledge Engineering, 70(6): 504-526.

https://doi.org/10.1016/j.datak.2011.02.005

[21] Shimizu, C., Hirt, Q., Hitzler, P. (2019). MODL: A

modular ontology design library. arXiv preprint

arXiv:1904.05405.

https://doi.org/10.48550/arXiv.1904.05405

[22] Shimizu, C., Hammar, K. (2019). Comodide–the

comprehensive modular ontology engineering ide.

In ISWC 2019 Satellite Tracks (Posters &

Demonstrations, Industry, and Outrageous Ideas) co-

located with 18th International Semantic Web

Conference (ISWC 2019) Auckland, New Zealand, 2456:

249-252.

[23] Shimizu, C., Hammar, K., Hitzler, P. (2020). Modular

graphical ontology engineering evaluated. In European

Semantic Web Conference, Cham: Springer, pp. 20-35

https://doi.org/10.1007/978-3-030-49461-2_2

[24] Le Clair, A. (2021). A formal approach to ontology

modularization and to the assessment of its related

knowledge transformation. McMaster University

Doctoral dissertation.

[25] Khan, Z., Keet, C.M. (2021). Structuring abstraction to

achieve ontology modularisation. Advanced Concepts,

Methods, and Applications in Semantic Computing, 21.

https://doi.org/ 10.4018/978-1-7998-6697-8.ch004

[26] Bao, J., Caragea, D., Honavar, V.G. (2006). Modular

63

https://www.researchgate.net/publication/277685144_MODLSON
https://www.researchgate.net/publication/277685144_MODLSON

ontologies-A formal investigation of semantics and

expressivity. In The Semantic Web–ASWC 2006: First

Asian Semantic Web Conference, Beijing, China, pp.

616-631. https://doi.org/10.1007/11836025_60

[27] LeClair, A., Marinache, A., El Ghalayini, H., MacCaull,

W., Khedri, R. (2022). A review on ontology

modularization techniques-A multi-dimensional

perspective. IEEE Transactions on Knowledge and Data

Engineering, 35(5): 4376-4394.

https://doi.org/10.1109/TKDE.2022.3152928

[28] Xu, R., Wunsch, D. (2005). Survey of clustering

algorithms. IEEE Transactions on Neural Networks,

16(3): 645-678.

https://doi.org/10.1109/TNN.2005.845141

[29] Xu, D., Tian, Y. (2015). A comprehensive survey of

clustering algorithms. Annals of Data Science, 2: 165-

193. https://doi.org/10.1007/s40745-015-0040-1

[30] Cui, M. (2020). Introduction to the K-Means clustering

algorithm based on the elbow method. Accounting,

Audition and Finance, 1(1): 5-8.

https://doi.org/10.23977/accaf.2020.010102

64

