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This paper discusses the use of drones in image acquisition of agricultural land to detect the 

presence of disease and calculate the area of infected agriculture. Calculation of the area of 

infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) 

object detection algorithm version 4 with the ArUco Marker reference image. The image 

resulting from the detection from the Yolo v4 algorithm will be used as a reference to be 

referenced using a reference image in the form of an AruCo Marker to convert it to area 

units to determine the area of the infected area and calculate the ratio between the area of 

the infected area and the area of the healthy area. The coordinate points at each corner are 

used as the first stage in converting pixels into area units. Measuring the infected area is 

necessary to localize the infection so that it does not spread to healthy plant areas. Apart 

from that, to anticipate the spread of infection which could result in crop failure. Evaluation 

of the calculation of the area of the detection area with the actual area resulted in an accuracy 

of 97.05%. 
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1. INTRODUCTION

Drones, also known as unmanned vehicles [1], can be used 

in various sectors of life. Drone design depends on needs 

which include form, function, and supporting features [2]. One 

of the benefits of drones is taking photos of agricultural land 

to analyze crop conditions, including whether there are pest 

and disease attacks, area size, plant growth, remote sensing, 

mapping [3], and fertilizing or spraying [4-7]. The various 

advantages of using drones in agriculture make drones the 

newest tool for monitoring plant growth. Drone cameras 

produce high-resolution images better than aerial photography 

taken from airplanes. Drones are capable of cutting low so that 

the image results are not affected by clouds and the image 

resolution is obtained from a high-definition camera with a 

distance of only centimeters [6]. 

The benefits derived from the use of drones in the 

agricultural sector are the results of drone camera images used 

in analyzing crop development. Especially in this research, the 

plant as an object of research is the rice plant because rice is a 

source of raw material for rice, which is a staple food for 75% 

of the world's population [8]. The large dependence of the 

world's population on rice consumption requires 

breakthroughs in monitoring the sustainability of rice 

production. Conventionally, monitoring of rice plants is 

carried out periodically by farmers so that if there is an attack 

of pests and diseases, it can be detected earlier [9, 10]. 

Agricultural technology is felt to replace farmers’ role in 

monitoring plant growth with Artificial Intelligence (AI). The 

existence of AI can change the paradigm of agriculture to 

become more modern with a touch of the latest technology 

[11]. 

The resulting image from the drone camera is used as a 

dataset as input in detecting the presence of diseases in rice 

plants. The You Only Look Once (Yolo) object detection 

algorithm version 4 was developed by inserting an additional 

algorithm to convert image pixel values into units of length 

(meters). Yolo works by detecting objects into a single 

regression problem which makes computational complexity 

lighter [12]. 

The presence of disease in rice plants can interfere with 

growth which can result in losses and even cause crop failure. 

therefore, speed and accuracy in disease detection in rice 

plants are necessary to avoid further losses. AI makes it 

possible to replace the role of farmers or agricultural extension 

workers in terms of monitoring but direct monitoring is still 

needed as a comparison [9, 10, 13, 14]. 

The proposed in this paper consists of 2 interrelated parts, 

namely: 

1. The first part, detecting the presence of disease in rice

plants with a dataset of drone camera images taken from

various height variations.

2. The second part is developing the Yolo v4 object detection

algorithm by inserting an ArUco Marker reference image

to be used as a step to calculate the area of infected and

healthy areas.
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2. LITERATURE REVIEW 

 

Yolo has capabilities in fast detection [6, 15] but has 

shortcomings in precision. Object detection algorithms have 

been widely applied in various fields including vehicle 

detection [16, 17], objects [6, 18], plant diseases [13, 19, 20], 

health [21, 22], housing [23], road damage [24], natural 

disasters [25, 26] to weapons detection [27]. Currently, Yolo 

is the most popular object detection method due to its accuracy 

and speed, but one of its shortcomings is the dataset used. The 

MS COCO dataset is used as input because the MS COCO 

dataset is not too complex. 

In research conducted by Tan et al. [6], the images as a 

dataset used images from UAV (Unmanned Aerial Vehicle) 

cameras which had problems with complex backgrounds, 

small targets, and mutual occlusion detection, causing the 

Yolo v4 to be unable to detect accurately, resulting in detection 

errors and missed detection. Thus, the utilization of hollow 

convolution serves the purpose of sampling image data, 

aiming to enhance both feature extraction and target detection 

performance. 

The ultra-lightweight subspace attention mechanism 

(ULSAM) is used to obtain multi-scale representation feature 

maps. Then the third stage of Li Tan, et al research is the soft-

NMS (Soft Non-Maximum Suppression) process to minimize 

the occurrence of target errors due to occlusion. The results 

obtained were an increase in detection of 5% from Yolo v4. 

Thus, the yolov4_drone detection model proposed by Li Tan, 

et al shows an increase in the effectiveness of target detection. 

The remote sensing method using UAV was also carried out 

by Bao et al. [20] with the object of disease in tea plants, 

namely Tea Leaf Blight (TLB). Proper and accurate 

monitoring and handling can help control disease which 

affects the yield and quality of tea. This research proposes a 

remote sensing method using a UAV based on DDMA-Yolo 

to monitor and detect the presence of TLB which results in a 

lighter workload and more efficient time. The image of the tea 

plant was reconstructed using RCAN to overcome the 

resolution of the UAV image. The retinex method was chosen 

to increase image contrast and reduce uneven illumination. 

DDMA-Yolo mode was developed to improve TLB 

monitoring accuracy and the base model of DDMA-Yolo is 

Yolo v5. The results of the experiments show improvements 

over traditional detection models (Fast R-CNN, SSD, 

RetinaNet, Yolov3, Yolov4, and Yolov5). Average Precision 

(AP) increased by 3.8% and recall increased by 6.5%. 

Research on object detection was also carried out by Qiu 

and Lau [23] with the research object of quality detection on 

sidewalk tiles. Monitoring sidewalk tiles is very tiring if done 

manually because tile cracks are too difficult to identify and 

take longer. Yolo integration of UAV camera images is 

proposed to achieve crack detection in tiled sidewalks. The 

architecture of several object detection algorithms was 

rearranged to compare the accuracy and detection speed 

results. The architectures in question are Yolov2‐ tiny, 

Yolov2 based on Darknet19, Yolov2 based on ResNet50, 

Yolov3, and Yolov4‐tiny. The research results show that 

Resnet-based Yolov2 and Yolov4-tiny obtained the best 

accuracy results, namely 94.54% and 91.74% and detection 

speeds of 71.71 fps and 108.93 fps and could detect small 

cracks in sidewalk tiles. The ability to adapt to external factors 

is also a separate note from Qiwen and Lau's research, namely 

adaptation to rain, shadows, and camera condition factors 

during acquisition. From this research, the height factor in 

image acquisition with a UAV should be adjusted and the area 

conditions are free or there are no provisions so it is 

recommended to adjust to the conditions. 

Road damage requires detailed and thorough monitoring to 

determine the selection of further maintenance procedures. 

Currently, object detection has low accuracy so failing to 

detect some road damage causes testing to be deemed 

inefficient. Armed with this initial knowledge, Zhang et al. [24] 

conducted research related to monitoring road damage with 

camera images from UAVs and using the Multi-level 

Attention Block (MLAB) mechanism to strengthen Yolo v3 

features. The addition of MLAB on the inter-backbone side 

and the fusion feature was able to increase the mAP value to 

68.75% from only 61.09%. The results of the method proposed 

by Yingchao Zhang, show its ability to detect various types of 

road damage, including longitudinal, and transverse cracks, 

repairs and the presence of potholes. The resulting findings 

accelerate non-destructive road damage detection. 

The distance between the camera and the object will affect 

the resulting image pixels, including the lighting conditions 

when the image is taken. The existence of several factors that 

affect the results of the image will result in differences when 

calculating the area of infected areas and healthy areas, 

therefore in determining the area of the area a reference point 

will be determined as a reference for calculating image pixels. 

The reference point will ignore the distance between the 

camera and the object so that the area of the object will not 

change. The input image from the drone camera is first carried 

out by an edge detection process to find out the object 

boundaries with the background image so that the part of the 

image whose area will be calculated is known. From this edge 

detection, the coordinates of each corner of the object can be 

identified and then the center point of the object is determined 

as the starting point for determining the pixel width and pixel 

height. The number of image pixels on the width and height 

sides is converted to units of length (centimeters or inches) by 

first referring to a reference point as a starting point. In Figure 

1, object detection is shown along with the coordinates of each 

corner as object boundaries. The coordinates of each corner 

are used to determine the boundaries of the object so that a 

clear shape of the object will be formed. 

 

 
 

Figure 1. Coordinates of the object 

 

 

3. METHODOLOGY 

 

Acquisition of aerial imagery using drones is the first step 
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in this research. Drones fly over rice fields to collect data in 

the form of images of rice plant leaves at different distances (5 

meters, 10 meters, and 20 meters). Acquisition distance with 3 

different distances due to the effective distance from the drone 

camera which produces the best image brightness level, 

especially for object detection [14]. The image acquisition 

time was determined from 08.00 AM to 09.00 AM because at 

that time the light intensity was not too strong and the weather 

conditions, especially the wind speed, were not too fast so 

operating the drone would be easier. Figure 2 presents a chart 

of research stages from image acquisition to determining area 

size. 

 

 
 

Figure 2. Overview of the research stages 

 

3.1 Acquisition of aerial image 

 

The drone used for image acquisition is the Fimi x8 mini 

drone 8KM 4K 3-Axis Camera 2021 Pro Version. Images of 

rice paddy fields were taken from different heights with the 

aim of finding the effectiveness of the Yolo detector in 

detecting disease. The distance variations consist of 5 meters, 

10 meters, and 20 meters. The locations of rice fields as image 

acquisition object locations are in the districts of Magetan, 

Madiun, and Trenggalek, East Java, Indonesia. More details 

about the location and time of image acquisition are presented 

in Table 1. Image acquisition includes healthy rice fields and 

infected rice fields with plants aged 1 month to 3 months. The 

specifications of the Fimi x8 mini drone can be seen in Table 

2. The camera specifications on the drone are sufficiently 

capable of capturing the color of leaf images to be used as 

input datasets. 

It is clear that the image at a distance of 5 meters does not 

cover the entire rice plant, whereas, at a distance of 10 meters 

and 20 meters, the image clearly shows healthy and infected 

plants. 

 

Table 1. Location and time of image acquisition 

 
Location Coordinate Equipment Period 

Magetan -7.529398, 

111.461718 

Fimi x8 mini 

drone 8KM 

4K 3-Axis 

Camera 2021 

Pro Version 

1/9/2022 s.d 

28/11/2023 

Madiun -7.755686, 

111.508533 

25/1/2023 s.d 

10/2/2023 

Trenggalek -8.095395, 

111.758618 

25/2/2023 s.d 

5/32023 

 

Table 2. FIMI X8 mini drone specifications 

 
Product Model FMWRI04A7 

Operating Freq  5725 – 5.825 

Lens  FOV 800 

Camera Aperture  f2.0 

Camera focal distance  3.54mm 

Sensor 1/2.6’’SONY CMOS 

Efective Pixel  12M Pixels 

Image Format JPG, JPG+DNG 

Image Resolution 3840 x 2160 

ISO Range  100 – 3200 

Max video resolution  3840 x 2160  

30 fps | 25 fps | 24 fps 

 

3.2 Labelling image 

 

The next stage is the dataset labeling process which includes 

healthy labels and infected labels. Tools as labeling tools use 

LabelImg and Yolo Mark software. The dataset is divided into 

2 classes, namely the healthy and infected classes, each labeled 

comprehensively, where the label covers the area of healthy 

and infected areas, not labeled per plant. The number of 

datasets resulting from the acquisition was 4,550 divided into 

2 classes (Table 3). 

 

Table 3. Labeling dataset 

 
Number Class Number of Images 

0 Infected 
4.550 

1 healthy 

 

Figure 3 shows the dataset image in the labeling process 

using the labelImg tool. Image labeling will show the 

coordinates of the boundary points of each corner so as to form 

a boundary between the healthy label and the infected label. 

Dataset labeling is needed to convert images into .xml format 

which can be read in the Python programming language. 

 

3.3 ArUco Marker 

 

The reference point as a reference in the form of an ArUco 

Marker is a square-shaped object whose area size is known so 

that when taking images at different distances it will not affect 

the area size of the object. ArUco Marker is used as a reference 

for measuring instruments and image pixels as well as 

calibrating the camera used. ArUco Marker which contains a 

binary grid of black and white cells surrounded by black as a 

border. ArUco Marker will produce a clearer image by placing 

the image acquisition in an area with a white background 

because the color will be more contrasting. Figure 4 shows an 

example of the ArUco Marker used in this research with a size 

of 5x5 id 5. 
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Figure 3. Labeling image  

 

 
 

Figure 4. ArUco Marker 5x5 id 5 

 

ArUco Marker identification requires several computational 

steps [28]. First, adaptive threshold contour segmentation is a 

process, of applying contour extraction and a polygonal 

approach with the aim of maintaining rectangular boundaries 

and, thirdly removing unnecessary information. Each pixel in 

the ArUco Marker is binarized and divided into a regular grid 

with elements in the form of binary numbers 0 or 1 [29]. Figure 

5 shows the ArUco Marker in the form of a system of 4 angles 

and their coordinates. 

 

3.4 Proposed method 

 

The next most important part of the substance is measuring 

the area of infected and healthy plants by inserting into the 

Yolo v4 object detection algorithm in the form of an ArUco 

Marker reference image. As a reference, the ArUco Marker is 

used as an initial reference in searching for coordinate points 

for each corner of the image. The image from the detection 

results will be input in measuring the area of infected and 

healthy areas. Insertion of the ArUco Marker in the Yolo v4 

algorithm is carried out when object detection is complete. 

Figure 6 shows the image boundaries of the detection results 

by calculating the coordinates of each corner to be referenced 

with the ArUco Marker. Before being used as a reference, the 

ArUco Marker has been calibrated for distance and length, 

width and area. After the ArUco Marker is calibrated, it will 

not be affected by the image acquisition distance or length, 

width will not change. 

 

 
(a) 

 
(b) 

 

Figure 5. (a). Binarization of ArUco Marker in grid form, 

(b). ArUco Marker in 4 corner coordinate system 
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Figure 6. Proposed method 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, a discussion of the research results will be 

presented at the beginning of the research until conclusions 

emerge. In accordance with the research stages in chapter three, 

the initial stages are in the form of data acquisition using drone 

equipment that flies over rice paddy fields. Data acquisition 

takes the form of taking images of rice fields at varying 

distances, namely 2 meters, 5 meters, 10 meters and 20 meters. 

The purpose of taking images with various distances is to find 

the best distance in terms of image detection of infected paddy 

fields and healthy fields. Table 4 shows the time of data 

acquisition along with the data acquisition distance from the 

drone camera to the object. The acquisition distance between 

the drone and the object in Figure 7 shows the image 

acquisition results. The image acquisition process is carried 

out perpendicular to 900 between rice fields with drone 

cameras because it makes it easier to calculate the area based 

on the detection results of the bounding box. 

Conduct training with the aim of training and finding the 

best model in determining patterns and characteristics of each 

dataset class or better known as image feature extraction. The 

existence of a training process is a basis for determining the 

best decision in predicting each case of healthy and infected 

images. The training dataset at the start of training uses Yolo 

v4 pre-trained weights from the darknet until we get the best 

weights according to the dataset that has been prepared. A 

technique like this is an implementation of the transfer 

learning technique, which means that the parameters used have 

been trained by another party so there is no need to train from 

scratch. Meanwhile, dataset training is carried out on the 

Google Collaboratory platform due to its free nature, but for 

large amounts of data requiring high computing, you need to 

upgrade to Google Colab Pro or Google Colab Pro+. In Table 

4 are the parameters used during dataset training. 

Figure 8 depicts the outcomes of a training model 

encompassing two classes (infected and healthy). The model 

achieves the best mean Average Precision (mAP) of 77.3% on 

a 20-meter acquisition image, while the lowest mAP value, 

46.8%, is observed at a 2-meter distance. Notably, the largest 

loss value is recorded in the 2-meter acquisition image, 

whereas the smallest loss occurs in the 5-meter acquisition 

image. This experimental data indicates that image acquisition 

from a 2-meter distance yields the least favorable result among 

the varied acquisition distances in the dataset. 

The performance of the training model across diverse image 

dataset variations underscores the impact of various factors on 

image acquisition. These factors include acquisition distance, 

light intensity during image acquisition, camera specifications, 

acquisition time, weather conditions, and labeling. The 

comprehensive results of the training model across different 

image acquisition distances are detailed in Table 5. 

Additionally, the swiftest detection time is achieved in 1 

second for the labeling of the two specified classes. 

Object detection results provide a percentage level 

indicating the confidence of the detection. Figure 9 illustrates 

these values for both healthy and infected labels. The detection 

value influences the prediction outcome, as the training 

process relies on the feature extraction value for each object. 

Some detection instances yield a 100% value, signifying a true 

accuracy rate, while others may show values like 0.97. 

Variances in detection values among objects highlight 

distinctions in their unique characteristics. Figure 10 presents 

results from detection at a 10-meter acquisition distance, 

indicating that one land is identified as infected, while two 

lands are identified as healthy. 

The next step in this research is to find the pixel area of the 

reference image, namely the ArUco Marker, at varying 

shooting distances. The measurement of the image pixel area 

is carried out to be used as a reference in units of length (cm) 

per 1 square meter area. So this time we will look for the area 

of pixels in 1 square meter. Figure 5 shows a reference image 

that will calculate the pixel area per 1 square meter. Reference 

images will be acquired using drone cameras at varying 

distances. The reference image acquisition distance starts from 

1 meter to 20 meters with a range of 1 meter. This is because 

it makes it easier to find mathematical equations as a model 

for determining the area of an image area based on images 

obtained by drones. 

Figure 5 is a reference image in the form of an ArUco 

Marker with a real size of 100cm x 100cm. From the image, 

the length and width of the pixels are searched starting from 
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one corner point to another corner point. Using Euclidean 

equations (equation 1) and the Matlab tool, you can find the 

coordinates of each corner, namely {(xmax,ymin), (xmax,ymax), 

(xmin,ymin), (xmin,ymax)} with coordinate values {(234,106), 

(1248, 121), (229,1124), (1241,1112)}. The results of the 

coordinate values are illustrated according to Figure 1 so that 

the values of the length, width and area of the reference image 

area will be known. 

 

𝑑 =  √(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑎𝑥)2 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)2 

𝑊𝑖𝑑𝑡ℎ =  1.014 𝑝𝑖𝑥𝑒𝑙 
(1) 

 

Meanwhile, for calculating length distances in coordinates 

(234,106), (229,1124) 

𝐿𝑒𝑛𝑔𝑡ℎ =  √(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)2 + (𝑦𝑚𝑖𝑛 − 𝑦𝑚𝑖𝑛)2 

𝐿𝑒𝑛𝑔𝑡ℎ =  1.018 𝑝𝑖𝑥𝑒𝑙 
 

Table 4. Parameter model Yolo V4 

 
Parameters Explanation 

Width 416 

Height 416 

Load Model Darknet 

Batch 64 

Max Batch 4.000 

Subdivision 16 

GPU Yes 

Steps 3.200, 3.600 

 

  

  

 

Figure 7. Results of drone image acquisition 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

----- : Precision, ----- : Loss 

Figure 8. Result of model training: (a) 2 meter (b) 5 meter (c) 10 meter (d) 20 meter 

 

 
 

Figure 9. Image of detection results 

 

  
(a) Color image (b) Grayscale image 

 

Figure 10. Image detected infection 

 
 

Figure 11. Coordinate values for each corner 

 

Thus, the pixel area of the reference image is 

 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 =  1.032.377 𝑝𝑖𝑥𝑒𝑙 
 

The pixel area results in the reference image show the image 

pixel area per 1 square meter at a certain acquisition distance. 

Thus, when calculating the area of infected and healthy plants, 

we only compare the image of the rice area with the reference 

image but must be adjusted to the same acquisition distance. 
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Table 6 shows the results of measuring the pixel area of the 

reference image acquired from various distances. 

After looking for size calculations on reference images at 

various acquisition distances, we now start calculating the area 

of infected and healthy rice plants based on the detection 

results using the Yolo v4 algorithm. Using the detection data 

in Figure 10, we will look for the area of infected and healthy 

rice plants by referring to the ArUco Marker reference image. 

The image obtained from the acquisition in Figure 10 was 

acquired from a distance of 11 meters so that in calculating the 

area area it will be referenced with the reference image 

acquired from a distance of 11 meters. To make calculations 

easier, the image of the rice plant was converted from a color 

image to a gray image according to Figure 11. After that, from 

the gray image, the pixel area was searched by first calculating 

the length and width of the pixels in the image where the 

infection was detected using the Euclidean equation. Figure 10 

shows the results of the Yolo detection results, which are only 

in the infected area. 

Using the Euclidean equation, the length and width of the 

image pixels for the infection detected in Figure 10 are 

calculated. The coordinate point values of the detected image 

are in the coordinate point format {(xmax,ymin), (xmax,ymax), 

(xmin,ymin), (xmin,ymax)} the value is known {(1141,15), 

(2572,15), (1141,2134), (2572,2134)}. To clarify the location 

of the coordinate points at each corner of the detected image, 

it can be seen in Figure 10. 

 

 

Table 5. Overall results of Yolo V4 model training 

 

Acquisition (Meter) TP FP FN F1-Score 
Recall Av IOU Time 

 (%) (Seconds) 

2 200 161 110 0,60 0,65 37,05 1 

5 12 7 3 0,71 0,80 52,61 1 

10 26 11 9 0,72 0,74 59,67 1 

20 57 26 13 0,75 0,81 54,35 1 

 

Table 6. Result of measuring the pixel area 

 
Acquisition Distance (meter) Size (Pixel) Square Area (Pixel) 

2 
Length = 1.081 

Width = 1.081  
1.168.561 

3 
Length = 808 

Width = 808  
652.864 

4 
Length = 651 

Width = 651  
423.801 

5 
Length = 541 

Width = 541  
292.681 

6 
Length = 454 

Width = 454 
206.116 

7 
Length = 403 

Width = 403  
162.409 

8 
Length = 358 

Width = 358  
128.164 

9 
Length = 318 

Width = 318  
101.124 

10 
Length = 291 

Width = 291 
84.681 

11 
Length = 264 

Width = 264 
69.696 

12 
Length = 240 

Width = 240 
57.600 

13 
Length = 227 

Width = 227 
51.529 

14 
Length = 210 

Width = 210 
44.100 

15 
Length = 196 

Width = 196 
38.416 

16 
Length = 185 

Width = 185 
34.225 

17 
Length = 175 

Width = 175 
30.625 

18 
Length = 164 

Width = 164 
26.896 

19 
Length = 155 

Width = 155 
24.025 

20 
Length = 148 

Width = 148 
21.904 
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Table 7. Calculation results of reference and detected image 

 
Reference Image (Pixel) Detected Image (Pixel) 

Length Width 
Square 

Area  
Length Width 

Square 

Area  

264 264 69.696 2.119 1.431 3.032.289 

 

Table 8. Calculation results of the pixel area of the reference 

image and the detected image 

 
Reference Image (pixel) Detected Image (Pixel) 

Length Width 
Square 

Area  
Length Width 

Square 

Area  

291 291 84.681 3.334 1.438 4.794.292 

 

Table 9. Comparison of the results of calculating the area of 

rice plantations 

 

Calculation 

Techniques 

Length 

(Meter) 

Width 

(Meter) 

Square 

Area 

(Meter2) 

ArUco Marker 

reference image 
11,45 4,94 56,57 

Real condition 11 5 55 

 

Using the illustration in Figure 10, the pixel length and 

width values can be calculated with equation 1 as follows: 

 

𝐿𝑒𝑛𝑔𝑡ℎ =  2.119 𝑝𝑖𝑥𝑒𝑙 
 

Meanwhile, the pixel width value using the same method 

can be calculated with equation 1 as follows: 

 

𝑊𝑖𝑑𝑡ℎ =  1.431 𝑝𝑖𝑥𝑒𝑙 
 

Thus, for the image pixel area, the detection results are  

 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 =  3.032.289 𝑝𝑖𝑥𝑒𝑙 
 

After the length, width and pixel area of the detected image 

are known, the next step is to reference the reference image at 

the same acquisition distance, namely 11 meters. Reference 

pixel areas are presented in Table 6 to determine the real area 

of the detected image. A summary of the calculation of the 

length, width and area of the reference image and the detected 

image is presented in Table 7. To calculate the real area of the 

detected image, you need to compare the area of the detected 

image with the area of the reference image because the 

reference image is the real area per 1 meter2. 

After knowing the results of the area of the detected image 

in pixels, it will then be converted into an area in meters. The 

calculation of the real area of the detected image is as follows: 

 

𝐿𝑒𝑛𝑔𝑡ℎ =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛
𝑝𝑖𝑥𝑒𝑙

𝑚
)
  

𝐿𝑒𝑛𝑔𝑡ℎ =  
2119

264
  

 

𝐿𝑒𝑛𝑔𝑡ℎ =  8,03 𝑚𝑒𝑡𝑒𝑟 
 

𝑊𝑖𝑑𝑡ℎ =  
𝑊𝑖𝑑𝑡ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙)

𝑊𝑖𝑑𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛
𝑃𝑖𝑥𝑒𝑙

𝑚
)
  

 

𝑊𝑖𝑑𝑡ℎ =  
1431

264
  

𝑊𝑖𝑑𝑡ℎ =  5,42 𝑚𝑒𝑡𝑒𝑟 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 =  𝐿𝑒𝑛𝑔𝑡ℎ 𝑥 𝑊𝑖𝑑𝑡ℎ  

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 = 8,03 𝑥 5,42 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 = 43,51 𝑚𝑒𝑡𝑒𝑟2 

 

Thus the results of the calculation of the area of the image 

detected an infection of 43.51 meters2. 

As an evaluation material for the results of calculating the 

area of plants resulting from Yolo detection images, 

calculations will be carried out using different resulting 

images. Figure 12 shows the image of the detection results 

which will be used as evaluation material by comparing the 

calculation results with the actual area of rice plants. The 

image used in this evaluation measures 11 meters long and 5 

meters wide and was acquired from a distance of 10 meters. 

Using the Euclidean equation, the length and width of the 

image pixels detected as healthy in Figure 10 are calculated. 

The coordinate point values of the detected image using the 

coordinate point format {(xmax,ymin), (xmax,ymax), (xmin,ymin), 

(xmin,ymax)} are known the values are 

{(19,25),(3353,25),(19,1463),(3353,1463)}. To clarify the 

location of the coordinate points at each corner of the detected 

image, it can be seen in Figure 13. 

 

 
 

Figure 12. Image of the results of the Yolo detection as an 

evaluation 

 

 
 

Figure 13. The corner coordinates of the detected image 

 

Using the illustration in Figure 13, the pixel length and 

width values can be calculated with Eq. (1) as follows 

 

𝐿𝑒𝑛𝑔𝑡ℎ =  3.334 𝑝𝑖𝑘𝑠𝑒𝑙 
 

Meanwhile, the pixel width value using the same method 

can be calculated with equation 1 as follows: 

 

𝑊𝑖𝑑𝑡ℎ =  1.438 𝑝𝑖𝑥𝑒𝑙 
 

Thus, for the image pixel area, the detection results are : 

 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎=𝐿𝑒𝑛𝑔𝑡ℎ 𝑥 𝑊𝑖𝑑𝑡ℎ  

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎= 4.794.292 𝑝𝑖𝑥𝑒𝑙 
 

After the length, width and area of the detected image pixels 
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are known, the next step is referenced with a reference image 

at the same acquisition distance of 10 meters. The pixel area 

reference is presented in Table 6 to find out the real area of the 

detected image. A summary of the calculation of the length, 

width and area of the reference image and detected image is 

presented in Table 8. To calculate the real area of the detected 

image is to compare the area of the detected image with the 

area of the reference image because the reference image is the 

real area per 1 meter2. 

The calculation of the real area of the detected image is as 

follows: 

 

𝐿𝑒𝑛𝑔𝑡ℎ =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛
𝑝𝑖𝑥𝑒𝑙

𝑚
)
  

𝐿𝑒𝑛𝑔𝑡ℎ =  
3.334

291
  

𝐿𝑒𝑛𝑔𝑡ℎ =  11,45 𝑚𝑒𝑡𝑒𝑟 

 

𝑊𝑖𝑑𝑡ℎ =  
𝑊𝑖𝑑𝑡ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙)

𝑊𝑖𝑑𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑛
𝑝𝑖𝑥𝑒𝑙

𝑚
)
  

𝑊𝑖𝑑𝑡ℎ =  
1.438

291
  

𝑊𝑖𝑑𝑡ℎ =  4,94 𝑚𝑒𝑡𝑒𝑟 

 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 =  𝐿𝑒𝑛𝑔𝑡ℎ 𝑥 𝑊𝑖𝑑𝑡ℎ 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑎𝑟𝑒𝑎 = 56,57 𝑚𝑒𝑡𝑒𝑟2 

 

Thus, the real area of the image detected as healthy in Figure 

13 using manual calculations has a length of 11.45 meters and 

a width of 4.94 meters and the real area of the image detected 

is 56.57 meters2. The results of manual calculations using the 

ArUco Marker reference image on the Yolo v4 algorithm and 

measuring the real area of the plant area produce almost the 

same values. Table 9 shows a recapitulation of the results of 

area calculations using the ArUco Marker and the actual area 

of rice plants detected. 

Table 9 shows the results of calculations using the ArUco 

Marker reference image with the actual area of infected rice 

land producing almost the same values. Calculations using the 

ArUco Marker reference image produce a value of 56.67 m2 

and a real area of 55 m2. If you look at the calculation results, 

the accuracy of the calculation using the ArUco Marker 

reference image is 97.05%. Thus, the use of the ArUco Marker 

reference image can be used as material for measuring area 

size based on the image obtained by the drone camera. 

 

 

5. CONCLUSIONS 

 

The final result of this research is that the ArUco Marker 

reference image can be used to calculate the area of infected 

and healthy areas resulting from Yolo v4 object detection. In 

this way, the Yolo object detection algorithm and ArUco 

Marker can be combined to complete the detection while 

calculating the area of the plant area. The research stages 

starting from dataset image acquisition to calculating the area 

of rice plants show the results of model training consisting of 

2 classes (infected and healthy) with the best mAP results on 

20-meter acquisition images of 77.3% and the worst value of 

46.8%. at an image acquisition distance of 2 meters. 

Meanwhile, the largest loss value occurred in the 2-meter 

acquisition image and the smallest loss occurred in the 5-meter 

acquisition image. The results of this experiment show that 

image acquisition from a distance of 2 meters is the lowest 

result of the variation in image acquisition distance in the 

dataset. 

Simultaneously, the calculation of rice plant areas using the 

ArUco Marker reference image demonstrates an accuracy 

level of 97.05%. Consequently, the ArUco Marker reference 

image proves to be a viable technique for accurately 

determining the area of an object solely based on drone 

acquisition images. 
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