
Agent-Based Simulation of Crowd Evacuation Through Complex Spaces

Mohamed Chatra1,2* , Mustapha Bourahla1,2

1 Computer Science Department, University of M'Sila, M’Sila 28200, Algeria
2 Laboratory of Informatics and its Application of M’Sila, Computer Science Department, University of M’Sila,

M'Sila 28000, Algeria

Corresponding Author Email: mohamed.chatra@univ-msila.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290110 ABSTRACT

Received: 13 July 2023

Revised: 6 December 2023

Accepted: 31 December 2023

Available online: 27 February 2024

In this paper, we have developed a description of an agent-based model for simulating the

evacuation of crowds from complex physical spaces for escaping dangerous situations. The

model describes a physical space containing a set of differently shaped fences, and

obstacles, and an exit door. The pedestrians comprising the crowd and moving in this space

in order to be evacuated are described as intelligent agents with supervised machine learning

using perception-based data to perceive a particular environment differently. The

description of this model is developed with the Python language where its execution

represents its simulation. Before the simulation, the model can be validated using an

animation written with the same language to fix possible problems in the model description.

A model performance evaluation is presented using an analysis of simulation results,

showing that these results are very encouraging.

Keywords:

crowd evacuation behavior, agent-based

model simulation, artificial intelligence,

behavior animation, effectiveness, efficiency

evaluation

1. INTRODUCTION

It has become commonplace for people to congregate in

public spaces like retail malls, theme parks, and subway

stations. This assembly presents difficulties for planners and

administrators as well as a variety of risks to people’s lives

(such as trample and overcrowding). When an emergency

occurs, crowds’ irrational conduct brought on by fear or even

panic during the evacuation process may create immeasurable

losses. Because of this, worries about comprehending the

dynamics of crowds in both routine and emergency evacuation

situations have developed rapidly [1, 2].

Model-based simulations are often the main research

methodologies used to analyze crowd evacuation instead of

real-world experiments, which are highly challenging to

examine crowd behavior during an emergency evacuation [3-

5]. The simulation models in this case are driven by

environmental information, which should be qualitative

instead of quantitative.

The main elements of the models are humans, which obtain

their environmental information via perception rather than

measured values. Because each pedestrian perceives a

particular environment differently, it is challenging to estimate

the degree to which actual environmental stimuli are present.

In light of this, it makes sense to model and study human

actions and features using linguistic data (words) rather than

numerical quantities [6-8].

In this research, we will develop a crowd evacuation model,

where a pedestrian is considered as a distinct individual. This

model will incorporate intricate interactions between people

and their settings. The behaviors of a pedestrian are influenced

by both the individual’s consciousness and the environment.

Given the intricate connections with the environment, it is

challenging to develop a model that effectively describes and

predicts a pedestrian’s activities.

In this model, the perception-based data is fully utilized, as

well as human experience and expertise to act sanely in the

event of a crowd evacuation while taking the impact of the

environment into account. The precise values of the intricate

interactions with the environment, such as speeds, directions,

and distances, have statistical evaluation effects on a

pedestrian’s behaviors.

We will classify information obtained from settings that are

considered measurement-based to be perception-based using

the Artificial Intelligence (AI) technique [9]. Thus, we need to

create a usable model that can fully utilize perception-based

data and capture the connection between environmental design

and pedestrian perception.

We develop an AI-based model to achieve these objectives.

a pedestrian’s perceptions of their immediate surroundings are

typically expressed using natural language, which is by nature

ambiguous and imprecise. This AI-based approach is capable

of handling the inherent imprecision and unpredictability of

perception information.

The reasoning and decision-making processes of

pedestrians can be articulated using a set of straightforward

inference rules that have the advantages of conveniently

available input data and intelligible output [10]. The

innovative aspect of this study is the suggestion of a pedestrian

model based on AI techniques that can effectively account for

human knowledge and experience as well as pedestrian

perceptions of the surrounding environment.

During the modeling process, the impacts of intricate

interactions with the environment on pedestrian dynamics are

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 83-93

Journal homepage: http://iieta.org/journals/isi

83

https://orcid.org/0009-0004-7488-8396
https://orcid.org/0000-0002-0691-1417
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290110&domain=pdf

taken into account qualitatively. The model uses a few

straightforward inference rules to represent various factors that

may have an impact on certain pedestrian motions. As an AI

inference system with predetermined input and output

variables, the pedestrian has two combined behaviors:

avoiding obstacles and seeking the goal.

These actions are taken to direct pedestrians to travel in the

direction of their objectives, choose the path with the least

amount of negative energy, and avoid the front obstacles,

respectively. The two behaviors are integrated using the

priority approach, where the decisions of turning angle and

movement speed are made at each step of the model simulation.

The structure of this work is as follows. In Section 2, related

works are presented. The description of the crowd evacuation

model based on artificial intelligence is presented in Section 3.

Section 4 describes how to validate the proposed model using

model animation and how to produce simulation results.

Performance evaluation of the proposed model is presented in

Section 5 by analysis of simulation results. At the end,

conclusions and perspectives are given in Section 6.

2. RELATED WORKS

Various simulation models have been developed over the

past few decades to analyze the dynamics of crowd evacuation

in both regular and emergencies. We will organize the

discussion by modeling methodologies: social force, cellular

automaton, fuzzy logic, and artificial intelligence.

Helbing and Molnar [11] have suggested a social force

model that views pedestrians as force-driven particles and

addresses the challenge of evacuating frightened pedestrians.

A cellular automaton model was used by Varas et al. [12] to

mimic the evacuation of pedestrians from a room with fixed

obstacles. In order to imitate an evacuation experiment

conducted in a classroom with barriers, Liu et al. [13] modified

the cellular automaton model.

Lattice gas models [14, 15], game theory models [16, 17],

optimization-based feedback controls [18], and others are

frequently used to analyze evacuation issues in public spaces.

Additionally, multiple methodologies have been used to study

evacuation behaviors in various circumstances, including

smoke-filled road tunnels [19], burning hotels [20], high-rise

buildings [21], and bio-terrorism in micro-spatial contexts [22].

These findings show that crowd behavior influence types

and magnitudes vary widely with situations and associated

surroundings. In the meantime, numerous useful tips for

ensuring a safe evacuation are also provided by study

accomplishments that have been published in the literature.

Nasir et al. [23] presented a genetic fuzzy system. Fuzzy

perception and fear are ingrained in human thinking, and

Dell’Orco et al. [24] proposed a behavioral model for crowd

evacuation based on fuzzy logic and accounting for these

aspects. Furthermore, several fuzzy inference systems are

made to provide escape, egress delay, and motion direction [7,

8].

Notably, studies of pedestrian dynamical behaviors in both

calm and frenzied situations have been carried out through

modeling and simulation based on artificial intelligence [25,

26], whereby artificial intelligence techniques can be used to

predict human spirit and perception.

To mimic and model the guiding behavior of pedestrians in

constructed environments, Wang et al. [27] presented a study

on pedestrian movement dynamics under emergency

evacuation using machine learning. In the work presented in

the study by Yao et al. [28], a reinforcement learning method

is used to produce a data-driven model for crowd evacuation.

Li et al. [29] have combined the techniques of deep learning

and social to develop a simulation model for crowd evacuation.

Each of these approaches has advantages and disadvantages.

Some of them concentrate on the quantitative component of

information, but they may be limited in their ability to perceive

the environment. However, various approaches have limits in

depicting actual space.

3. DESCRIPTION OF CROWD EVACUATION MODEL

The description of the crowd evacuation model is based on

the description of the physical space, which is composed of

obstacles, borders, and an exit door (the goal), and pedestrians,

which are represented by physical positions (indicated by

location coordinates) and behaviours.

We use Python [30], a high-level all-purpose programming

language running on the Jupyter Notebook (a web-based

interactive computing platform) to develop a simulation model

for analysis of crowd evacuation using artificial intelligence

(the complete Python code is available upon request).

3.1 Description of physical space

We first introduce a method for representing physical space

“s”, which plays a central role in the modeling and simulation.

The suggested pedestrian model, with a goal_width exit in the

center of the wall and a scale of SpaceWidth × SpaceLength,

will be used to simulate in a square hall. The physical space s

is composed of borders (walls) and internal obstacles with

different shapes and an exit. The following is a part of the

Python code to generate a model of the physical space “s”.

First, we generate the exit (goal) position by the execution

of Goal, goal_position = generate_goal(goal_width), where

Goal is the exit polygon (it is a rectangle). The call to the

function positions = generate_positions(pnumber) will

generate randomly a set of pnumber positions (points) within

the space to represent the initial positions of pedestrians in s.

The execution of the function obstacles =

generate_obstacles(positions, nobstacles_vertexes) will

generate randomly a set of obstacles, which are filled polygons,

each one is specified with several vertexes. The list

nobstacles_vertexes contains the vertexes number of each

obstacle. The borders (which are external obstacles, with the

shape of rectangles) are generated by the execution of the call

to the function borders = generate_borders(goal_position,

goal_width).

def generate_physical_space(pnumber = 200,

 nobstacles_vertexes = [], goal_width = 500):

 Goal, goal_position = generate_goal(goal_width)

 positions = generate_positions(pnumber)

 obstacles = generate_obstacles(positions,

 nobstacles_vertexes)

 borders = generate_borders(goal_position, goal_width)

 return positions, obstacles, borders, Goal, goal_position

3.2 Description of pedestrians

In addition to the physical space s, the model is composed

of a crowd of pedestrians to be evacuated from a dangerous

84

situation. The evacuation is essentially based on the behavior

of pedestrians in response to the environment. This human

behavior makes our model intelligent, where the knowledge

used to describe the intelligent model relies on human

experience in categorizing values for distances, directions

(angles), and velocities.

Their classifications result in several linguistic classes

(categories), which are employed to cover the universe's

conversation. For this structural intelligent model, the

accuracy and time complexity rise exponentially as the class

number increases. Consequently, we select multiple language

classes to describe state variables, balancing correctness and

computational efficiency.

From human experience, distances are represented by two

categories (knowledge sets): 'Near' and 'Far'. A pedestrian will

perceive any position in the physical space as a near distance

if the distance from his position to that position is between 0

and 80 units, and it is a far distance if it is in the interval [100,

VisualDistance].

The following Python code will build a Multi-Layer

Perceptron Classifier, named DistanceModel, which is trained

with specified data to make each pedestrian percive a distance

value d by calling the method perceiveDistance(self, d), where

self is the reference to the pedestrian object.

Near = np.aran<wge(0, 80, 0.1)

Far = np.arange(100, VisualDistance, 0.1)

DistanceX = np.reshape(np.concatenate([Near, Far]),

 (-1, 1))

DistanceY =

np.reshape(np.concatenate([np.full((len(Near), 1), [0]),

np.full((len(Far), 1), [1])]), len(Near)+len(Far),))

DistanceModel = MLPClassifier(solver='lbfgs', alpha=1e-

5, hidden_layer_sizes=(15,),

 random_state=1).fit(DistanceX, DistanceY)

Direction angle (the angle between the pedestrian's position

and the goal's (exit) position) can be perceived by the

pedestrian (decision maker) as one of the classes (knowledge

sets): “Zero”, “SmallPos”, “LargePos”, “SmallNeg”, or

“LargeNeg” , where pedestrians are turned left or right by the

commands “Neg” and “Pos”, respectively. In the same way,

their intervals are defined in the following Python code.

Zero = np.arange(-10, 10, 1)

SmallPos = np.arange(15, 110, 1)

LargePos = np.arange(120, 180, 1)

SmallNeg = np.arange(-110, -15, 1)

LargeNeg = np.arange(-180, -120, 1)

DirectionX = np.reshape(np.concatenate([Zero,

 SmallPos, SmallNeg, LargePos, LargeNeg]), (-1, 1))

DirectionY = np.concatenate([np.full((len(Zero), 3),

 [0,0,0]),

 np.full((len(SmallPos), 3), [0,0,1]),

 np.full((len(SmallNeg), 3), [0,1,0]),

 np.full((len(LargePos), 3), [0,1,1]),

 np.full((len(LargeNeg), 3), [1,0,0])])

DirectionModel = MLPClassifier(solver='lbfgs',

 alpha=1e-5, max_iter=1000,

 hidden_layer_sizes=(15,),

 random_state=1).fit(DirectionX, DirectionY)

A Multi-Layer Perceptron Classifier, called

DirectionModel, is built and trained with this data, where

DirectionX is a concatenation of all direction value intervals

and DirectionY is the concatenation of category (class) codes.

Pedestrians can perceive the movement speed of a kind

coming in the opposite direction to be one of the following

categories “Stop”, “Slow” and “Fast”. A Multi-Layer

Perceptron Classifier, called SpeedModel, is built and trained

with the given data, where SpeedX is a concatenation of all

speed value intervals and SpeedY is the concatenation of

category (class) codes.

Stop = np.array([0])

Slow = np.arange(1, 20, 0.1)

Fast = np.arange(30, 50, 0.1)

SpeedX = np.reshape(np.concatenate([Stop,Slow,Fast]),

 (-1, 1))

SpeedY = np.concatenate([np.full((len(Stop), 2), [0,0]),

 np.full((len(Slow), 2), [0,1]),

 np.full((len(Fast), 2), [1,0])])

SpeedModel=MLPClassifier(solver='lbfgs',alpha=1e-5,

 hidden_layer_sizes=(15,),

 random_state=1).fit(SpeedX,SpeedY)

During the simulation, in addition to the prediction

functions of the direction model DirectionModel.predict() and

the speed model SpeedModel.predict(), it is necessary to

define the direction_crisp() and speed_crisp()functions to

calculate the apparent (crisp) value of the corresponding class

direction angle and velocity, respectively using the random

selection method to update the pedestrian’s state.

def direction_crisp(d):

 if d == "Zero": return random.choice(Zero)

 if d == "SmallPos": return random.choice(SmallPos)

 if d == "SmallNeg": return random.choice(SmallNeg)

 if d == "LargePos": return random.choice(LargePos)

 return random.choice(LargeNeg)

def speed_crisp(s):

 if s == "Stop": return random.choice(Stop)

 if s == "Slow": return random.choice(Slow)

 return random.choice(Fast)

A pedestrian p moving in the physical space s is an object

of the Python class “Pedestrian”, which is characterized by

location information, which is a point with coordinates (xp, yp),

to track its movements, direction information, which is the

angle between the pedestrian’s position and the goal’s (exit)

position, and movement speed to track its speed to move from

one position to the next.

MovementsNbre, MovementsDistance and

MovementsSpeed information are used to track the number of

movements (a movement is a change in direction, speed, or

both), the distance of the pedestrian movements, and their total

velocities, respectively, to reach the arrival (goal) position.

They are used to calculate the pedestrian energy to exit from

the physical space. The data member of the “Blocked”

information will indicate if the pedestrian is bloking due to

physical obstacles preventing him from moving and the

“ReachedGoal” information will indicate if the pedestrian has

already reached the goal.

85

class Pedestrian:

 def __init__(self, p):

 self.position = p

 self.direction = self.perceiveDirection(

 self.get_angle(p, goal_position))

 self.speed = "Stop"

 self.MovementsNbre = 0

 self.MovementsDistance = 0

 self.MovementsSpeed = 0

 self.Blocked = False

 self.GoalReached = False

Pedestrian objects (we also call them decsion-makers) can

update their data members during the simulation steps of the

model by calling the method member update(self, sp, speed)

to change their positions, directions, and speeds, where the

parameter self is the decision maker, sp is the position of the

visual sector to establish the direction of movement towards

the goal and the speed is the specific movement speed of the

pedestrian.

Pedestrians can have perceptions of distance, direction, and

velocity data using their member methods that perceive

distance (perceiveDistance(self, d)), direction

(perceiveDirection(self, a)) and velocity (perceiveSpeed(self,

s)), which call corresponding model prediction functions,

respectively.

To complete the model description, we need to create a set

of pedestrians without overlapping each other. For a

simulation, we call the function generate_pedestrians(n) to

generate n pedestrians, where the i-th pedestrian occupies the

position positions[i] in the space s.

def generate_pedestrians(n):

 Pedestrians = []

 if n > len(positions): n = len(positions)

 for i in range(n):

 Pedestrians.append(Pedestrian(positions[i]))

 return Pedestrians

A pedestrian’s visual field is defined as an area in the form

of a circle with a central point, which is the pedestrian’s

position, radius R units, and central angle (𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 =
360°). This region is divided into 𝑛 similar but not congruent

sectors occupying the central angles of 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖 , 𝑖 =
1, … , 𝑛 (∑ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖i=1,…,n = 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒).

A trade-off between model complexity and accuracy

determines how many sectors make up the visual field. By

integrating goal details and environmental information already

received in all sectors of the visual field, pedestrian motion

states can be updated in conjunction with a predefined space

representation approach.

3.3 Pedestrian’s behavior

Pedestrians want to survive and get away from harmful

situations. In Section 3.1 and Section 3.2, we proposed an AI-

based structural model of pedestrian behavior in a crowd. To

make the suggested model clearer and easier to understand, the

following presumptions are made:

(1) Every pedestrian knows the intricacies of their goals and

the regional information within their field of vision, but they

are not aware of the global knowledge about their

surroundings.

(2) In an ignored rest time, the pedestrian may choose to

transition between any two predefined states.

The general structure of the artificial intelligence-based

model consists of a prediction system, which is used to

describe a combination of obstacle-avoiding behavior and

goal-seeking behavior. The input information mainly includes

obstacles information, pedestrians’ information, and goal

information.

For example, the decision maker's (the pedestrian's) closest

distance from barriers determines the decision maker's

behavior of avoiding them, whereas the decision maker's path

(or goal)-searching behavior is greatly influenced by the

distance and speed of the person walking in the opposite

direction. Turning angles, or directions, and movement speeds

are the system's output data that are utilized to calculate the

final motion states.

Local goal-seeking and obstacle-avoiding behaviors

combine to establish crowd evacuation behaviors. A

pedestrian must travel in the direction of the goal at the proper

speed, avoiding collisions with other pedestrians as well as

obstacles and borders that come into view.

It is clear that pedestrian behavior is mostly influenced by

the goal's location, the distribution of pedestrians of the same

kind, and the presence of impediments. The location of the

goal should be known in advance to all pedestrians. The visual

field is defined as follows: it is a circle with a radius of Radius

units (50 units by default).

The central angle of the pedestrian’s visual field

Central_Angle is subdivided into identical sector angles with

the same value as the angle 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒, then we have 𝑛 =
𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒/𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒 sectors that make up the

visual field. Each sector defines a direction from the pedestrian

position to the sector position 𝑠𝑝.

In general, the decision-making process of pedestrians can

be described as follows. First, the decision maker (the

pedestrian) scans his visual field, sector by sector, and chooses

which sector to pass through to reach the exit (goal) based on

personal consideration. Then, in order to accomplish the aim,

he moves in the direction of the chosen sector position sp while

maintaining the proper pace and direction of travel to avoid

colliding with oncoming traffic and frontal obstructions.

The closest pedestrian-obstacle distances in each sector are

the algorithm's inputs, and its outputs are the turning angle and

movement speed. A combination of goal-seeking and

obstacle-avoiding behavior is used to determine the decision

maker's final turning angle and movement speed. The decision

maker will avoid the obstacle in front of it before pursuing the

goal. Therefore, avoiding obstacles is more vital than pursuing

goals. As a result, the pedestrians may accomplish their

objective and stay clear of any impediments and other

pedestrians that may cross their path.

To control pedestrians’ motion, the following information

must be known. The position (xp, yp) of the decision maker

(pedestrian) p, a goal g, which is located at position (xg, yg)

representing the place where pedestrians want to reach in s and

is located at goal angle γg (the angle between the pedestrian

position p and goal position g, which is called the direction

angle of the pedestrian) and is at goal distance dg from the

position of the pedestrian p.

During model simulation, the method

get_distance_perceptions(self) (self is the pedestrian’s

reference), will be called by the method behavior(self) defined

below, to get pedestrian perception of minimum distances

between his location and his surrounding obstacles, borders,

and other pedestrians coming in opposite directions in

86

different sectors of his visual field.

These distance perceptions are saved to a list called

distance_perceptions. Its maximum length is the number of

sectors, which equals 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒/𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒 (the

sector’s angle 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒 is equal, by default, 45 degrees).

The list distance_perceptions after executing

get_distance_perceptions(self) will contain information about

the distances that the subject perceives himself in each sector

of his visual field.

def get_distance_perceptions(self):

 sector_angle = 0

 obstacles_borders = obstacles + borders

 distance_perceptions = []

 while sector_angle < Central_Angle:

 sector_pos = Point((

 self.position.x+Radius*math.sin(sector_angle),

 self.position.y+Radius*math.cos(sector_angle)))

 if (sector_pos.x < -SpaceWidth+Radius or

 sector_pos.x > SpaceWidth-Radius or

 sector_pos.y < -SpaceLength+Radius or

 sector_pos.y > SpaceLength-Radius):

 sector_angle += Sector_Angle

 continue

 MinDistance = VisualDistance

 for ob in range(len(obstacles_borders)):

 d = Poly(obstacles_borders[ob]

).boundary.distance(sector_pos)

 if d > Poly(obstacles_borders[ob]

).boundary.distance(self.position):

 continue

 if d < MinDistance: MinDistance, kind = d, -1

 for k in range(len(Pedestrians)):

 if self != Pedestrians[k]:

 d =sector_pos.distance(Pedestrians[k].position)

 if d > self.position.distance(

 Pedestrians[k].position): continue

 if d < MinDistance: MinDistance, kind = d, k

 if MinDistance < VisualDistance:

 distance_perceptions.append((sector_pos,

 self.perceiveDistance(MinDistance), kind))

 else:

 distance_perceptions.append((sector_pos,"Far",-1))

 sector_angle += Sector_Angle

 return distance_perceptions

All sector information are triples, the first element being the

position of the sector, and the second element being the

minimum perceived distance from the pedestrian’s position to

all obstacles, borders, and other pedestrians observed through

the sector’s window of the visual field.

The third information item in the triple, is used to determine

whether the obstacle is a pedestrian walking in the opposite

direction or another obstacle. When this information are

collected for the current pedestrian (decision maker), he will

make a decide to change position with appropriate speed and

angle of direction in relation to his strategy.

The method behavior(self) is defined below to change the

state of the pedestrian to make him move from one location to

another until it reaches the exit (goal). The current pedestrian

can also go into a state of blocking (stop moving) if he is in

front of physical obstacles in all sectors of the visual field.

To determine the movement of each pedestrian, we call the

function get_distance_perceptions(self) defined above to get

decision-making information for the pedestrian self. The

method behavior(self) combines the obstacle-avoiding

behavior and the goal-seeking behavior to get new positions.

These new positions are candidates for moving the

pedestrian (decision-maker). The selection of the best new

position is based on a formula giving the small weighting

between the distance and dierction angle from the goal using

two weighting parameters alpha and beta to define the

preference between them.

First, the pedestrian self (the decision maker) checks

whether he is close to a kind, who has already reached the goal,

and then his state changes to as he has reached the goal (exit).

If not, he will check if all obstacles/borders/pedestrians are

far from him to decide to follow the path for seeking the goal

by calling the method goal_seeking_behavior(self,

distance_perceptions).

def behavior(self):

 if not self.GoalReached and not self.Blocked:

 distance_perceptions =

 self.get_distance_perceptions()

 if [k for (x, (sp, od, k)) in

 enumerate(distance_perceptions)

 if od == "Near" and

 k != -1 and

 Pedestrians[k].GoalReached] != []:

 self.GoalReached = True

 else:

 # The goal-seeking behavior

 new_positions =

 self.goal_seeking_behavior(

 distance_perceptions)

 if new_positions == []:

 # The obstacle-avoiding behavior

 new_positions =

 self.obstacle_avoiding_behavior(

 distance_perceptions)

 if new_positions != []:

 new_positions.sort(

 key = lambda x:x.get('index'))

 if new_positions[0].get('speed') != "Stop":

 self.update(new_positions[0].get('sp'),

 new_positions[0].get('speed'))

 else: self.Blocked = True

One sort of global conduct known as "goal-seeking

behavior" is the propensity of the decision-maker to constantly

move in the direction of his goal, regardless of the

surroundings around him. It is defined by the goal angle γg

(which can belong to one of the classes LargeNeg, SmallNeg,

Zero, SmallPos, and LargePos) and the goal distance dg

(which can belong to one of the classes Near or Far).

Formulating global goal-seeking behavior motivates

pedestrians to walk in the direction of the goal. The decision

maker reduces his speed and turns sharply towards the target

without missing it when the pedestrian approaches the exit but

does not face it. On the contrary, facing the target, he moves

freely in the direction of the target at a high (fast) speed.

With this method, the decision maker first scans the sectors,

which indicate distant internal obstacles, external obstacles

(boundaries), and blocked pedestrians, in which case he adds

to the list of decisions "gsb" (goal-seeking behavior) to move

to a direction specified by the expression

abs(self.get_angle(self.position,sp)-self.get_angle

87

(self.position, goal_position)) with fast movement speed.

If the obstacle is of some kind, the decision maker checks if

that kind is going in the opposite direction and then adds to the

decisions the same angle of movement direction but stops

moving otherwise he will add fast as the movement speed.

def goal_seeking_behavior(self, distance_perceptions):

 gsb = [(sp, sp.distance(goal_position),

 abs(self.get_angle(self.position, sp) -

 self.get_angle(self.position, goal_position)),

 "Fast") for (x, (sp, od, k)) in

 enumerate(distance_perceptions)

 if od == "Far" and (k == -1 or (k != -1 and

 Pedestrians[k].Blocked))]

 gsb = gsb + [(sp, sp.distance(goal_position),

 abs(self.get_angle(self.position, sp)-

 self.get_angle(self.position,

 goal_position)), "Slow")

 for (x, (sp, od, k)) in enumerate

 (distance_perceptions)

 if od == "Far" and k != -1 and not

 Pedestrians[k]. Blocked and

 self.opposite(self.perceiveDirection(

 self.get_angle(sp, goal_position)),

 Pedestrians[k].direction)]

 gsb = gsb + [(sp, sp.distance(goal_position),

 abs(self.get_angle(self.position, sp)-

 self.get_angle(self.position,

 goal_position)), "Fast")

 for (x, (sp, od, k)) in

 enumerate(distance_perceptions)

 if od == "Far" and k != -1 and not

 Pedestrians[k].Blocked and not

 self.opposite(self.perceiveDirection(

 self.get_angle(sp,

 goal_position)),

 Pedestrians[k].direction)]

 return [{'index':(alpha * d + beta * a)/

 (alpha+beta), 'sp':sp, 'speed':speed}

If the decision maker cannot find a sector position (the list

new_positions is empty) to seek the goal, which means he is

surrounded by obstacles from all the directions defined by the

sectors of his visual field, then the obstacle-avoiding behavior

must be invoked, which is defined with the method

obstacle_avoiding_behavior(self, distance_perceptions), to

avoid frontal obstacles because the distances between decision

maker and the obstacles are close at the local scope.

This method is called because all obstacles are close to

pedestrians, in which case he checks if one of the obstacles is

some kind. In the code, the decision maker adds to the list

"pab" (pedestrian (obstacle)-avoiding behavior), the decision

to follow the direction, which is calculated by the following

expression. The absolute value of the angle between the sector

position (from which the decision maker has observed a kind

walking in his direction) and the goal minus the angle between

the decision maker and the goal, at a slow speed in motion.

If the kind is going in the opposite direction, the resolution

to add has the same direction as above but with a stop moving

until future simulation steps.

If no kind is an obstacle, then all the obstacles are internal

or external obstacles, which puts the decision maker in a state

of blocking (see the method of behavior) and then cannot be

evacuated (i.e., access to the exit).

def obstacle_avoiding_behavior(self,

 distance_perceptions):

 oab = [(sp, k) for (x, (sp, od, k)) in enumerate

 (distance_ perceptions)

 if od == "Near" and k != -1 and not

 Pedestrians[k].Blocked]

 new_positions = []

 if oab != []:

 pab = [(sp, sp.distance(goal_position),

 abs(self.get_angle

 (self.position, sp) self.get_angle(self.position,

 goal_position)), "Slow") for (x, (sp, k)) in

 enumerate(oab) if not Pedestrians[k].

 GoalReached and not self.opposite(

 self.perceiveDirection(

 self.get_angle(sp, goal_position)),

 Pedestrians[k].direction)]

 pab = pab + [(sp, sp.distance(goal_position),

 abs(self.get_angle(self.position, sp) –

 self.get_angle (self.position,

 goal_position)), "Stop")

 for (x, (sp, k)) in enumerate(oab) if not

 Pedestrians[k]. GoalReached and

 self.opposite(self.perceiveDirection(

 self.get_angle(sp, goal_position)),

 Pedestrians[k].direction)]

 new_positions = [{'index':(alpha * d + beta * a)/

 (alpha+beta), 'sp':sp, 'speed':speed}

 for (i, (sp, d, a, speed)) in enumerate(pab)]

 return new_positions

The definition of obstacle-avoiding behavior is the tendency

of a pedestrian to shift direction gradually and smoothly as

opposed to abruptly. Because of this, if there is an identical

pedestrian-obstacle distance in every sector, the code is built

so that pedestrians will generally go in the same direction.

This crowd evacuation model is described by a way that can

help analysis of its simulation results using a method by which

we can change parameters like space dimensions, number of

sectors of visual field, weighting parameters, numbers of

obstacles, shape of each obstacle, number of pedestrians, etc.

Some values of these parameters can make the model more

complex and then its simulation more time and space

consuming.

4. MODEL VALIDATION AND SIMULATION

This model of crowd evacuation must be validated before

running the simulation (i.e. executing the Python code). The

model is validated by animating the behavior of a small

number of pedestrians in the physical space to understand their

movements.

The function do_animation() below, can be called for

generating animation data from the model simulation, then

generating animation by calling the partial function animate()

using the Python functional tools.

The result of the animation is saved as an animated GIF

(Graphics Interchange Format) file to be displayed to check

pedestrian behaviors.

def animate(i, ax, animation_data):

 ax.clear()

 for p in range(len(Pedestrians)):

88

 ax.plot(animation_data[p][i].x,

 animation_data[p][i].y, color=’green’,

 label=’original’, marker=’o’)

 ax.annotate(f”({p})”, (animation_data[p][i].x,

 animation_data[p][i].y), textcoords =

 ”offset points”, xytext=(0,10),

 ha=’center’)

 plot_physical_space(ax)

The generate_animation_data(n) function is used to

generate animation data from the initial state of a number of

pedestrians to their last state, in which all pedestrians have

reached the goal (exit) position or entered the blocking state.

def do_animation():

 fig, ax = plt.subplots(1,1)

 plt.ylim(-SpaceLength/2-200,SpaceLength/2+200)

 plt.xlim(-SpaceWidth/2-200,SpaceWidth/2+200)

 animation_data = generate_animation_data()

 ani = FuncAnimation(fig, functools.partial(animate,

 ax = ax,

 animation_data = animation_data),

 frames = len(animation_data[0]),

 interval=500, repeat=False)

 # Save the animation as an animated GIF

 ani.save("animation.gif", dpi=100, writer=

 PillowWriter(fps=1))

 fig.savefig("animationEnd.png")

The animation function below can be called to clear the

previous state and plot the new state after one step to move all

the pedestrians. In the plots, all pedestrians represented by

their location points are annotated with the associated numbers.

def generate_animation_data():

 animation_data = [[] for _ in Pedestrians]

 for p in range(len(Pedestrians)):

 animation_data[p].append(Pedestrians[p].position)

 plot_for_animation(animation_data,

 "animationStart.png")

 while not pedestrians_behavior_done():

 for p in range(len(Pedestrians)):

 Pedestrians[p].behavior()

 animation_data[p].append(Pedestrians[p].position)

 return animation_data

Figure 1(a) shows the initial state of the distribution of all

pedestrians (in green) annotated by their numbers in the

physical space. The obstacles are colored red and the exit (goal)

is a green line at the bottom.

(a) Initial state

(b) Final state

Figure 1. Animation with graphical information format file

When we open the GIF file, we see the animation of the

pedestrians’ movements from this initial state to the last state

shown in Figure 1(b). In this latter case, we observe that all

pedestrians have reached the goal.

(a) Initial distribution

(b) Final state

Figure 2. Simulation of the crowd evacuation model

This model of crowd evacuation is being tested extensively

to verify how pedestrians avoid obstacles and borders, their

kinds, and how they change direction and update their speeds

to reach the goal. After this verification process, which helped

us fix many bugs in particular errors of pedestrians behaviour,

a simulation can be launched with a large number of

pedestrians and obstacles.

Python code has been written to run the simulation, in which

several results can be tracked for performance evaluation in

Section 5. Figure 2(a) shows the initial randomization of the

100-pedestrian crowd in blue and the inner and outer obstacles

89

in red. For this simulation, every pedestrian is moving in the

direction of the exit at the required speed until the final stop

shown in subgraph (b) of Figure 2 after the simulation is

terminated. For performance evaluation, this crowd

evacuation model was simulated on different parameter values.

5. EXPERIMENTS AND PERFORMANCE

EVALUATION

The evaluation of the performance of this crowd evacuation

analysis using the simulation of the model described in Section

3, is based on an assessment of the scalability over crowds of

large sizes, which must adhere to the pedestrian randomization

composed of crowds and obstacles. Therefore, the evaluation

will measure trade-offs between scalability and pedestrian

randomization.

The performance evaluation is based on a set of metrics. The

first metric is the effectiveness of the crowd evacuation, which

is the ability to evacuate as many pedestrians as possible. The

degree of effectiveness of crowd evacuation is measured in

terms of the percentage of pedestrians 𝑅 who reach goal by

model simulation on the total number of pedestrians 𝑁

(𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑅/𝑁 ∗ 100%).

The evacuation of the crowd is effective if all the

pedestrians that make up the crowd have reached the goal

(exit).

The second metric is the efficiency of crowd evacuation,

which is the ability to evacuate an intended number of

pedestrians with the least pedestrian energy, which is

expressed as follows:

If we express the total number of pedestrian movements by

𝑁𝑀 (pedestrian movement is the movement after updating its

state in direction and speed, used to measure the pedestrian

dynamics and velocity-density relationship), the total distance

traveled by all pedestrians to reach the goal by 𝐷.

Then the efficiency degree is 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ((𝑁/𝑁𝑀 +

𝐼𝐷/𝐷) ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) ∗ 100% , where 𝐼𝐷 is the ideal total

distance from the initial positions of the pedestrians to the goal

position, and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 is the model density, which

is 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑁 + ∑𝑃𝑂)/𝑁𝑃 , where ∑𝑃𝑂 is the total

number of positions occupied by internal obstacles and 𝑁𝑃 is

the total number of associated positions by physical space.

The third metric is the total time 𝑇 spent by all pedestrians

to reach the goal or stop moving. In addition to these metrics,

there is a common metric of evacuation performance that

measures evacuation time and effectiveness/efficiency [31]

together to help assess potential trade-offs between evacuation

time and evacuation capacity, as well as overall crowd

evacuation performance.

To measure these performance metrics, several experiments

must be done using model simulation for evacuating large

crowds. So, we need to be able to vary the number of

pedestrians, and see how it scales. We randomly created a

physical space (a square hall), which is composed of 10

internal obstacles that have different shapes.

We have achieved eight experiments (𝑒 = 1, … ,8), in which

the eight diverse crowds were randomly distributed in the hall

consisting of 20, 40, 60, 80, 100, 120, 140, and 160 pedestrians,

respectively, to be evacuated from the single exit (goal) with a

specified width.

The model simulations were run on a laptop running

Windows 10 (64 bits) with an Intel (R) Core (TM) i5-4210U

CPU clocked at 1.70 GHz and 8 GB of RAM.

The experiments by model simulations are to see if we can

evacuate these large-scale crowds from the physical space and

to measure its effectiveness and efficiency.

Table 1 shows for each experiment 𝑒 , the number of

pedestrians 𝑁 composing the crowd, the model

density 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 , the total number 𝑅 of the pedestrians

reached the goal, the total number of pedestrians’

movements 𝑁𝑀 , the total distance 𝐷 traveled by the

pedestrians before reaching the goal or stopping the movement,

the ideal distance 𝐼𝐷, the total time spent by all the pedestrians

during their movements 𝑇 in seconds, crowd evacuation

effectiveness 𝐸𝑆 and efficiency 𝐸𝑌.

The results showed that almost all pedestrians reached the

goal (exit) location and there was a proportional increase in the

number of simulation steps (number of movements) and

simulation time with increasing number of pedestrians (model

intensity). These results are consistent with those of previous

researchers [32, 33].

Figure 3 shows that the total number of movements and the

total distance traveled obviously increase with the increase in

density (the number of pedestrians in the physical space),

causing the average velocity to decrease until the crowd almost

reaches a steady state when the density exceeds a critical

condition.

However, if the density is at an acceptable level, the

pedestrian will move at the desired speed due to sufficient

space and slight influences from other pedestrians. These

results are consistent with what was expected from the model

description.

Table 1. Experimental results

Experiment
N. of

Pedestrians
Density

N. of reached

Goal

N. of

Movements

Travelled

Distance

Ideal T.

Distance
T (seconds) Effectiveness Efficiency

e=1 20 12.0% 20 359 71554.5 61784.67 7.65 100.0% 85.94%
e=2 40 24.0% 39 680 135547.5 109938.96 18.52 97.5% 80.73%

e=3 60 36.0% 60 1015 198974.0 150560.28 31.31 100.0% 75.31%

e=4 80 48.0% 80 1260 245035.0 193382.25 44.46 100.0% 78.55%
e=5 100 60.0% 100 1600 315699.5 236088.38 67.29 100.0% 74.44%

e=6 120 72.0% 119 1825 360660.0 256611.76 80.78 99.17% 70.83%

e=7 140 84.0% 138 1985 390559.0 291358.11 99.03 98.57% 74.26%
e=8 160 96.0% 159 2258 441845.0 334681.13 121.38 99.38% 75.4%

90

Figure 3. Density relationships of average speed (left), total number of moves (center) and total distance traveled (right)

Figure 4. Performance evaluation

It is important to evaluate the overall performance of the

crowd evacuation model by combining the metric results

above. The metric 𝐹𝑒 (F-Score of combining effectiveness and

efficiency) is used to calculate the trade-off between crowd

evacuation effectiveness 𝐸𝑆 and efficiency 𝐸𝑌 (Eq. (1)).

2

2

(1) e e
e

e e

EY ES
F

EY ES





+  
=

 
 (1)

In the preceding formula, 𝐸𝑌𝑒 and 𝐸𝑆𝑒 (∈ [0,1]) represent

the experiment (𝑒) model simulation efficiency and

effectiveness, respectively. Consequently, the relative

weighting between them is ascertained using this formula. We

employ the metric in addition to computing the crowd

evacuation model performance 𝑃𝑒 (Precision of experiment)

for the experiment 𝑒 (Eq. (2)).

/

1

1 exp e e
e T N

P
  −

=
+

 (2)

In the formula, 𝑇𝑒 is the simulation time (seconds) for the

experiment 𝑒 . The number 𝑁𝑒 is the total number of

pedestrians. To allow for comparison of the metric values

across experiments of different sizes, we use the simulation

time per pedestrians number (i.e. 𝑇𝑒/𝑁𝑒) in the calculation.

To distinguish between the experiment results over different

sizes, two control parameters 𝛾 (called the slope) and 𝛿 (called

the shift) are used. Their values are chosen to make 𝑃𝑒 (the fast

model simulation with respect to 𝑁𝑒) close enough to one

(above 0.99). For these experiments, 𝛾 = 2 and 𝛿 = 5.

The overall performance metric 𝑂𝑃 (F-Score of P and F

combination) rewards the model simulation when it makes

pedestrians reach the goal faster, more efficiency and more

effectively and it is defined as a composite metric of

simulation time, efficiency and effectiveness for each

experiment 𝑒, where 𝑒 = 1, ⋯ , 8 as in the following (Eq. (3)).

2

2

(1) e e
e

e e

P F
OP

P F





+  
=

 +
 (3)

The values of 𝛽 and 𝛼 are set to 1, which means the weights

of crowd evacuation efficiency and effectiveness are equal,

and the weight of model simulation time against the weight of

efficiency and effectiveness are also equal.

Figure 4 shows the results of the overall performance metric

𝑂𝑃 of the model simulation that is calculated for each

experiment. The trade-off between the efficiency and

effectiveness of crowd evacuation, is more than 80%, with an

overall performance of more than 90%, and the evacuation

performance is almost perfect, which is more than 99%.

The aggregate results show that the model simulation runs

extremely smoothly across the board for every experiment.

These numerical findings, displayed in Figure 4, aid in our

comprehension of our model's overall effectiveness in crowd

evacuation.

6. CONCLUSIONS AND PERSPECTIVES

We have presented a description with the Python language

of a model for the simulation of the evacuation of crowds

91

located in physical spaces with dangerous situations. The

behavior of the pedestrians composing this model is described

using the technique of artificial intelligence, especially the

perception of numerical quantities such as distances, angles of

direction and speeds of movement which transform by nature

into qualitative quantities for human reasoning.

Before the simulation, this model was validated using an

animation (an animated execution) which helped us to fix

several errors, especially in the description part of pedestrian

behavior. The simulation results are analyzed to evaluate the

performance of this model. We obtained a good compromise

between its effectiveness and its efficiency. These

performance analysis results are very promising for future

prospects.

The first perspective is to vary the behavior of pedestrians

according to characteristics such as gender, age, whether they

have diseases, etc. The second perspective is to automate the

description of physical spaces. The input to this automation

will be images on the physical spaces and through the object

detection technique we can have their descriptions. The third

perspective is to use artificial intelligence to predict pedestrian

behavior.

REFERENCES

[1] Shin, Y., Moon, I. (2023). Robust building evacuation

planning in a dynamic network flow model under

collapsible nodes and arcs. Socio-Economic Planning

Sciences, 86: 101455.

https://doi.org/10.1016/j.seps.2022.101455

[2] Adrian, J., Seyfried, A., Sieben, A. (2020). Crowds in

front of bottlenecks at entrances from the perspective of

physics and social psychology. Journal of the Royal

Society Interface, 17(165): 20190871.

https://doi.org/10.1098/rsif.2019.0871

[3] Bakar, N.A.A., Majid, M.A., Ismail, K.A. (2017). An

overview of crowd evacuation simulation. Advanced

Science Letters, 23(11): 11428-11431.

https://doi.org/10.1166/asl.2017.10298

[4] Zheng, L., Peng, X., Wang, L., Sun, D. (2019).

Simulation of pedestrian evacuation considering

emergency spread and pedestrian panic. Physica A:

Statistical Mechanics and its Applications, 522: 167-181.

https://doi.org/10.1016/j.physa.2019.01.128

[5] Zhang, J., Zhu, J., Dang, P., Wu, J., Zhou, Y., Li, W., Fu,

L., Guo, Y., You, J. (2023). An improved social force

model (ISFM)-based crowd evacuation simulation

method in virtual reality with a subway fire as a case

study. International Journal of Digital Earth, 16(1): 1186-

1204. https://doi.org/10.1080/17538947.2023.2197261

[6] Zhang, D., Li, W., Gong, J., Zhang, G., Liu, J., Huang,

L., Liu, H., Ma, H. (2023). Deep reinforcement learning

and 3D physical environments applied to crowd

evacuation in congested scenarios. International Journal

of Digital Earth, 16(1): 691-714.

https://doi.org/10.1080/17538947.2023.2182376

[7] Zhou, M., Dong, H., Wang, F.Y., Wang, Q., Yang, X.

(2016). Modeling and simulation of pedestrian

dynamical behavior based on a fuzzy logic approach.

Information Sciences, 360: 112-130.

https://doi.org/10.1016/j.ins.2016.04.018

[8] Zhou, M., Dong, H., Wen, D., Yao, X., Sun, X. (2016).

Modeling of crowd evacuation with assailants via a fuzzy

logic approach. IEEE Transactions on Intelligent

Transportation Systems, 17(9): 2395-2407.

https://doi.org/10.1109/TITS.2016.2521783

[9] Baker, C. (2019). Artificial Intelligence: Learning

Automation Skills with Python (2 books in 1: Artificial

Intelligence a Modern Approach & Artificial Intelligence

Business Applications). Independently published.

[10] Teso, S., Alkan, Ö., Stammer, W., Daly, E. (2023).

Leveraging explanations in interactive machine learning:

An overview. Frontiers in Artificial Intelligence, 6:

1066049. https://doi.org/10.3389/frai.2023.1066049

[11] Helbing, D., Molnar, P. (1995). Social force model for

pedestrian dynamics. Physical Review E, 51(5): 4282.

https://doi.org/10.1103/PhysRevE.51.4282

[12] Varas, A., Cornejo, M.D., Mainemer, D., Toledo, B.,

Rogan, J., Munoz, V., Valdivia, J.A. (2007). Cellular

automaton model for evacuation process with obstacles.

Physica A: Statistical Mechanics and Its Applications,

382(2): 631-642.

https://doi.org/10.1016/j.physa.2007.04.006

[13] Liu, S., Yang, L., Fang, T., Li, J. (2009). Evacuation from

a classroom considering the occupant density around

exits. Physica A: Statistical Mechanics and its

Applications, 388(9): 1921-1928.

https://doi.org/10.1016/j.physa.2009.01.008

[14] Helbing, D., Isobe, M., Nagatani, T., Takimoto, K.

(2003). Lattice gas simulation of experimentally studied

evacuation dynamics. Physical review E, 67(6): 067101.

https://doi.org/10.1103/PhysRevE.67.067101

[15] Guo, R.Y., Huang, H.J. (2008). A mobile lattice gas

model for simulating pedestrian evacuation. Physica A:

Statistical Mechanics and its Applications, 387(2-3):

580-586. https://doi.org/10.1016/j.physa.2007.10.001

[16] Shi, D.M., Wang, B.H. (2013). Evacuation of pedestrians

from a single room by using snowdrift game theories.

Physical Review E, 87(2): 022802.

https://doi.org/10.1103/PhysRevE.87.022802

[17] Bouzat, S., Kuperman, M.N. (2014). Game theory in

models of pedestrian room evacuation. Physical Review

E, 89(3): 032806.

https://doi.org/10.1103/PhysRevE.89.032806

[18] Shende, A., Singh, M.P., Kachroo, P. (2011).

Optimization-based feedback control for pedestrian

evacuation from an exit corridor. IEEE Transactions on

Intelligent Transportation Systems, 12(4): 1167-1176.

https://doi.org/10.1109/TITS.2011.2146251

[19] Frantzich, H., Nilsson, D. (2004). Evacuation

experiments in a smoke filled tunnel. In 3rd International

Symposium on Human Behaviour in Fire, Interscience

Communications Ltd, United Kingdom, pp. 229-238.

[20] Kobes, M., Helsloot, I., De Vries, B., Post, J.G., Oberijé,

N., Groenewegen, K. (2010). Way finding during fire

evacuation; An analysis of unannounced fire drills in a

hotel at night. Building and Environment, 45(3): 537-548.

https://doi.org/10.1016/j.buildenv.2009.07.004

[21] Ma, J., Lo, S.M., Song, W.G. (2012). Cellular automaton

modeling approach for optimum ultra high-rise building

evacuation design. Fire Safety Journal, 54: 57-66.

https://doi.org/10.1016/j.firesaf.2012.07.008

[22] Song, Y., Gong, J., Li, Y., Cui, T., Fang, L., Cao, W.

(2013). Crowd evacuation simulation for bioterrorism in

micro-spatial environments based on virtual geographic

environments. Safety Science, 53: 105-113.

https://doi.org/10.1016/j.ssci.2012.08.011

92

[23] Nasir, M., Lim, C.P., Nahavandi, S., Creighton, D.

(2014). A genetic fuzzy system to model pedestrian

walking path in a built environment. Simulation

Modelling Practice and Theory, 45: 18-34.

https://doi.org/10.1016/j.simpat.2014.03.002

[24] Dell’Orco, M., Marinelli, M., Ottomanelli, M. (2014).

Simulation of crowd dynamics in panic situations using

a fuzzy logic-based behavioural model. In: de Sousa, J.,

Rossi, R. (eds) Computer-based Modelling and

Optimization in Transportation. Advances in Intelligent

Systems and Computing, Springer, Cham, 262.

https://doi.org/10.1007/978-3-319-04630-3_18

[25] Bahamid, A., Mohd Ibrahim, A. (2022). A review on

crowd analysis of evacuation and abnormality detection

based on machine learning systems. Neural Computing

and Applications, 34(24): 21641-21655.

https://doi.org/10.1007/s00521-022-07758-5

[26] Lee, J., Won, J., Lee, J. (2018). Crowd simulation by

deep reinforcement learning. In Proceedings of the 11th

ACM SIGGRAPH Conference on Motion, Interaction

and Games, pp. 1-7.

https://doi.org/10.1145/3274247.3274510

[27] Wang, K., Shi, X., Goh, A.P.X., Qian, S. (2019). A

machine learning based study on pedestrian movement

dynamics under emergency evacuation. Fire Safety

Journal, 106: 163-176.

https://doi.org/10.1016/j.firesaf.2019.04.008

[28] Yao, Z., Zhang, G., Lu, D., Liu, H. (2019). Data-driven

crowd evacuation: A reinforcement learning method.

Neurocomputing, 366: 314-327.

https://doi.org/10.1016/j.neucom.2019.08.021

[29] Li, X., Liang, Y., Zhao, M., Wang, C., Bai, H., Jiang, Y.

(2019). Simulation of evacuating crowd based on deep

learning and social force model. IEEE Access, 7:

155361-155371.

https://doi.org/10.1109/ACCESS.2019.2949106

[30] Raschka, S., Patterson, J., Nolet, C. (2020). Machine

learning in python: Main developments and technology

trends in data science, machine learning, and artificial

intelligence. Information, 11(4): 193.

https://doi.org/10.3390/info11040193

[31] Zidane, Y.J.T., Olsson, N.O. (2017). Defining project

efficiency, effectiveness and efficacy. International

Journal of Managing Projects in Business, 10(3): 621-

641. https://doi.org/10.1108/IJMPB-10-2016-0085

[32] Helbing, D., Johansson, A., Al-Abideen, H.Z. (2007).

Dynamics of crowd disasters: An empirical study.

Physical Review E, 75(4): 046109.

https://doi.org/10.1103/PhysRevE.75.046109

[33] Helbing, D., Farkas, I., Vicsek, T. (2000). Simulating

dynamical features of escape panic. Nature, 407(6803):

487-490. https://doi.org/10.1038/35035023

93

