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The current study examines the behavior of an SH wave traveling over a functionally 

graded magneto-elastic substrate arrangement. At the substrate-vacuum interface, two 

irregularities with different shapes—rectangular and parabolically shaped—are 

considered in electrically and magnetically open cases and electrically and magnetically 

short cases. A study is also done on the combined impact of inhomogeneity, depth 

source, and irregularity. With the help of the Fourier transform, inverse Fourier 

transform, and perturbation technique, complex frequency relation has been derived for 

each type of irregular interface. The results’ key characteristics are highlighted. In order 

to know the impact of the parameters involved, a particular model consisting of BaTiO3-

CoFe2O4 magneto-electro-elastic material has been taken. The findings were presented 

in the form of graphs, which were created using Mathematica 7. Graphs are plotted for 

variations in wavenumber and phase velocity. This calculation model could be the ideal 

match for laminated FGMEE structures utilized as surface acoustic wave devices since 

the variation of the film's magneto-electromechanical characteristics changes gradually 

with depth and throughout the production process (SAW). As a result, it can serve as a 

theoretical foundation for the design of high-performance SAW devices. 
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1. INTRODUCTION

In contrast to the approach to piezoelectric or piezomagnetic 

material, magneto-electro-elastic (MEE) materials have both 

piezoelectric and piezomagnetic characteristics, particularly 

with the electromagnetic coupling effect. A brand-new kind of 

intelligent material known as functionally graded magneto-

electro-elastic material (FGMEE) features inhomogeneous 

mechanical properties, a composition that gradually changes 

in one direction, and the ability to convert between magnetic 

electric and mechanical energy precisely. Smart gadgets, 

including sensors, actuators, and electromagnetic memory 

components, frequently use this new kind of intelligent 

composite material. The design of these devices could be 

substantially aided by having a general grasp of them. 

Compared to the static analysis literature, studies on the 

transient properties of FGMEE structures are incredibly 

underrepresented. Therefore, there is a pressing need to study 

the quick reactions of such structures to enhance their 

performance. As a result, many individuals are very interested 

in the research on wave propagation in MEE and FGMEE 

materials. Van Suchtelen [1] created the first artificial 

magneto-electro-elastic material artificially by mixing 

piezoelectric and piezomagnetic materials. According to Van 

Run et al. [2], the BaTiO3-CoFe2O4 composite they created 

had the most potent electromagnetic effect available at the 

time. Later, Bracke and Van Vliet discovered a broad 

magneto-electric transducer made of composite material [3]. 

Inhomogeneity issues with magneto-electro-elastic multi-

inclusions and their applications in composite materials were 

encountered by Li [4]. Green’s function for anisotropic 

magnetoelastic solids having an oval cavity or a crack was 

covered by Liu et al. [5]. Authors such as Pan and Han [6], 

Bhangake and Ganesan [7], and Huang et al. [8] discussed the 

functionally graded MEE materials using various solutions 

methods. Wave propagation on magneto-electro-elastic 

multilayered plates was observed by Chen et al. [9] In MEE 

Materials, Arman [10] investigated twelve shear surface 

waves steered by clamped or unconstrained limits. Surface 

electro-elastic SH waves in a layered device with a 

piezoelectric substrate and a hard dielectric layer were 

described by Danoyan and Piliposian [11]. Li and Wei [12, 13] 

encountered the pre-stressed and MEE solids’ impact on the 

surface wave speed and velocity of FGMEE materials. In their 

study, Wu et al. [14] used the modified Pagano approach to 

analyze the three-dimensional static behavior of FGMEE 

plates. Anisotropic FGMEE beams exposed to arbitrary 

loading were the focus of a static analysis study by Huang et 

al. [15]. Zhao and Chen [16] discussed using the symplectic 

framework for plane research for FGMEE materials. Chen et 

al. [17] noticed wave propagation with a nonlocal influence in 

MEE multilayered plates. Yang et al. [18] talked about 

applying analytical and finite element methods to analyze the 

natural properties of multilayered magneto-electro-elastic 
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plates. Vinyas [19] covered the computational analysis of 

intelligent magneto-electro-elastic materials and structures. To 

represent the propagation of elastodynamic waves in 

composites made of elastic, piezoelectric, and magneto-

electro-elastic materials, Othmani et al. [20] used orthogonal 

polynomial methods. In a magneto-electro-elastic layered 

structure with such a non-perfect and locally perturbed 

interface, Chaki and Bravo-Castillero [21] investigated the 

statistical modeling of anti-plane surface waves. 

Seismology, civil engineering, and mechanical engineering 

all benefit from understanding the propagation and scattering 

of waves in granular and medium materials. It is also apparent 

that structural abnormalities in the wave propagation medium 

impact it. Many academics have taken into account uneven 

borders of specific shapes and sizes to keep the solution 

process mathematically simple. It is possible to name a few 

essential works on wave propagation in a medium with 

irregular boundaries. Chattopadhyay et al. [22] explained how 

SH waves go through a crooked monoclinic crustal layer. 

When Singh [23] reached a layered medium with erratic 

boundary surfaces, he came upon the love wave. Singh and 

Chattopadhyay [24] briefed about how magnetoelastic shear 

waves go through an unruly layer of self-reinforcement. The 

scattering of a Love wave traveling in an uneven anisotropy 

porous stratum under initial load was covered by Chattaraj et 

al. [25]. Love type wave propagation in an uneven 

piezoelectric structure, Singh et al. [26]. Regarding the effect 

of irregularities on the SH-type direction of propagation inside 

the micropolar elasticity composite structure, Singh et al. [27] 

came across some comments. Love-type waves in the couple-

stress stratum that were ill-bonded to an uneven viscous 

substrate were discussed by Ray and Singh [28]. The effects 

of piezoelectricity and reinforcement on the propagation of SH 

waves in irregularly layered, inadequately bonded FGPM 

structures were explored by Chaki and Singh [29]. The Love-

type wave propagation case-wise analysis was encountered by 

Gupta et al. [30] in an unsteady fissured porous stratum 

covered in sand. The features of SH wave scattering and 

propagation in simplified Cosserat isotropic layered structures 

at irregular borders were explored by Chaki and Singh [31]. 

Chaki et al. [32] discussed the effects of 

rectangular/parabolic-shaped irregularities on the propagation 

of shear horizontal waves in a slightly compressible layered 

structure. In functionally graded piezo-poroelastic mediums 

with electrode boundaries and suddenly thickened imperfect 

interface, Singh et al. [33] analytical analysis of Love wave 

propagation was encountered. In functionally graded 

fracturing porous sedimentary with interfacial irregularity, 

Gupta et al. [34] investigated the flexoelectric influence on 

SH-wave propagation. Love wave propagation in an isotropic 

fluid-saturated porous material under the influence of 

parabolic irregularity was discussed by Saini and Poonia [35]. 

According to Bhat and Manna [36], the reinforcing, porosity 

distributions, non-local elasticity, and uneven boundary 

surfaces all affect the behaviour of Love-wave fields. Singh et 

al. [37] studied the scattering processes of Love-type wave 

propagation in a multilayer porous piezoelectric structure with 

surface irregularity. Kumari and Srivastava [38] studied the 

torsional wave in void-type porous layers using parabolic 

irregularity in viscoelastic and piezoelectric media. Willis’s 

[39] formula for expanding an integral as a series and Tranter’s 

[40] Integral Transforms in Mathematical Physics are used in 

mathematical calculations. Up to now, no attempt has been 

made to study the propagation of SH waves in an irregularly 

functionally graded magneto-electro-elastic substrate. 

Due to the widespread use of functionally graded materials 

in our daily lives, numerous research projects have been done 

and are ongoing. Functionally graded materials are utilized in 

developing and manufacturing SAW devices, communications 

devices, SAW filters for Global Positioning Systems (GPS), 

and mobile phones. These applications motivated us to 

continue our research on functionally graded materials, 

particularly in functionally graded magneto-electro-elastic 

mediums, and we did so after [29, 31, 32]. The current study 

examines the behavior of an SH wave traveling over a 

functionally graded magneto-elastic substrate arrangement. At 

the substrate-vacuum interface, two irregularities with 

different shapes—rectangular and parabolically shaped—are 

considered in electrically and magnetically open cases and 

electrically and magnetically short cases. A study is also done 

on the combined impact of inhomogeneity, depth source, and 

irregularity. The variable separation method was used to arrive 

at the dispersion equations for the propagation of the SH wave. 

With the help of the Fourier transform, inverse Fourier 

transform, and perturbation technique, complex frequency 

relation has been derived for each type of irregular interface 

[29]. The results’ key characteristics are highlighted. In order 

to know the impact of the parameters involved, a particular 

model consisting of BaTiO3-CoFe2O4 magneto-electro-elastic 

material has been taken. Graphs are plotted for variations in 

wavenumber and phase velocity. This calculation model could 

be the ideal match for laminated FGMEE structures utilized as 

surface acoustic wave devices since the variation of the film's 

magneto-electromechanical characteristics changes gradually 

with depth and throughout the production process (SAW). As 

a result, it can serve as a theoretical foundation for the design 

of high-performance SAW devices. 

 

 

2. BASIC EQUATIONS AND NOTATIONS 

 

We investigate an SH-wave that passes through an uneven 

magneto-electro-elastic substrate with typical wave velocity c 

and wave number k. Two different situations of irregularity in 

the shapes of a rectangular and a parabola are considered. The 

origination O is considered the midway of the selected 

irregularities in Figure 

s 1 and 2, which shows a graphic of the layer structure under 

consideration. The irregularity’s maximum depth and span are 

H and 2s, respectively. Let S represent the location of the 

disturbance’s source along the x-axis and l distance from the 

origin. A time-harmonic disturbance is produced by the source 

at S. 

The interface equations for irregularities with rectangular 

and parabolic shapes can be written as 
 

0 for ,
( )

for ,

y s
x h y

H y s


 
= = 



 (1) 

 

2

2

0 for ,

( )
1 for ,

y s

x h y y
H y s

s



 


= =   
−  
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 (2) 

 

where, 𝜀 =
𝐻

2𝑠
≪ 1  is the perturbation parameter, which is 

presumable to be small. 

This assumption is reinforced by the earth’s surface model, 
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where an irregularity’s depth H is frequently minor in 

comparison to its span 2s. 

Let (𝑢, 𝑣, 𝑤)  represent a particle's displacement 

components in (𝑥, 𝑦, 𝑧)  directions, respectively. The z-axis 

does not affect the displacement or potential electrical 

components since the SH wave only causes displacement in 

the z-direction and propagates in the y-direction. As a result, 

we can calculate the mechanical displacement components and 

the electric and magnetic potentials are  
 

0, 0, ( , , ), ( , , ), ( , , )u v w w x y t x y t x y t   = = = = =  (3) 

 

The following are governing equations of motion for static 

behavior with unrestricted electric charges and no body forces: 
 

,

,

,

0

0

ij j i

i i

i i

T u

D

B

= 


= 


= 

 (4) 

 

The dot shows differentiation in time, the comma shows 

differentiation in space, and the repeating index in the 

subscript shows summation. 

The following is the relation between displacement and 

strain components: 
 

( )
1

2
ij ij ji

S u u= +  (5) 

 

Quasi-static approximation of the Maxwell equations yields: 
 

, ,andi i i iE H = − = −  (6) 

 

For a transversely isotropic medium with the z-axis being 

the symmetric axis and the poling axis of the magneto-electro-

elastic material, the constitutive equations are 
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In the specified direction, the component magnetic field and 

electric field are represented by the gradients of a magneto 

potential and electric potential for a space variable. 

The nonvanishing equations derived from Eqs. (3), (4), and 

(7) apply to the propagation of the SH wave, 
 

31,1 23,2

1,1 2,2

1,1 2,2

0

0

T T w

D D

B B

 + =


+ = 

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Figure 1. The problem of rectangular irregularity in 

geometry 

 

 
 

Figure 2. The problem of parabolic irregularity in geometry 

 

 

3. DYNAMICS OF THE PROBLEM  

 

3.1 Dynamics of FGMEE substrate 

 

Eq. (8) can be used to derive the motion equations for the 

SH wave propagating along the x-axis as 
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(9) 

 

The FGMEE substrate material characteristics are expected 

to be positively exponentially distributed across the depth (x-

axis). The FGMEE substrate functional gradients are therefore 

regarded as 
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Employing Eq. (10) in Eq. (9) we get 
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(11) 

466



 

From Eq. (11), we see that w, ϕ, and 𝜓 are coupled. By 

introducing two new functions 

 
' m ; ' n= − = −w w     (12) 

 

Substitution of Eq. (12) into Eq. (11) yields, 
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where, 
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Then, the stress tensor, electric displacement vector, and 

magnetic induction vector in Eq. (7) can be expressed in terms 

of 
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The solutions of Eq. (13) convert when the time-harmonic 

dependency of SH wave propagation is assumed as 
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It is to be noted that SH wave velocity is lesser than that of 

a substrate. In light of Eq. (15), Eq. (13) reduces to the 

following 
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In general, we define the following Fourier transforms as 
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and the subsequent inverse Fourier transform is defined as 

 

1
( , ) ( , )

2

i yf x y f x e d 




−

−

=   (18) 

 

Taking the Fourier transforms for Eq. (16) now, we discover 
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With the aid of Eqs. (17)-(19) may be expressed for FGMEE 

substrate as 
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where, A, B, C are unknown constants, 𝑟1 =
𝛼+√𝛼2+4

𝜔2
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2
 

and 𝑟2 =
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2
. 

Now, required solutions of FGMEE substrate Eq. (20) 

becomes 
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Therefore, mechanical displacement and electric potential 

function in FGMEE substrate as 
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where, the existence of the source within the FGMEE substrate 

causes the second term, as in the integrand of W, to be 

introduced. 

 

3.2 Dynamics of FGMEE vacuum 

 

Air’s dielectric constant 𝜅0 and 𝜇0 vary substantially from 

the dielectric constant of piezoelectric materials. As a result, 
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the piezoelectric layer’s upper surface is often exposed to air. 

Therefore, the electric and magnetic potential functions 𝜑𝑣 

and 𝜓𝑣 may be considered a vacuum for air in the region. 

 
2 20, 0v v  =  =  (23) 

 

The electric and magnetic displacement components of a 

vacuum are described as follows 
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Eq. (23) solutions convert when the time-harmonic 

dependency of SH wave propagation is assumed as 

 

( , ) , ( , )i t i tx y e x y e  = =  (25) 

 

Approaching in a similar fashion, and taking the Fourier 

transform of Eq. (23), we result in 

 
3 3,r x r x

v vDe Ee =  =  (26) 

 

where, D and E are unknown constants. And 𝑟3 = 𝜂. 

Therefore, the solution for the vacuum may be instated as 
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4. BOUNDARY CONDITIONS 

 

The adhesion to the following permissible boundary 

conditions is enforced to identify the frequency equations of 

SH wave: 

1) Mechanical tractions at the irregular interface 

continuity, that is 𝑥 = 𝜀ℎ(𝑦) 

 

31 23'( ) 0T h y T− =  (28) 

 

2) Electrical boundary condition at 𝑥 = 𝜀ℎ(𝑦) 

(i) Electrically open case: 
 

1 vD D=  (29) 

 

v=   (30) 

 

(ii) Electrically short case: 

 

0=  (31) 

 

3) Magnetic boundary condition at 𝑥 = 𝜀ℎ(𝑦) 

(i) Magnetically open case: 

 

1 vB B=  (32) 

 

v=   (33) 

 

(ii) Magnetically short case: 

 

0=  (34) 

 

 

5. SOLUTION TREATMENT 

 

The arbitrary variables A, B, C, D, and E are considered 

functions of the perturbation parameter because the substrate 

and vacuum interface is irregular. Expanding the constants (A, 

B, C, D, E) in powers of  and neglecting quadratic and higher 

powers of  , we approximate the constants as [29] 

 

0 1 0 1 0 1, , ,A A A B B B C C C   +  +  +  

0 1 0 1, .D D D E E E  +  +  

 

For a very small value of  𝜀 , we may also agree to the 

following approximations: 
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where, 𝜗 can be any value. Now, with the helps from Eqs. (14), 

(22), we arrive at the following from boundary condition (28), 
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(35) 

 

Now, let us define the Fourier transform of ℎ(𝑦) as 

 

( ) ( ) i yh h y e dy
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=   (36) 

 

and the subsequent inverse transform is defined as 
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Therefore, it may be derived that 
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In light of Eq. (37), Eq. (35) is transformed into 
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(39) 

 

Now, considering the inner integral in the left-hand side of 

Eq. (39) where 𝜆 may be treated as a constant, leads to 𝑑𝜂 =
𝑑𝑘 [29]. Further, by replacing 𝜂 by k on the right-hand side of 

Eq. (39) and using Eq. (37), we obtain 
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where, 
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Approaching in a similar fashion, boundary conditions (29)-

(34), we obtain 
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where, 
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Now, equating the absolute terms not containing  and the 

coefficients of  from Eqs. (40), (42)-(47), we obtain 
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1 1 1 5n ( )A C E P k+ − =  (65) 

 

0 0n 0A C+ =  (66) 

 

1 1 7n ( )A C P k+ =  (67) 

 

On solving the above Eqs. (54)-(59), (62)-(65) for 

electrically open and magnetically open case (EOMO), we 

obtain the values of 𝐴0 , 𝐴1 , 𝐵0 , 𝐵1 , 𝐶0 , 𝐶1 ,𝐷0 , 𝐷1 , 𝐸0 , and 

𝐸1 which are provided in the Appendix. With the help of 

values of unknown constants and Eq. (22), the mechanical 

displacement component of the irregular FGMEE substrate 

may be expressed as 
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Similar steps can be taken to acquire the mechanically 

displaced component of the uneven FGMEE substrate for the 

electrically short and magnetically short case (ESMS) 
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(69) 

 

where, 𝛾, 𝛾1, 𝛾4, 𝛾, 𝛾
1
 are provided in Appendix. 
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6. FREQUENCY EQUATION  
 

6.1 Frequency equation for rectangular-shaped 

irregularity at the interfacial surface for EOMO case 
 

Eq. (36) with aid of Eq. (1) yields 
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with 𝜁(𝑘 − 𝜆) = [𝐺1 + 𝐺2 + 𝐺3 + 𝐺4 + 𝐺5]𝜂=𝑘−𝜆, where, the 

definitions of 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5  are in the Appendix, and the 

argument of 𝜁(𝑘 − 𝜆)  results from the fact that 𝜂 + 𝜆 = 𝑘 . 

Using the asymptotic formula [32, 33] and hating terms with 

2/s and more extensive powers of 2/s for large s, we obtain 
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Eq. (71), in the context of Eq. (72), is simplified to 
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Eq. (68) is simplified, with the aid of Eq. (73), 
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Here, the contribution of the integrand's poles determines 

the value of such an integral. We compute the roots of the 

following expression to get the pole, 
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The necessary dispersion solution of the SH-wave traveling 

in rectangular-shaped irregularly for the EOMO condition is 

represented by Eq. (75) and is the relationship between wave 

number and frequency. 
 

6.2 Frequency equation for rectangular-shaped 

irregularity at the interfacial surface for ESMS case 
 

The mechanically displaced element of the irregularly 

FGMEE substrate for the ESMS situation may be calculated 

as follows by following the same procedure as in Section 6.1 

and using the same asymptotic formulas [32, 33]: 
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The necessary dispersion solution of the SH wave 

propagating through a rectangle-shaped irregularity in an 

interfacial surface for the ESMS condition is given by Eq. (76), 
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6.3 Frequency equation for parabolically-shaped 

irregularity at the interfacial surface for EOMO case 

 

By adding the parabola Eq. (2) to the Eq. (36), we arrive at 
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Again, approaching in a similar manner, with aid of solution 

(68) and using Eq. (78), we derive that 
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When the equation mentioned above is further condensed, 

it yields, 
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where, 𝐽3/2(𝜆𝑠) is a first-kind order 3/2 Bessel function. Using 

the terminal method in references [32, 33] once more, we 

arrive at 
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Hence, we derive the mechanically displaced element of the 

FGMEE substrate with a parabolic irregularity at the 

interfacial surface for EOMO condition as 
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(82) 

 

In this situation, the dispersion solution for the SH wave is 

obtained by 
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6.4 Frequency equation for parabolically-shaped 

irregularity at the interfacial surface for ESMS case 
 

The mechanically displaced element of the parabolic-

shaped irregular FGMEE substrate in ESMS condition is 

determined by following the same procedure as in Section 6.3 

and using the same asymptotic formulae [32, 33], 
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The necessary dispersion solution of the SH wave traveling 

in parabolic-shaped irregularity, an interfacial surface for the 

ESMS condition, is given by Eq. (84) as 
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7. NUMERICAL CALCULATIONS AND DISCUSSION 

 

In this investigation, we look at four scenarios: a case that 

is the rectangular-shaped irregularity of EOMO and ESMS 

cases, and a parabolic-shaped irregularity of EOMO and 

ESMS cases. A function of wave number is used to describe 

the influence on the phase velocity of the initial stress. For this 

study, we consider the magneto-electro-elastic material 

BaTiO3-CoFe2O4. The following Table 1 summarizes all of the 

material constants used in this article. 

The effect of the inhomogeneity parameter, depth source, 

and irregularity on the propagation of plane SH wave in an 

irregular FGMEE substrate is shown in Figures 3-14. In all the 

graphs, the dispersion curves have been plotted for phase 

velocity variation concerning wave number for open and short 

cases. And also, results are shown for the patients when an 

irregularity is in the form of a rectangle or a parabola. In 

general, for all the graphs, the default values of parameters are 

considered as 𝛼 = 0.005, 𝑙 = 5000, 𝐻 = 50,  unless 

otherwise specified. 

 

7.1 For irregularity in at interface surface with a 

rectangular form 

 

The graphs for the rectangular-shaped irregularity EOMO 

case are plotted in Figures 3-5. The relation between phase 

velocity and wave number is shown in Figure 3 for various 

inhomogeneity parameter values α(0.0046, 0.0048, 0.005); 

phase velocity decreases steadily as wave number k decreases. 

For all values of k, the phase velocity values drop as k 

increases. For all matters of α, the curves consistently decline 

and do not cross over. The effect of α is more prominent Figure 

4 demonstrates the effect of the relation between phase 

velocity and wave number for various depth source values 

l(4800, 4900, 5000). It is observed that as the depth source 

decreases, the phase velocity increases. Figure 5 demonstrates 

the effect of phase velocity versus wave number for various 

values of irregularity H(50, 60, 70), the nature of the curve is 

similar to Figure 4. 

The graphs for the rectangular-shaped irregularity ESMS 

case are plotted in Figures 6-8. Figure 6 demonstrates the 

relation between phase velocity and wave number for various 

inhomogeneity parameter values α(0.0046, 0.0048, 0.005); the 

wave number k ups and phase velocity progressively comes 

down for varied α values. For all values of k, the phase velocity 

values increase as α increases. For all deals of α, the curves 

continuously decline and do not increase. Figure 7 

demonstrates the effect of phase velocity versus wave number 

for various values of depth source l(4800, 4900, 5000). For all 

values of k, the phase velocity values increase as l increases. 

This graph exemplifies that the phase velocity rises directly to 

the rise in l. Figure 8 demonstrates the relation between phase 

velocity and wave number for various irregularity values H(50, 

60, 70). The graph is similar to the EOMO situation of 

irregularity. 

 

 
 

Figure 3. Variations in wave number & phase velocity for 

the rectangular-EOMO situation with changing values of α 

 

 
 

Figure 4. Variations in wave number & phase velocity for 

the rectangular-EOMO situation with changing values of l 

 

 
 

Figure 5. Variations in wave number & phase velocity for 

the rectangular-EOMO situation with changing values of H 

 

Table 1. Material coefficients of the Magneto-electro-elastic substrate BaTiO3-CoFe2O4 

 

Material 
( )C 01

44
 

( )e 01

15
 

( )h 01

15
 

( ) 01

11
 

( ) 01

11
 

( ) 01

11
   

BaTiO3-CoFe2O4 4.8 0.08 238 -258 0.19 0.005 7.5 
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Figure 6. Variations in wave number & phase velocity for 

the rectangular-ESMS situation with changing values of α 

 

 
 

Figure 7. Variations in wave number & phase velocity for 

the rectangular-ESMS situation with changing values of l 

 

 
 

Figure 8. Variations in wave number & phase velocity for 

the rectangular-ESMS situation with changing values of H 

 

7.2 For irregularity in at interface surface with a parabolic 

form 

 

The graphs for the parabola-shaped irregularity EOMO case 

are plotted in Figures 9-11. Figure 9 demonstrates the effect of 

phase velocity with wave number for various values of 

heterogeneity parameter values α(0.0049, 0.0050, 0.0051). 

Phase velocity decreases steadily as wave number k decreases. 

For all values of k, the phase velocity values drop as k 

increases. For all deals of α, the curves consistently decline 

and do not cross over. The effect of α is more prominent. 

Figure 10 demonstrates the effect of phase velocity versus 

wave number for various values of depth source l(4800, 4900, 

5000). The impact of the depth source l is similar to the α in 

Figure 9. Figure 11 demonstrates the effect of phase velocity 

versus wave number for various values of irregularity H(50, 

60, 70). It is visible that all matters of H curves merge. H has 

no effect on the phase velocity of the parabolic EOMO 

condition. 

 

 
 

Figure 9. Variations in wave number & phase velocity for 

the parabolic-EOMO situation with changing values of α 

 

 
 

Figure 10. Variations in wave number & phase velocity for 

the parabolic -EOMO situation with changing values of l 

 

 
 

Figure 11. Variations in wave number & phase velocity for 

the parabolic -EOMO situation with changing values of H 
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Figure 12. Variations in wave number & phase velocity for 

the parabolic -ESMS situation with changing values of α 

 

 
 

Figure 13. Variations in wave number & phase velocity for 

the parabolic -ESMS situation with changing values of l 

 

 
 

Figure 14. Variations in wave number & phase velocity for 

the parabolic -ESMS situation with changing values of H 

 

The parabolic-shaped irregularity ESMS case graphs are 

plotted in Figures 12-14. Figure 12 demonstrates the effect of 

wave number with phase velocity for various α(0.003, 0.005, 

0.007) values. The nature of the inhomogeneity parameter α is 

similar to Figure 6. Figure 13 demonstrates the effect of phase 

velocity versus wave number for various values of depth 

source l(4500, 5000, 5500). The nature of the depth source l is 

similar to Figure 7. Figure 14 demonstrates the effects of wave 

number with phase velocity for various irregularity values 

H(50, 60, 70). It is observed that, as the irregularity H 

decreases, the phase velocity increases as k increases. The 

effect of H is more prominent in ESMS parabolic conditions. 

 

 

8. CONCLUSIONS 

 

The present investigation aims to investigate the 

characteristics of SH waves generated by an impulse point 

source at the interface between the vacuum and the FGMEE 

substrate. The dispersion equation's closed-form expression is 

created using the Fourier series technique. A numerical 

calculation has shown how the wave number affects the phase 

velocity of SH waves. Inhomogeneity parameter, depth source, 

and irregularity related to the FGMEE substrate and vacuum 

are analyzed and visually depicted for their effects on the 

propagation properties of SH waves in both open and short 

situations, of rectangular and parabolic shapes. The following 

is a summary of the critical elements of the current study: 

 

• With an increase in wave number magnitude, the phase 

velocity of the SH wave considerably drops. 

• In contrast to the other cases (rectangular short and 

parabolic short), the inhomogeneity parameter causes 

the phase velocity to increase in both open situations. 

Comparing open rectangular cases to other cases, it is 

discovered that the effect is more potent. 

• For the two cases (rectangular short and parabolic 

short), the depth source increases the phase velocity 

while decreasing the phase velocity in both open 

situations. Compared to other situations, it is 

discovered that the effect is more substantial for the 

short parabolic case. 

• The irregularity at the imperfect interface reduces the 

phase velocity in open and short cases for both 

rectangular and parabolic. The irregularity strongly 

affects the phase velocity for all scenarios except the 

parabolic open condition. 

• This calculation model could be the ideal match for 

laminated FGMEE structures utilized as surface 

acoustic wave devices since the variation of the film's 

magneto-electromechanical characteristics changes 

gradually with depth and throughout the production 

process (SAW). As a result, it can serve as a theoretical 

foundation for the design of high-performance SAW 

devices. 

 

 

REFERENCES  

 

[1] Van Suchtelen, J. (1972). Product properties: A new 

application of composite materials. Phillips Research 

Reports, 27: 28-37.  

[2] Van Run, A.M., Terrell, D.R., Scholing, J.H. (1974). An 

in situ grown eutectic magnetoelectric composite 

material: Part 2 physical properties. Journal of Materials 

Science, 9: 1710-1714. 

https://doi.org/10.1007/BF00540771 

[3] Bracke, L.P.M., Van Vliet, R.G. (1981). A broadband 

magneto-electric transducer using a composite material. 

International Journal of Electronics Theoretical and 

Experimental, 51(3): 255-262. 

https://doi.org/10.1080/00207218108901330 

[4] Li, J.Y. (2000). Magnetoelectroelastic multi-inclusion 

and inhomogeneity problems and their applications in 

473

https://doi.org/10.1080/00207218108901330


 

composite materials. International Journal of 

Engineering Science, 38(18): 1993-2011. 

https://doi.org/10.1016/S0020-7225(00)00014-8 

[5] Liu, J., Liu, X., Zhao, Y. (2001). Green's functions for 

anisotropic magnetoelectroelastic solids with an 

elliptical cavity or a crack. International Journal of 

Engineering Science, 39(12): 1405-1418. 

https://doi.org/10.1016/S0020-7225(01)00005-2 

[6] Pan, E., Han, F. (2005). Exact solution for functionally 

graded and layered magneto-electro-elastic plates. 

International Journal of Engineering Science, 43(3-4): 

321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006 

[7] Bhangale, R.K., Ganesan, N. (2006). Free vibration of 

simply supported functionally graded and layered 

magneto-electro-elastic plates by finite element method. 

Journal of Sound and Vibration, 294(4-5): 1016-1038. 

https://doi.org/10.1016/j.jsv.2005.12.030 

[8] Huang, D.J., Ding, H.J., Chen, W.Q. (2007). Analytical 

solution for functionally graded magneto-electro-elastic 

plane beams. International Journal of Engineering 

Science, 45(2-8): 467-485. 

https://doi.org/10.1016/j.ijengsci.2007.03.005 

[9] Chen, J., Pan, E., Chen, H. (2007). Wave propagation in 

magneto-electro-elastic multilayered plates. 

International journal of Solids and Structures, 44(3-4): 

1073-1085. 

https://doi.org/10.1016/j.ijsolstr.2006.06.003 

[10] Melkumyan, A. (2007). Twelve shear surface waves 

guided by clamped/free boundaries in magneto-electro-

elastic materials. International Journal of Solids and 

Structures, 44(10): 3594-3599. 

https://doi.org/10.1016/j.ijsolstr.2006.09.016 

[11] Danoyan, Z.N., Piliposian, G.T. (2008). Surface electro-

elastic shear horizontal waves in a layered structure with 

a piezoelectric substrate and a hard dielectric layer. 

International Journal of Solids and Structures, 45(2): 

431-441. https://doi.org/10.1016/j.ijsolstr.2007.08.036 

[12] Li, L., Wei, P.J. (2014). Surface wave speed of 

functionally graded magneto-electro-elastic materials 

with initial stresses. Journal of Theoretical and Applied 

Mechanics, 44(3): 49-64. https://doi.org/10.2478/jtam-

2014-0016 

[13] Li, L., Wei, P.J. (2014). The piezoelectric and 

piezomagnetic effect on the surface wave velocity of 

magneto-electro-elastic solids. Journal of Sound and 

Vibration, 333(8): 2312-2326. 

https://doi.org/10.1016/j.jsv.2013.12.005 

[14] Wu, C.P., Chen, S.J., Chiu, K.H. (2010). Three-

dimensional static behavior of functionally graded 

magneto-electro-elastic plates using the modified Pagano 

method. Mechanics Research Communications, 37(1): 

54-60. 

https://doi.org/10.1016/j.mechrescom.2009.10.003 

[15] Huang, D.J., Ding, H.J., Chen, W.Q. (2010). Static 

analysis of anisotropic functionally graded magneto-

electro-elastic beams subjected to arbitrary loading. 

European Journal of Mechanics-A/Solids, 29(3): 356-

369. https://doi.org/10.1016/j.euromechsol.2009.12.002 

[16] Zhao, L., Chen, W.Q. (2010). Plane analysis for 

functionally graded magneto-electro-elastic materials via 

the symplectic framework. Composite Structures, 92(7): 

1753-1761. 

https://doi.org/10.1016/j.compstruct.2009.11.029 

[17] Chen, J., Guo, J., Pan, E. (2017). Wave propagation in 

magneto-electro-elastic multilayered plates with 

nonlocal effect. Journal of Sound and Vibration, 400: 

550-563. https://doi.org/10.1016/j.jsv.2017.04.001 

[18] Yang, Z.X., Dang, P.F., Han, Q.K., Jin, Z.H. (2018). 

Natural characteristics analysis of magneto-electro-

elastic multilayered plate using analytical and finite 

element method. Composite Structures, 185: 411-420. 

https://doi.org/10.1016/j.compstruct.2017.11.031 

[19] Vinyas, M. (2021). Computational analysis of smart 

magneto-electro-elastic materials and structures: Review 

and classification. Archives of Computational Methods 

in Engineering, 28(3): 1205-1248. 

https://doi.org/10.1007/s11831-020-09406-4 

[20] Othmani, C., Zhang, H., Lü, C., Wang, Y.Q., Kamali, 

A.R. (2022). Orthogonal polynomial methods for 

modeling elastodynamic wave propagation in elastic, 

piezoelectric and magneto-electro-elastic composites—

A review. Composite Structures, 286: 115245. 

https://doi.org/10.1016/j.compstruct.2022.115245 

[21] Chaki, M.S., Bravo-Castillero, J. (2023). A mathematical 

analysis of anti-plane surface wave in a magneto-electro-

elastic layered structure with non-perfect and locally 

perturbed interface. European Journal of Mechanics-

A/Solids, 97: 104820. 

https://doi.org/10.1016/j.euromechsol.2022.104820 

[22] Chattopadhyay, A., Gupta, S., Sharma, V.K., Kumari, P. 

(2008). Propagation of SH waves in an irregular 

monoclinic crustal layer. Archive of Applied Mechanics, 

78: 989-999. https://doi.org/10.1007/s00419-008-0209-6 

[23] Singh, S.S. (2011). Love wave at a layer medium 

bounded by irregular boundary surfaces. Journal of 

Vibration and Control, 17(5): 789-795. 

https://doi.org/10.1177/1077546309351301 

[24] Chattopadhyay, A., Singh, A.K. (2012). Propagation of 

magnetoelastic shear waves in an irregular self-

reinforced layer. Journal of Engineering Mathematics, 75: 

139-155. https://doi.org/10.1007/s10665-011-9519-8 

[25] Chattaraj, R., Samal, S.K., Mahanti, N.C. (2013). 

Dispersion of Love wave propagating in irregular 

anisotropic porous stratum under initial stress. 

International Journal of Geomechanics, 13(4): 402-408. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0000230 

[26] Singh, A.K., Kumar, S., Chattopadhyay, A. (2015). 

Love-type wave propagation in a piezoelectric structure 

with irregularity. International Journal of Engineering 

Science, 89: 35-60. 

https://doi.org/10.1016/j.ijengsci.2014.11.008 

[27] Singh, A.K., Chaki, M.S., Chattopadhyay, A. (2018). 

Remarks on impact of irregularity on SH-type wave 

propagation in micropolar elastic composite structure. 

International Journal of Mechanical Sciences, 135: 325-

341. https://doi.org/10.1016/j.ijmecsci.2017.11.032 

[28] Ray, A., Singh, A.K. (2020). Love-type waves in couple-

stress stratum imperfectly bonded to an irregular viscous 

substrate. Acta Mechanica, 231: 101-123. 

https://doi.org/10.1007/s00707-019-02525-5 

[29] Chaki, M.S., Singh, A.K. (2020). The impact of 

reinforcement and piezoelectricity on SH wave 

propagation in irregular imperfectly-bonded layered 

FGPM structures: An analytical approach. European 

Journal of Mechanics-A/Solids, 80: 103872. 

https://doi.org/10.1016/j.euromechsol.2019.103872 

[30] Gupta, S., Das, S., Dutta, R. (2021). Case-wise analysis 

of Love-type wave propagation in an irregular fissured 

474

https://doi.org/10.1016/S0020-7225(00)00014-8
https://doi.org/10.1016/S0020-7225(01)00005-2
https://doi.org/10.1016/j.ijengsci.2004.09.006
https://doi.org/10.1016/j.jsv.2005.12.030
https://doi.org/10.1016/j.ijsolstr.2006.06.003
https://doi.org/10.1016/j.ijsolstr.2006.09.016
https://doi.org/10.1016/j.jsv.2013.12.005
https://doi.org/10.1016/j.euromechsol.2009.12.002
https://doi.org/10.1016/j.jsv.2017.04.001
https://doi.org/10.1007/s11831-020-09406-4
https://doi.org/10.1016/j.euromechsol.2022.104820
https://doi.org/10.1177/1077546309351301
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000230
https://doi.org/10.1016/j.ijengsci.2014.11.008
https://doi.org/10.1016/j.ijmecsci.2017.11.032
https://doi.org/10.1007/s00707-019-02525-5
https://doi.org/10.1016/j.euromechsol.2019.103872


 

porous stratum coated by a sandy layer. Multidiscipline 

Modeling in Materials and Structures, 17(6): 1119-1141. 

https://doi.org/10.1108/MMMS-01-2021-0003 

[31] Chaki, M.S., Singh, A.K. (2021). Scattering and 

propagation characteristics of SH wave in reduced 

Cosserat isotropic layered structure at irregular 

boundaries. Mathematical Methods in the Applied 

Sciences, 44(7): 6143-6163. 

https://doi.org/10.1002/mma.7176 

[32] Chaki, M. S., Guha, S., Singh, A.K. (2020). Impact of 

rectangular/parabolic shaped irregularity on the 

propagation of shear horizontal wave in a slightly 

compressible layered structure. In Mathematical 

Modelling and Scientific Computing with Applications: 

ICMMSC 2018, Indore, India, pp. 61-74. 

https://doi.org/10.1007/978-981-15-1338-1_5 

[33] Singh, A.K., Rajput, P., Chaki, M.S. (2022). Analytical 

study of Love wave propagation in functionally graded 

piezo-poroelastic media with electroded boundary and 

abruptly thickened imperfect interface. Waves in 

Random and Complex Media, 32(1): 463-487. 

https://doi.org/10.1080/17455030.2020.1779387 

[34] Gupta, S., Dutta, R., Das, S. (2023). Flexoelectric effect 

on SH-wave propagation in functionally graded fractured 

porous sedimentary rocks with interfacial irregularity. 

Journal of Vibration Engineering & Technologies, 22: 1-

21. https://doi.org/10.1007/s42417-023-00894-9 

[35] Saini, A., Poonia, R.K. (2023). Propagation of love 

waves under the effect of parabolic irregularity in 

isotropic fluid-saturated porous medium. Materials 

Today: Proceedings. 

https://doi.org/10.1016/j.matpr.2023.02.210 

[36] Bhat, M., Manna, S. (2023). Behavior of Love-wave 

fields due to the reinforcement, porosity distributions, 

non-local elasticity and irregular boundary surfaces. 

International Journal of Applied Mechanics, 15(6): 

2350042. https://doi.org/10.1142/S1758825123500424 

[37] Singh, A.K., Koley, S., Negi, A. (2023). Remarks on the 

scattering phenomena of love-type wave propagation in 

a layered porous piezoelectric structure containing 

surface irregularity. Mechanics of Advanced Materials 

and Structures, 30(12): 2398-2429. 

https://doi.org/10.1080/15376494.2022.2053913 

[38] Kumari, P., Srivastava, R. (2023). On torsional wave in 

void type porous layers between viscoelastic and 

piezoelectric media with parabolic irregularity. Waves in 

Random and Complex Media, 16: 1-23. 

https://doi.org/10.1080/17455030.2023.2223687 

[39] Willis, H.F. (1948). LV. A formula for expanding an 

integral as a series. The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science, 39(293): 

455-459. https://doi.org/10.1080/14786444808521694 

[40] Tranter, C.J. (1966). Integral Transforms in 

Mathematical Physics (No. 64). Chapman & Hall. 

 

 

NOMENCLATURE 

 

ijT  stress tensor 

iu  displacement vector components 

iD  mechanical and electric displacements 

iB  magnetic displacements 

ijC  elastic constants (1010N/m2) 

ije  piezoelectric constants (C/m2) 

ij  magnetic permittivity (10-6Ns2C-2) 

ijh  piezomagnetic constants (N/Am) 

ij  electromagnetic constants (10-9Ns/VC) 

ijS  strain tensor 

iE  elastic field intensity 

k  wave number 

  wave length 
c  phase velocity 

0  
vacuum dielectric constant (8.85×10-12F/m) 

0  
vacuum magnetic permittivity (4π×10-7Ns2C-2) 

ijk
 

Dielectric constants (10-9C/Vm) 

iH  Magnetic field 

 

Greek symbols 

 
  electrostatic potential 

  the magnetic potential 
  functional gradient parameter 
  transform parameter 

  any quantity 
  mass density (103Kg/m3) 

t time 

 

Subscripts 

 

(1) FGMEE substrate 

v vacuum 
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(01) 2

11 2 0 0 3 0

G r r r

r B r C r B

r C r E

  

    

 

= − − −

− − +

+ −

 

 

( )( )

( ) ( )( )

( )

 

(01) (01) (01)

4 15 2 11 1 0 3 11 2 0 3

2(01) (01) (01)

11 2 11 2 11 2 0 3

(01) (01) (01) 2 (01)

11 2 11 1 0 3 15 2 11

(01)

11 2 2 0 1 0 3 0m

G e r r r r r

r r r r

r r r h r

r r B r A r D

   

   

   



= − + +

+ + +


+ + −

+ + +

 

 

( )( )

( ) ( )

( ) 

(01) (01) (01)

5 15 2 11 1 0 3 11 2 0 3

2(01) (01) (01) (01)

11 2 11 2 11 1 0 3 11 2

(01) (01) 2 (01)

15 11 2 11 2 0 3 2 0 1 0 3 0

2

n

G h r r r r r

r r r r r

e r r r r C r A r E

   

    

  

= − + +

  − + + + 

+ + + +

 

 

 ( ) ( )

( ) ( ) 
( ) ( )

1(01) (01)

44 1 1 0 44 1

(01) 2 (01) 2

15 2 2 0 15 2 2 0

(01) (01)

15 2 2 0 1 0 15 2 2 0 1 0

'( ) 2

m n

r lk C r r A C r e

e r r B h r r C

e r r B r A h r r C r A

  

 

−= − − −

+ − + −

− + − +
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