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This study examines a fractional-order prey-predator model incorporating fear effects 

and harvesting impacts on prey dynamics, employing both continuous and discretized 

frameworks with the Monod–Haldane functional response. The existence, uniqueness, 

and boundedness of the system's solutions, along with their non-negativity, are 

established through rigorous analysis. The system is further evaluated for potential 

equilibrium points, with their stability conditions meticulously assessed. It is revealed 

that the model possesses three locally stable equilibrium points, provided certain 

conditions are met. In the context of the discretized model, an optimal harvesting 

strategy is formulated, guided by Pontryagin’s Maximum Principle, to ensure maximum 

economic yield. Numerical simulations complement the analytical findings, offering 

insights into the system's dynamic behavior under both continuous and discrete 

scenarios. Moreover, the optimality problem associated with harvesting strategies is 

resolved. The study concludes by summarizing the significant outcomes and their 

implications for ecological management. 
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1. INTRODUCTION

Predation is a key ecological interaction that affects 

populations and communities. This interaction can directly 

modify by the kinetic effects of relationship on biological rates 

and indirectly through integrated behavioral and 

morphological responses of the populations including the 

study of forms mutations, adaptation and evolution, the 

consideration of the features and structure of organisms and 

their place in the greater environment [1]. The fear effect is 

one of many aspects that controls the dynamic behaviors of 

prey-predator systems due to its impact on the population 

abundant of the prey [2]. Zhang et al. [3], Cresswell [4], Xu [5] 

showed that the fear that consider by the predator is greater 

effect on the prey species than the direct killing. Lan et al. [6] 

interpreted that the fear effect may occur from not only adult 

predators but also from juvenile one. Fractional derivatives 

and integrals have provided a better tool to understanding 

some biological models, especially differential equations 

models have been interested due to the memory effect which 

exists in most biological systems [7, 8]. 

The concept of the optimal harvesting has an important 

significant effect in treating the renewable stocks due the 

economic feature and to maintain and prevent the species away 

from the extinction, so that many authors and researchers are 

widely considered and discussed this subject in their papers [9-

14].  

The Caputo fractional order derivatives are considered 

because the fractional order initial conditions are not necessary 

to define and the fractional-order derivative of constant 

function is equal to zero [15, 16]. 

Difference equations are well used to describe the dynamic 

process the life of many populations that cannot be 

encompassed by other simple continuous equations for 

example, plants, in the pacific salmon fishery, bird and 

mammals, population of insects, and others. In spite of their 

apparent simplicity discrete time models are frequently used 

and employed, these models can show and exhibit amazingly 

complex dynamic behavior [17-21]. 

In this article, we consider and investigate a non-integer 

order derivative prey-predator biological model with its 

discretization. 

Functional response can greatly affect model predations, 

thus some functional responses are employed and considered 

to depict and describe this phenomenon. For example, the 

Holling functional response of type I, II and III, as well as, 

Beddingto-De Agelis and Crowley-Martin functional response 

are widely used in the literatures [1, 22, 23]. Another type of 

functional response which is known as Monod–Haldane 

function that has the form 𝜓(𝑁) =
𝑟𝑁

𝑎+𝑏𝑁+𝑁2
, where r, a and b 

are positive constants which is introduced and considered by 

Dai et al. [24], while Andrews [25] presented a simple form of 

the Monod–Haldane functional response. 

The Monod–Haldane functional response is also used in the 

system. In addition, the effect of fear on prey species and 

harvesting are studied. 

The structure of this work is as follows: In section 2, the 

mathematical fractional-order model is formulated so, the 

mathematical results and behaviors dynamics for the 

suggested model are discussed. The existence and uniqueness 

as well as the boundedness and non-negativity of the solutions 

are shown. We also investigate the local stability of all 
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equilibrium points of the considered system. In section 3, the 

discretization process is done and the local stability of its l 

equilibria are studied and investigated. The Pontryagin’s 

maximum principle is used and applied to obtain the optimal 

harvest amount for the discrete model in section 4. Numerical 

outcomes are given and presented in section 5 to get the 

optimality problem and to confirm the mathematical analysis. 

In section 6, the conclusion of the results of this work is given.  

 

 

2. THE FRACTIONAL MODEL 

 

Wang et al. [2] studied and discussed the fear effect in prey-

predator model with the Holling’s type II functional response. 

Their model is giving as follows: 

 
𝑑𝑛(𝑡)

𝑑𝑡
=

𝑟0𝑛(𝑡)

1+𝑘𝑝(𝑡)
− 𝑑𝑛(𝑡) − 𝑐𝑛2(𝑡) −

𝑛(𝑡)𝑝(𝑡)

1+𝑏𝑛(𝑡)

𝑑𝑝(𝑡)

𝑑𝑡
=

𝑒𝑛(𝑡)𝑝(𝑡)

1+𝑏𝑛(𝑡)
− 𝑓𝑝(𝑡)

]  (1) 

 

where, n(t) and p(t) are the size of prey and predator species at 

time t,  respectively.  The interpretation of the parameters r0, k, 

d, c, e and f are given in Table 1. 

 

Table 1. Parameters' description 

 
Parameter Description Parameter Description 

r0 
The rate of birth in 

the prey species. 
e 

The conversion 

rate of prey’s size 

to predator’s size. 

d 
The natural death 

rate of the prey. 
f 

The rate of death 

in the predator 

species. 

c 

The death rate due 

to intraspecies 

competition. 

k 
The level of fear 

in the prey. 

 

Now, we introduce a fractional-q-order derivatives by using 

the Caputo’s definition where 𝑞𝜖(0,1) [13], with a simplest 

form of Monod–Haldane function [24]. We also consider that 

the prey is exposed to a constant rate harvesting then in later 

section we consider the non-harvesting rate. Therefore, the 

model (1) becomes as follows: 

Therefore, the model (1) becomes as follows: 

 

𝒟𝑞𝑛(𝑡) =
𝑟0𝑛(𝑡)

1+𝑘𝑝(𝑡)
− 𝑑𝑛(𝑡) − 𝑐𝑛(𝑡)2 −

𝑟𝑛(𝑡)𝑝(𝑡)

𝑎+𝑛(𝑡)2
− ℎ𝑛(𝑡)

𝒟𝑞𝑝(𝑡) =
𝑒𝑟𝑛(𝑡)𝑝(𝑡)

𝑎+𝑛(𝑡)2
− 𝑓𝑝(𝑡)

]  (2) 

 

where, r is the capture rate of the predator and a is the 

reciprocal of group defense in prey. Some properties to the 

fractional-order derivatives can be found in reference [13, 23, 

26] that are needed throughout this paper. Next theorems give 

the existence, uniqueness for the system (2). 

Theorem (1): Let η be a sufficiently large, the considered 

system (2) has a unique solution (n(t), p(t)) in F×(0, T] at any 

non-negative initial value (n0, p0), for all t>0, where  𝐹 =
{(𝑛, 𝑝) ∈ 𝑅2+: (|𝑛|, |𝑝|)  ≤ 𝜂}. 

Proof: We first assume that 𝑋 = (𝑛, 𝑝), �̂�=(�̂�, �̂�), and then 

consider a mapping B(X)=(B1(X), B2(X)), such that 𝐵1(𝑋) =
𝑟0𝑛

1+𝑘𝑝
− 𝑑𝑛 − 𝑐𝑛2 −

𝑟𝑛𝑝

𝑎+𝑛2
− ℎ𝑛,  𝐵2(𝑋) =

𝑒𝑟𝑛𝑝

𝑎+𝑛2
− 𝑓𝑝. For 

𝑋 , �̂�  ∈ 𝐹 and by simple computations, one can easily get the 

following: 

 

‖𝐵(𝑋) − 𝐵(�̂�)‖=|𝐵1(𝑋) − 𝐵1(�̂�)| + |𝐵2(𝑋) − 𝐵2(�̂�)| ≤

𝑟0|𝑛(1 + 𝑘�̂�) − �̂�(1 + 𝑘𝑝)| + 𝑐|(𝑛 − �̂�)(𝑛 + �̂�)| +
𝑑|𝑛 − �̂�| + ℎ|𝑛 − �̂�| + 𝑟|𝑛𝑝(𝑎 + �̂�2) − �̂��̂�(𝑎 + 𝑛2)| +
𝑒𝑟|𝑛𝑝(𝑎 + �̂�2) − �̂��̂�(𝑎 + 𝑛2)| + 𝑓|𝑝 − �̂�| ≤ 𝐿‖𝑋 − �̂�‖ 

 

where, 𝐿 = 𝑚𝑎𝑥{(𝑟0 + 𝑟0𝑘𝜂 + 𝑑 + 2𝑐𝜂 + ℎ + 𝑟𝜂𝑎(1 + 𝑒) +
𝑟𝜂2(1 + 𝑒), (𝑟𝜂𝑎(1 + 𝑒) + 𝑟𝜂2(1 + 𝑒) + 𝑟0𝑘𝜂 + 𝑓)}. Hence, 

B(X) has the Lipschitz condition. Therefore, there exists a 

unique solution to the fractional order system (2).  

The non-negativity and boundedness of solutions of system 

(2) are proved by the following theorem. 

Theorem (2): For the system (2) with n0 and p0, all solutions 

that start in F+ are uniformly bounded and non-negative, where 

F+={n≥0, p≥0}. 

Proof: Consider a function 𝑉 = 𝑛 +
𝑝

𝑒
 and the initial values 

are n0 and p0 so that 𝐷𝑞𝑉(𝑡) + 𝜇𝑉(𝑡) = 𝐷𝑞𝑛(𝑡) +
1

𝑒
𝐷𝑞𝑝(𝑡) +

𝜇𝑉(𝑡) . Then DqV(t)+μV(t)≤K when μ<f. where, 𝐾 =
(𝑟0−𝑑−ℎ+𝜇)

2

4𝑐2
. 

Therefore, by using the comparison theorem that presented 

in reference [14], we have 𝑉(𝑡) ≤ (𝑉(0) −
𝐾

𝜇
)𝐸𝑞[−𝜇𝑡

𝑞] + 𝐾, 

and 

 

0 ≤ 𝑉(𝑡) ≤ 𝐾 as𝑡 → ∞ (3) 

 

Hence, all solutions to system (2) are uniformly bounded. 

In order to prove the non-negativity solution, we first notice 

that from the first equation of system (2). 

 

𝐷𝑞𝑛(𝑡) =
𝑟0𝑛

1 + 𝑘𝑝
− 𝑑𝑛 − 𝑐𝑛2 −

𝑟𝑛𝑝

𝑎 + 𝑛2
− ℎ𝑛 

 

And from Eq. (3), we have 𝑛 +
𝑝

𝑒
≤

(𝑟0−𝑑−ℎ+𝜇)
2

4𝑐2𝜇
= 𝜇1. Then, 

we get: 𝐷𝑞𝑛(𝑡) =
𝑟0𝑛

1+𝑘𝑝
− 𝑑𝑛 − 𝑐𝑛2 −

𝑟𝑛𝑝

𝑎+𝑛2
− ℎ𝑛 ≥ −(𝑑 +

ℎ + 𝑐𝜇1)𝑛 = 𝜑1𝑛. 
This implies: 𝑛(𝑡) ≥ 𝑛0𝐸𝑞(𝜑1𝑡

𝑞). where, φ1=-(d+h+cμ1). 

Since Eq(t)>0, for any order q in (0, 1), then as n(t)≥0, for 

all t>0. 

From the second equation in Eq. (2), it is clear that Dqp(t)≥-

fp. So that, p(t)≥p0Eq(-ftq)≥0 for all t>0. 

Hence, the fractional order system (2) has non-negative 

solutions. 

To find all possible equilibria of the system (2), the 

following equations have to be solved: 

 

𝒟𝑞𝑛(𝑡) =
𝑟0𝑛(𝑡)

1+𝑘𝑝(𝑡)
− 𝑑𝑛(𝑡) − 𝑐𝑛(𝑡)2 −

𝑟𝑛(𝑡)𝑝(𝑡)

𝑎+𝑛(𝑡)2
− ℎ𝑛(𝑡) = 0

𝒟𝑞𝑝(𝑡) =
𝑒𝑟𝑛(𝑡)𝑝(𝑡)

𝑎+𝑛(𝑡)2
− 𝑓𝑝(𝑡) = 0

]  (4) 

 

Therefore, the equilibria of the system (2) are as follows: 

1. The extinction equilibrium point e0=(0, 0) always exists. 

2. The free predator point equilibrium point 𝑒1 = (𝑛
∗, 0) =

(
𝑟0−(𝑑+ℎ)

𝑐
, 0) exists if r0>d+h. 

3. The interior or positive equilibrium point e2=(n*, p*) 

where n* and p* are the positive roots the following equations, 

respectively: 𝑓𝑛∗2 − 𝑒𝑟𝑛∗ + 𝑎𝑓 = 0 , 𝑘𝑝∗2 + (𝑟 + (𝑑 +

𝑐𝑛∗ + ℎ)𝑘(𝑎 + 𝑛∗2)) 𝑝∗ + ((𝑑 + 𝑐𝑛∗ + ℎ) − 𝑟0)(𝑎 +

𝑛∗2) = 0. 

The general variation matrix of the suggested model (2) at 

any point (n, p) is then as follows: 
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𝐽 =

[
 
 
 
 

𝑟0
1 + 𝑘𝑝

− 𝑑 − 2𝑐𝑛 − ℎ +
𝑟𝑝𝑛2 − 𝑎𝑟𝑝

(𝑎 + 𝑛2)2
−

𝑟0𝑘𝑛

(1 + 𝑘𝑝)2
−

𝑟𝑛

(𝑎 + 𝑛2)

𝑒𝑟𝑎𝑝 − 𝑒𝑟𝑝𝑛2

(𝑎 + 𝑛2)2
𝑒𝑟𝑛

(𝑎 + 𝑛2)
− 𝑓

]
 
 
 
 

 

 

So, the characteristic polynomial of J is as follows:  

 

P(λ)=λ2+a2λ+a1=0 

 

where, 

𝑎2 = −(
𝑟0

1+𝑘𝑝
− 𝑑 − 2𝑐𝑛 − ℎ +

𝑟𝑝𝑛2−𝑎𝑟𝑝

(𝑎+𝑛2)2
+

𝑒𝑟𝑛

(𝑎+𝑛2)
− 𝑓) and 

𝑎1=(
𝑟0

1+𝑘𝑝
− 𝑑 − 2𝑐𝑛 − ℎ +

𝑟𝑝𝑛2−𝑎𝑟𝑝

(𝑎+𝑛2)2
) (

𝑒𝑟𝑛

(𝑎+𝑛2)
− 𝑓) + 

(
𝑟0𝑘𝑛

(1+𝑘𝑝)2
+

𝑟𝑛

(𝑎+𝑛2)
) (

𝑒𝑟𝑎𝑝−𝑒𝑟𝑝𝑛2

(𝑎+𝑛2)2
). 

 

The next Theorem establishes the local stability of the 

suggested system (2). 

Theorem (3): The local stability of equilibria of system (2) 

are as follows:  

1. The trivial equilibrium point e0=(0, 0) is locally stable, if 

d+h>r0. 

2. The free predator equilibria point 𝑒1 = (
𝑟0−(𝑑+ℎ)

𝑐
, 0) is 

locally stable, if d+h<r0 and 
𝑐𝑒𝑟(𝑟0−(𝑑+ℎ))

𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2 < 𝑓. 

3. The interior or positive equilibrium point, (n*, p*) is 

locally stable if one of the following conditions holds: 

I. a2>0 and a1>0. 

II. a2<0, 4𝑎1 > 𝑎2
2, and |tan−1 (

√4𝑎1−𝑎2
2

𝑎2
)| > 𝑞

𝜋

2
. 

where,  

a2=−(
𝑟0

1+𝑘𝑝∗
− 𝑑 − 2𝑐𝑛∗ − ℎ +

𝑟𝑝∗𝑛∗
2
−𝑎𝑟𝑝∗

(𝑎+𝑛∗2)
2 +

𝑒𝑟𝑛∗

(𝑎+𝑛∗2)
− 𝑓) and 

a1=(
𝑟0

1+𝑘𝑝∗
− 𝑑 − 2𝑐𝑛∗ − ℎ +

𝑟𝑝∗𝑛∗
2
−𝑎𝑟𝑝∗

(𝑎+𝑛∗2)
2 ) (

𝑒𝑟𝑛∗

(𝑎+𝑛∗2)
− 𝑓) 

+(
𝑟0𝑘𝑛

∗

(1+𝑘𝑝∗)2
+

𝑟𝑛∗

(𝑎+𝑛∗2)
) (

𝑒𝑟𝑎𝑝∗−𝑒𝑟𝑝∗𝑛∗
2

(𝑎+𝑛∗2)
2 ). 

 

Proof: 

1. At the point e0=(0, 0), the Jacobian matrix J of the 

suggested system (2) is:  

 

𝐽(𝑒0) = [
𝑟0 − (𝑑 + ℎ) 0

0 −𝑓
] 

 

Since the eigenvalues of J(e0) are λ1=r0-(d+h) and λ2=-f, then 

we get |arg (𝜆1)| > 𝑞
𝜋

2
 if d+h>r0 and  |arg (𝜆2)| > 𝑞

𝜋

2
. 

According to the proposition 1 in reference [27], hence the 

point e0 is locally stable. 

2. The Jacobian matrix at the point e1, J(e1) is: 

 

𝐽(𝑒1) =

[
 
 
 
 𝑑 + ℎ − 𝑟0

−𝑟0𝑘(𝑟0 − (𝑑 + ℎ))

𝑐
−

𝑐𝑟(𝑟0 − (𝑑 + ℎ))

𝑎𝑐2 + (𝑟0 − (𝑑 + ℎ))
2

0
𝑐𝑒𝑟(𝑟0 − (𝑑 + ℎ))

𝑎𝑐2 + (𝑟0 − (𝑑 + ℎ))
2
− 𝑓

]
 
 
 
 

 

 

Then, the eigenvalues of J(e1) are λ1=d+h-r0 and 𝜆2 =
𝑐𝑒𝑟(𝑟0−(𝑑+ℎ))

𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2 − 𝑓. Since d+h<r0, it is clear that |arg (𝜆1)| >

𝑞
𝜋

2
 ∀𝑞 ∈ (0,1). Now if 𝑓 >

𝑐𝑒𝑟(𝑟0−(𝑑+ℎ))

𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2, then |arg (𝜆2)| >

𝑞
𝜋

2
. According to the study [27], the free predator point e1 is 

locally stable point. 

3. It is easy to see that J(e2) is evaluated as: 

𝐽(𝑒2) = 

[
 
 
 
 

𝑟0
1 + 𝑘𝑝∗

− 𝑑 − 2𝑐𝑛∗ +
𝑟𝑝∗𝑛∗2 − 𝑎𝑟𝑝∗

(𝑎 + 𝑛∗2)2
− ℎ −(

𝑟0𝑘𝑛
∗

(1 + 𝑘𝑝∗)2
+

𝑟𝑛∗

(𝑎 + 𝑛∗2)
)

𝑒𝑟𝑎𝑝∗ − 𝑒𝑟𝑝∗𝑛∗2

(𝑎 + 𝑛∗2)2
𝑒𝑟𝑛∗

(𝑎 + 𝑛∗2)
− 𝑓

]
 
 
 
 

 

 

The characteristics polynomial of J at the point e2 is as 

follows: P(λ)=λ2+a2λ+a1=0. 

Then according to the proposition 1 in the study [27], we get 

the results. 

 

 

3. THE DISCRETIZATION FRACTIONAL-ORDER 

MODEL 

 

In this part, we apply the discretization process of piecewise 

constant arguments which is presented in references [20, 28] 

to the suggested fractional prey-predator dynamics system (2). 

These yields: 

 

𝑛𝑚+1 = 𝑛𝑚 +
𝑠𝑞

𝑞𝛤(𝑞)
(
𝑟0𝑛𝑚

1 + 𝑘𝑝𝑚
− 𝑑𝑛𝑚 − 𝑐𝑛𝑚

2

−
𝑟𝑛𝑚𝑝𝑚

𝑎 + 𝑛𝑚
2 − ℎ𝑛𝑚) 

 𝑝𝑚+1 = 𝑝𝑚 +
𝑠𝑞

𝑞𝛤(𝑞)
(
𝑒𝑟𝑛𝑚𝑝𝑚

𝑎 + 𝑛𝑚
2 − 𝑓𝑝𝑚) 

(5) 

 

where, s>0. 

Now, we discuss the behaviors of the discrete fractional 

dynamics model (5). 

We note that system (5) has the same fixed (equilibrium) 

points as the suggested system (2). The general variation 

matrix of model (5) at any fixed point (n, p) is 

 

𝐽 = [
1 +𝑊 (

𝑟0

1+𝑘𝑝
− 𝑑 − 2𝑐𝑛 +

𝑟𝑝𝑛2−𝑎𝑟𝑝

(𝑎+𝑛2)2
− ℎ) −𝑊 (

𝑟0𝑘𝑛

(1+𝑘𝑝)2
+

𝑟𝑛

(𝑎+𝑛2)
)

𝑊 (
𝑒𝑟𝑎𝑝−𝑒𝑟𝑝𝑛2

(𝑎+𝑛2)2
) 1 +𝑊 (

𝑒𝑟𝑛

(𝑎+𝑛2)
− 𝑓)

]. 

 

where, 𝑊 =
𝑠𝑞

𝑞Γ(𝑞)
. 

Remark: 

For a discrete system a fixed point (equilibrium) is called a 

locally stable if all eigenvalues of its Jacobian matrix at that 

fixed point are inside the unit circle, otherwise it is unstable 

fixed point, and it is non-hyperbolic point if at least one of the 

eigenvalues has modules equal to 1. 

Lemma (4) [17, 29] 

Let 𝐹(𝜉) = 𝜉2 + 𝑛1𝜉 + 𝑛2 be the characteristic polynomial 

of degree two, with F(1)>0. Then the F(-1)>0 and n2<1 if and 

only if |𝜉𝑖| < 1, 𝑖 = 1,2. 
Now, we will determine the nature of all fixed (equilibrium) 

points of the model (5). 

Theorem (5): For the discrete model (5), the trivial 

equilibrium point e0 is: 

a. A locally stable if 𝑟0 ∈ (𝑑 + ℎ −
2

𝑊
, 𝑑 + ℎ) and 𝑊 <

2

𝑓
, 

otherwise it is unstable. 

b. A non-hyperbolic point if r0=d+h or 𝑟0 = 𝑑 + ℎ −
2

𝑊
 or 

𝑊 =
2

𝑓
. 

Proof: It is easy to see that J(e0) is as follows: 𝐽(𝑒0) =

[
1 +𝑊(𝑟0 − (𝑑 + ℎ)) 0

0 1 −𝑊𝑓
] , clearly calculations that 

the eigenvalues of J(e0) are λ1=1+W(r0-(d+h)) and λ2=1-Wf. 

Now if 𝑊 <
2

𝑓
, then 0<Wf<2 and |λ2|<1. Let 𝑑 + ℎ −

2

𝑊
<
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𝑟0 < 𝑑 + ℎ, then -2<W(r0-(d+h))<0 and |λ1|<1. Therefore, the 

trivial equilibrium point e0 is a locally stable. It is clear that if 

r0=d+h or 𝑟0 = 𝑑 + ℎ −
2

𝑊
 or =

2

𝑓
, then e0 is a non-hyperbolic 

point. 

Theorem (6): The free predator fixed point 𝑒1 =
(𝑟0−(𝑑+ℎ)

𝑐
, 0) of the discrete model (5) is: 

a. A locally stable point if W<
2

𝑟0−(𝑑+ℎ)
 and 𝑓 ∈ (𝑀,

2+𝑊𝑀

𝑊
), 

where 𝑀 = 
𝑐𝑟𝑒(𝑟0−(𝑑+ℎ))

(𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2
)
 , otherwise 𝑒1 is unstable point. 

b. non-hyperbolic point if W=
2

𝑟0−(𝑑+ℎ)
 or f=M or 𝑓 =

2+𝑊𝑀

𝑊
. 

Proof: At the free predator fixed point e1 the J(e1) is as 

follows:  

 
𝐽(𝑒1)

=

[
 
 
 
 1 +𝑊(𝑑 + ℎ − 𝑟0) −𝑊(

𝑟0𝑘(𝑟0 − (𝑑 + ℎ))

𝑐
+

𝑐𝑟(𝑟0 − (𝑑 + ℎ))

𝑎𝑐2 + (𝑟0 − (𝑑 + ℎ))
2
)

0 1 +𝑊(
𝑐𝑒𝑟(𝑟0 − (𝑑 + ℎ))

𝑎𝑐2 + (𝑟0 − (𝑑 + ℎ))
2
− 𝑓)

]
 
 
 
 

 

 

The eigenvalue s of J(e1) are λ1=1+W(d+h-r0) and λ2=1 +

𝑊 (
𝑐𝑒𝑟(𝑟0−(𝑑+ℎ))

𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2 − 𝑓). If 𝑊 <

2

𝑟0−(𝑑+ℎ)
, then -1<1+W(d+h-

r0)<1 and |λ1|<1, while, if 𝑀 < 𝑓 <
2+𝑊𝑀

𝑊
, then 

MW<Wf<2+WM and-1<(1+WM-Wf)<1. Hence |λ2|<1 

therefore, the free predator point e1 is (a locally stable), 

otherwise it is unstable point. Clearly that if W=
2

𝑟0−(𝑑+ℎ)
 or 

f=M or 𝑓 =
2+𝑊𝑀

𝑊
, then e1 is a non-hyperbolic point. Now, we 

discuss the properties of stability analysis for the positive or 

interior point e2=(n*, p*) of system (5) and then we set the 

following theorem: 

Theorem (7): The positive or interior point e2=(n*, p*) of a 

discrete system (5) is a locally stable if 𝑓 ∈ (𝑆3, min{𝑆1, 𝑆2}), 
where  

𝑆1 =
1 −𝑊1 −𝑊4 +𝑊1𝑊4 −𝑊2𝑊3

𝑊(𝑊1 − 1)
 , 

𝑆2 =
1 +𝑊4 +𝑊1 +𝑊1𝑊4 −𝑊2𝑊3

𝑊(𝑤1 + 1)
, 

𝑆3 =
𝑊1𝑊4 −𝑊2𝑊3 − 1

𝑊𝑊1

, 

W1= 1 +𝑊 (
𝑟0

1+𝑘𝑝∗
− 𝑑 − 2𝑐𝑛∗ +

𝑟𝑝∗𝑛∗
2
−𝑎𝑟𝑝∗

(𝑎+𝑛∗2)
2 − ℎ), 

𝑊2 = −𝑊 (
𝑟0𝑘𝑛

∗

(1 + 𝑘𝑝∗)2
+

𝑟𝑛∗

(𝑎 + 𝑛∗2)
), 

𝑊3 =  𝑊 (
𝑒𝑟𝑎𝑝∗−𝑒𝑟𝑝∗𝑛∗

2

(𝑎+𝑛∗2)
2 ) and 

𝑊4 = 1 +𝑊 (
𝑒𝑟𝑛∗

(𝑎+𝑛∗2)
). 

 

Proof: The J(e2) of the discrete system (5) is as follows: 

𝐽(𝑒2) = [
𝑊1 𝑊2

𝑊3 𝑊4 −𝑊𝑓
],  So, the corresponding 

characteristic polynomial is:  

 

𝐹(𝜆) = (𝑊1 − 𝜆)( 𝑊4 −𝑊𝑓 − 𝜆) − (𝑊2𝑊3) = 0 ⇒
𝑊1𝑊4 −𝑊1𝑊𝑓 −𝑊1 𝜆 −𝑊4 +𝑊𝑓𝜆 + 𝜆

2 −𝑊2𝑊3 = 0 ⇒
𝜆2 − ( 𝑊1 +𝑊4 −𝑊𝑓) 𝜆 +𝑊1𝑊4 −𝑊1𝑊𝑓 −𝑊2𝑊3 =0. 

 

Lead to F(λ)=λ2+ppλ+qq=0. Where pp=Wf-W1-W4, and 

qq=W1W4-W1Wf-W2W3. Let f<S1, then fW(W1-1)<1-W1-W4+ 

W1W4- W2W3 and 1-W1-W4+W1W4-fWW1+fW- W2W3>0.This 

gives that F(1)>0. Now, if f<S2 then 

fW(W1+1)<1+W4+W1+W1W4- W2W3 and 1+W4+W1+W1W4-

fWW1-fW-W2W3>0 this implies that F(-1)>0. Now, if f>S3, 

then fW1W>W1W4- W2W3-1 and W1W4-fW1W-W2W3<1 then 

gives that qq<1. Hence, according to Lemma (4), the interior 

fixed point e2 is a locally stable. 

 

 

4. OPTIMAL HARVESTING 

 

The key idea in this section is to determine how one can 

maximize the profits net from harvesting the prey population 

[30]. We follow the profits net is given as follows: 

 

𝐽(ℎ𝑡) = 𝑚𝑎𝑥∑(𝑐1ℎ𝑡𝑛𝑡 − 𝑐2ℎ𝑡
2)

𝑇−1

𝑡=0

 (6) 

 

where, c1 represents the price of the harvesting, c2 is positive 

constant, ht is the control variable such that 0≤ht≤hmax<1, hmax 

which is the maximum harvest amount, T is the time horizon 

and 𝑐2ℎ𝑡
2
 is the total cost. The goal is to maximize (6) subject 

to the following state equations:  

 

𝑛𝑡+1 = 𝑛𝑡 +
𝑠𝑞

𝑞Γ(𝑞)
(
𝑟0𝑛𝑡

1+𝑘𝑝𝑡
− 𝑑𝑛𝑡 − 𝑐𝑛𝑡

2 −
𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 − ℎ𝑡𝑛𝑡)

𝑝𝑡+1 = 𝑝𝑡 +
𝑠𝑞

𝑞Γ(𝑞)
(
𝑒𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 − 𝑓𝑝𝑡)

]  (7) 

 

The Hamiltonian function is given by references [23, 28]: 

 

𝐻𝑡 = 𝑐1ℎ𝑡𝑛𝑡 − 𝑐2ℎ𝑡
2 + 𝜇1,𝑡+1 (𝑛𝑡 +

𝑠𝑞

𝑞Γ(𝑞)
(
𝑟0𝑛𝑡

1+𝑘𝑝𝑡
− 𝑑𝑛𝑡 −

𝑐𝑛𝑡
2 −

𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 − ℎ𝑡𝑛𝑡)) + 𝜇2,𝑡+1 (𝑝𝑡 +

𝑠𝑞

𝑞Γ(𝑞)
(
𝑒𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 −

𝑓𝑝𝑡))  

(8) 

 

where, μ1,t+1 and μ2,t+1 are the adjoint variables [28, 31]. To 

show the previous discrete optimal control problem, we apply 

the Pontryagin’s maximum principle [32]. Then, we get: 

 

𝜇1,𝑡 =
𝜕𝐻𝑡

𝜕𝑛𝑡
= 𝑐1ℎ𝑡 + 𝜇1,𝑡+1 (1 +

𝑠𝑞

𝑞Γ(𝑞)
(

𝑟0

1+𝑘𝑝𝑡
− 𝑑 −

2𝑐𝑛𝑡 − ℎ𝑡 +
𝑟𝑝𝑡𝑛𝑡

2−𝑎𝑟𝑝𝑡
(𝑎+𝑛𝑡

2)2
))+𝜇2,𝑡+1 (

𝑠𝑞

𝑞Γ(𝑞)
(
𝑒𝑟𝑎𝑝𝑡−𝑒𝑟𝑝𝑡𝑛𝑡

2

(𝑎+𝑛𝑡
2)2

)), 

𝜇2,𝑡 =
𝜕𝐻𝑡
𝜕𝑝𝑡

= −𝜇1,𝑡+1 (
𝑠𝑞

𝑞Γ(𝑞)
(

𝑟0𝑘𝑛𝑡
(1 + 𝑘𝑝𝑡)

2
+

𝑟𝑛𝑡
(𝑎 + 𝑛𝑡

2)
)

+ 𝜇2,𝑡+1 (1 +
𝑠𝑞

𝑞Γ(𝑞)
[

𝑒𝑟𝑛𝑡
(𝑎 + 𝑛𝑡

2)
− 𝑓]). 

 

According to the Pontryagin maximum principle, the 

characteristic control harvesting solution is given by the 

following: 

 

ℎ𝑡
∗ =

{
  
 

  
 0,

(𝑐1−𝜇1,𝑡+1
𝑠𝑞

𝑞Γ(𝑞)
)

2𝑐2
𝑛𝑡 < 0

(𝑐1−𝜇1,𝑡+1
𝑠𝑞

𝑞Γ(𝑞)
)

2𝑐2
𝑛𝑡 , 0 <

(𝑐1−𝜇1,𝑡+1
𝑠𝑞

𝑞Γ(𝑞)
)

2𝑐2
𝑛𝑡 ≤ ℎ𝑚𝑎𝑥

ℎ𝑚𝑎𝑥 , ℎ𝑚𝑎𝑥 <
(𝑐1−𝜇1,𝑡+1

𝑠𝑞

𝑞Γ(𝑞)
)

2𝑐2
𝑛𝑡
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5. NUMERICAL SIMULATIONS 

 

In this part, we discuss and give a numerical study to 

enhance the above theoretical results and to confirm the 

dynamics behaviors of fractional prey-predator model as well 

as its discretization. We consider the examples to account the 

local stability of equilibria: 

Example 1: A set of different values of parameters in Table 

2 are used to illustrate and show the local stability of 

equilibrium points e0, e1 and e2 of the fractional predator-prey 

model (2). These are done according to Theorem 3. 

 

Table 2. The values of parameters for the fixed point e0, e1 

and e2 for the fractional model (2) 

 
Parameter’s Value e0 e1 e2 

r0 0.1 0.4 0.5 

k 0.1 0.2 0.35 

d 0.4 0.2 0.11 

c 0.01 0.2 0.61 

h 0.1 0.1 0.1 

r 0.4 0.3 0.65 

a 0.2 0.4 0.1 

e 0.2 0.2 0.6 

f 0.2 0.2 0.45 

 

Case 1 in Table 2, we can see that (d+h)=0.5>0.1=r0 and -

f=-0.2. It follows from point 1 of Theorem 3 that the extinction 

(trivial) equilibrium point e0=(0, 0) of model (2) is locally 

asymptotically stable. Figure 1 indicates the local stability of 

the point e0. The initial conditions (n0, p0)=(0.2, 0.15) are taken 

with different values of fractional order q=0.8, 0.9 and 0.98. 

 

 
(a) q=0.8 

 
(b) q=0.98 

 

Figure 1. Local stability of fractional-order model (2) at 

the trivial equilibrium e0 

 
(a) q=0.8 

 
(b) q=0.98 

 

Figure 2. Local stability of fractional-order model (2) at free 

predator equilibrium point e1 

 

 
(a) q=0.8 

 
(b) q=0.98 

 

Figure 3. Local stability of fractional-order model (2) at the 

interior fixed point e2 
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(a) 

 
(b) 

 
(c) 

 

Figure 4. (a) Local stability of the discrete model (5) at the 

trivial e0; (b) free predator e1; (c) interior fixed point e2 for 

fractional order q=0.98 with s=0.5 

 

Case 2 in Table 1, we take h=0.1<r0, then the value of 
𝑐𝑒𝑟(𝑟0−(𝑑+ℎ))

𝑎𝑐2+(𝑟0−(𝑑+ℎ))
2 = 0.046 < 𝑓 = 0.2.Ifollows from point 2 of 

Theorem 3 that the predator-extinction equilibrium(free 

predator) point e1=(0.5,0) of system (2) is a locally 

asymptotically stable. Figure 2 indicates the local stability of 

the point e1. The initial conditions (n0, p0)=(0.7,0.1) are taken 

with different values of fractional order q=0.8, and 0.98. 

Case 3 in Table 1, we have only one coexistence 

equilibrium(interior) point e2=(0.1510, 0.0385), a1=0.211 and 

a2=0.0560 that means the first condition of point 3 of Theorem 

3 is held. Figure 3 indicates the local stability of the points 𝑒0, 

when the initial conditions (n0, p0)=(0.7, 0.16) are taken with 

various values of fractional order q=0.8, and 0.98. 

Example 2: For different values of parameters that are 

shown in Table 3. According to lemma (4) then e0, e1 and e2 

are locally stable for model (5). Case 1 in Table 3. For values 

of parameters W=0.5112<5=2/f. According to Lemma (4) then 

the extinction equilibrium(trivial) point e0=(0, 0) is locally 

asymptotically stable as shown in Figure 4(a). 

Case 2 in Table 3. For values of parameters, 𝑓 ∈
(0.046,4.9123) and W=0.5112<6.667. The simulation results 

have seen that the predator-extinction equilibrium (free 

predator) point e1=(3,0) of the discrete model (5) is locally 

asymptotically stable as shown in Figure 4(b). 

Case 3 in Table 3. According to lemma (4), for values of 

parameters we have F(1)=0.0093>0, qq=-0.218 that means 

F(-1)=3.9470>0. It follows the coexistence 

equilibrium(interior) point e2=(0.2942,0.2269) of the discrete 

model (5) is locally asymptotically stable (see Figure 4(c)). 

To solve the control problem  

 

𝑛𝑡+1 = 𝑛𝑡 +
𝑠𝑞

𝑞Γ(𝑞)
(
𝑟0𝑛𝑡

1+𝑘𝑝𝑡
− 𝑑𝑛𝑡 − 𝑐𝑛𝑡

2 −
𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 − ℎ𝑡𝑛𝑡)

𝑝𝑡+1 = 𝑝𝑡 +
𝑠𝑞

𝑞Γ(𝑞)
(
𝑒𝑟𝑛𝑡𝑝𝑡

𝑎+𝑛𝑡
2 − 𝑓𝑝𝑡)

],  

 

An iterative method is followed which can be found in 

references [30, 33].  

Example 3: We select the values of parameters are taken in 

Table 4. 

 

 
(a) Fractional- order system 

 
(b) Discrete system 

 

Figure 5. (a) The trajectory of fractional-order system (2); 

(b) The discrete system (5) at the interior fixed point e2 for 

fractional order q=0.98 with s=0.5 

 

And the trajectory of fractional-order model (2) and the 

discrete model (5) interior fixed point e2 for fractional order 

q=0.98 with s=0.5 are shown in Figure 5. 
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The initial conditions are (0.1, 0.05) with these set of values, 

we have the whole optimal amount of harvesting of 
Jopt=0.0363. Table 5 compares the whole optimal amount of 

harvesting and other total harvesting policies with applying the 

same values of the parameters. The optimal control variable, 

and the influence of the optimal harvesting on the prey and 

predator populations are indicated and shown in Figure 6 (a-

c). 

 

 
(a) 

 
(b)  

 
(c) 

 

Figure 6. (a) Effecting of the optimal harvesting; (b) 

Effecting of the optimal harvesting for the prey populations; 

(c) Effecting of the optimal harvesting for the predator 

populations 

Table 3. The parameter’s value for the fixed point e0, e1 and 

e2 for the discrete Model (5) 

 
Parameter’s Value e0 e1 e2 

r0 0.1 0.6 0.8 

k 0.3 0.3 0.7 

d 0.1 0.2 0.25 

c 0.1 0.1 0.4 

h 0.1 0.1 0.1 

r 0.5 0.4 0.7 

a 0.2 0.4 0.6 

e 0.1 0.3 0.5 

f 0.4 0.3 0.16 

 

Table 4. Parameter’s value for optimal harvesting 

 
Parameters Values 

r0 0.6 

k 0.4 

d 0.25 

c 0.5 

h h* 

r 0.7 

a 0.7 

e 0.65 

f 0.16 

 

Table 5. The whole optimal amount of harvesting with other 

harvesting policies 

 
The Harvesting Strategy The Total Harvesting(𝐉) 

ht=h* Jopt=0.0363 

ht=0.084 J=0.0355 

ht=0.078 J=0.0354 

ht=0.086 J=0.0354 

ht=0.088 J=0.0353 

ht=0.076 J=0.0353 

ht=0.090 J=0.0352 

ht=0.07 J=0.0348 

ht=0.10 J=0.0338 

ht=0.06 J=0.0330 

ht=0.2 J=-0.0393 

 

 

6. CONCLUSIONS 

 

In this article, the behaviors of a fractional-order predator-

prey system is studied and discussed with fear effect on prey 

population and harvesting rate as well as discrete conformable 

fractional-order system. The impact of fear effect on prey 

population and harvesting rate into above systems are made 

these systems more realistic. The existence and uniqueness as 

well as the non-negativity and boundedness of the solutions to 

the considered system are shown. It is observed that the 

considered model has three equilibrium points. Moreover, 

sufficient conditions are set to ensure and confirm the local 

asymptotic stability of the equilibrium points of the system. 

For the fractional-order system, it is seen that all equilibrium 

points are locally stable under some conditions on the 

parameters, namely the growth rate, the fear parameter and 

others. Furthermore, the discrete system is extended to the 

optimal harvesting problem to obtain the optimal harvesting 

amount. It is found that the constant policy cannot be the 

optimal choice for management. Therefore, the constant rate 
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harvesting does not allow the optimal profit at all, so that the 

optimal harvesting can also persevere the population far from 

the collapse. The problem is solved through the discrete of 

Pontryagin's maximum principle. Also, numerical simulation 

shows that the fear effect on prey and harvesting rate take 

important issues in maintaining the prey and predator species. 
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NOMENCLATURE 

 

R2
+ The real positive region in two dimensions 

Dq Caputo’s fractional derivative 

Eq Mittag-Liffler function for one parameter 

J The Jacobian matrix 

T The time horizon 

Ht Hamiltonian function 

J(h) The objective function 
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