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In this paper, we have developed a description of an agent-based model for simulating the 

evacuation of crowds from complex physical spaces for escaping dangerous situations. The 

model describes a physical space containing a set of differently shaped fences, and 

obstacles, and an exit door. The pedestrians comprising the crowd and moving in this space 

in order to be evacuated are described as intelligent agents with supervised machine learning 

using perception-based data to perceive a particular environment differently. The 

description of this model is developed with the Python language where its execution 

represents its simulation. Before the simulation, the model can be validated using an 

animation written with the same language to fix possible problems in the model description. 

A model performance evaluation is presented using an analysis of simulation results, 

showing that these results are very encouraging. 
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1. INTRODUCTION

It has become commonplace for people to congregate in 

public spaces like retail malls, theme parks, and subway 

stations. This assembly presents difficulties for planners and 

administrators as well as a variety of risks to people’s lives 

(such as trample and overcrowding). When an emergency 

occurs, crowds’ irrational conduct brought on by fear or even 

panic during the evacuation process may create immeasurable 

losses. Because of this, worries about comprehending the 

dynamics of crowds in both routine and emergency evacuation 

situations have developed rapidly [1, 2].  

Model-based simulations are often the main research 

methodologies used to analyze crowd evacuation instead of 

real-world experiments, which are highly challenging to 

examine crowd behavior during an emergency evacuation [3-

5]. The simulation models in this case are driven by 

environmental information, which should be qualitative 

instead of quantitative.  

The main elements of the models are humans, which obtain 

their environmental information via perception rather than 

measured values. Because each pedestrian perceives a 

particular environment differently, it is challenging to estimate 

the degree to which actual environmental stimuli are present. 

In light of this, it makes sense to model and study human 

actions and features using linguistic data (words) rather than 

numerical quantities [6-8]. 

In this research, we will develop a crowd evacuation model, 

where a pedestrian is considered as a distinct individual. This 

model will incorporate intricate interactions between people 

and their settings. The behaviors of a pedestrian are influenced 

by both the individual’s consciousness and the environment. 

Given the intricate connections with the environment, it is 

challenging to develop a model that effectively describes and 

predicts a pedestrian’s activities.  

In this model, the perception-based data is fully utilized, as 

well as human experience and expertise to act sanely in the 

event of a crowd evacuation while taking the impact of the 

environment into account. The precise values of the intricate 

interactions with the environment, such as speeds, directions, 

and distances, have statistical evaluation effects on a 

pedestrian’s behaviors.  

We will classify information obtained from settings that are 

considered measurement-based to be perception-based using 

the Artificial Intelligence (AI) technique [9]. Thus, we need to 

create a usable model that can fully utilize perception-based 

data and capture the connection between environmental design 

and pedestrian perception.  

We develop an AI-based model to achieve these objectives. 

a pedestrian’s perceptions of their immediate surroundings are 

typically expressed using natural language, which is by nature 

ambiguous and imprecise. This AI-based approach is capable 

of handling the inherent imprecision and unpredictability of 

perception information.  

The reasoning and decision-making processes of 

pedestrians can be articulated using a set of straightforward 

inference rules that have the advantages of conveniently 

available input data and intelligible output [10]. The 

innovative aspect of this study is the suggestion of a pedestrian 

model based on AI techniques that can effectively account for 

human knowledge and experience as well as pedestrian 

perceptions of the surrounding environment. 

During the modeling process, the impacts of intricate 

interactions with the environment on pedestrian dynamics are 
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taken into account qualitatively. The model uses a few 

straightforward inference rules to represent various factors that 

may have an impact on certain pedestrian motions. As an AI 

inference system with predetermined input and output 

variables, the pedestrian has two combined behaviors: 

avoiding obstacles and seeking the goal. 

These actions are taken to direct pedestrians to travel in the 

direction of their objectives, choose the path with the least 

amount of negative energy, and avoid the front obstacles, 

respectively. The two behaviors are integrated using the 

priority approach, where the decisions of turning angle and 

movement speed are made at each step of the model simulation. 

The structure of this work is as follows. In Section 2, related 

works are presented. The description of the crowd evacuation 

model based on artificial intelligence is presented in Section 3. 

Section 4 describes how to validate the proposed model using 

model animation and how to produce simulation results. 

Performance evaluation of the proposed model is presented in 

Section 5 by analysis of simulation results. At the end, 

conclusions and perspectives are given in Section 6. 

2. RELATED WORKS

Various simulation models have been developed over the 

past few decades to analyze the dynamics of crowd evacuation 

in both regular and emergencies. We will organize the 

discussion by modeling methodologies: social force, cellular 

automaton, fuzzy logic, and artificial intelligence. 

Helbing and Molnar [11] have suggested a social force 

model that views pedestrians as force-driven particles and 

addresses the challenge of evacuating frightened pedestrians. 

A cellular automaton model was used by Varas et al. [12] to 

mimic the evacuation of pedestrians from a room with fixed 

obstacles. In order to imitate an evacuation experiment 

conducted in a classroom with barriers, Liu et al. [13] modified 

the cellular automaton model.  

Lattice gas models [14, 15], game theory models [16, 17], 

optimization-based feedback controls [18], and others are 

frequently used to analyze evacuation issues in public spaces. 

Additionally, multiple methodologies have been used to study 

evacuation behaviors in various circumstances, including 

smoke-filled road tunnels [19], burning hotels [20], high-rise 

buildings [21], and bio-terrorism in micro-spatial contexts [22]. 

These findings show that crowd behavior influence types 

and magnitudes vary widely with situations and associated 

surroundings. In the meantime, numerous useful tips for 

ensuring a safe evacuation are also provided by study 

accomplishments that have been published in the literature. 

Nasir et al. [23] presented a genetic fuzzy system. Fuzzy 

perception and fear are ingrained in human thinking, and 

Dell’Orco et al. [24] proposed a behavioral model for crowd 

evacuation based on fuzzy logic and accounting for these 

aspects. Furthermore, several fuzzy inference systems are 

made to provide escape, egress delay, and motion direction [7, 

8]. 

Notably, studies of pedestrian dynamical behaviors in both 

calm and frenzied situations have been carried out through 

modeling and simulation based on artificial intelligence [25, 

26], whereby artificial intelligence techniques can be used to 

predict human spirit and perception.  

To mimic and model the guiding behavior of pedestrians in 

constructed environments, Wang et al. [27] presented a study 

on pedestrian movement dynamics under emergency 

evacuation using machine learning. In the work presented in 

the study by Yao et al. [28], a reinforcement learning method 

is used to produce a data-driven model for crowd evacuation. 

Li et al. [29] have combined the techniques of deep learning 

and social to develop a simulation model for crowd evacuation. 

Each of these approaches has advantages and disadvantages. 

Some of them concentrate on the quantitative component of 

information, but they may be limited in their ability to perceive 

the environment. However, various approaches have limits in 

depicting actual space. 

3. DESCRIPTION OF CROWD EVACUATION MODEL

The description of the crowd evacuation model is based on 

the description of the physical space, which is composed of 

obstacles, borders, and an exit door (the goal), and pedestrians, 

which are represented by physical positions (indicated by 

location coordinates) and behaviours. 

We use Python [30], a high-level all-purpose programming 

language running on the Jupyter Notebook (a web-based 

interactive computing platform) to develop a simulation model 

for analysis of crowd evacuation using artificial intelligence 

(the complete Python code is available upon request). 

3.1 Description of physical space 

We first introduce a method for representing physical space 

“s”, which plays a central role in the modeling and simulation. 

The suggested pedestrian model, with a goal_width exit in the 

center of the wall and a scale of SpaceWidth × SpaceLength, 

will be used to simulate in a square hall. The physical space s 

is composed of borders (walls) and internal obstacles with 

different shapes and an exit. The following is a part of the 

Python code to generate a model of the physical space “s”. 

First, we generate the exit (goal) position by the execution 

of Goal, goal_position = generate_goal(goal_width), where 

Goal is the exit polygon (it is a rectangle). The call to the 

function positions = generate_positions(pnumber) will 

generate randomly a set of pnumber positions (points) within 

the space to represent the initial positions of pedestrians in s. 

The execution of the function obstacles = 

generate_obstacles(positions, nobstacles_vertexes) will 

generate randomly a set of obstacles, which are filled polygons, 

each one is specified with several vertexes. The list 

nobstacles_vertexes contains the vertexes number of each 

obstacle. The borders (which are external obstacles, with the 

shape of rectangles) are generated by the execution of the call 

to the function borders = generate_borders(goal_position, 

goal_width). 

def generate_physical_space(pnumber = 200, 

    nobstacles_vertexes = [], goal_width = 500): 

   Goal, goal_position = generate_goal(goal_width) 

   positions = generate_positions(pnumber) 

   obstacles = generate_obstacles(positions,   

    nobstacles_vertexes) 

   borders = generate_borders(goal_position, goal_width)  

   return positions, obstacles, borders, Goal, goal_position 

3.2 Description of pedestrians 

In addition to the physical space s, the model is composed 

of a crowd of pedestrians to be evacuated from a dangerous 
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situation. The evacuation is essentially based on the behavior 

of pedestrians in response to the environment. This human 

behavior makes our model intelligent, where the knowledge 

used to describe the intelligent model relies on human 

experience in categorizing values for distances, directions 

(angles), and velocities.  

Their classifications result in several linguistic classes 

(categories), which are employed to cover the universe's 

conversation. For this structural intelligent model, the 

accuracy and time complexity rise exponentially as the class 

number increases. Consequently, we select multiple language 

classes to describe state variables, balancing correctness and 

computational efficiency. 

From human experience, distances are represented by two 

categories (knowledge sets): 'Near' and 'Far'. A pedestrian will 

perceive any position in the physical space as a near distance 

if the distance from his position to that position is between 0 

and 80 units, and it is a far distance if it is in the interval [100, 

VisualDistance].  

The following Python code will build a Multi-Layer 

Perceptron Classifier, named DistanceModel, which is trained 

with specified data to make each pedestrian percive a distance 

value d by calling the method perceiveDistance(self, d), where 

self is the reference to the pedestrian object. 

 

Near = np.aran<wge(0, 80, 0.1) 

Far = np.arange(100, VisualDistance, 0.1) 

DistanceX = np.reshape(np.concatenate([Near, Far]),  

                                                                 (-1, 1)) 

 

DistanceY = 

np.reshape(np.concatenate([np.full((len(Near), 1), [0]), 

np.full((len(Far), 1), [1])]), len(Near)+len(Far), )) 

DistanceModel = MLPClassifier(solver='lbfgs', alpha=1e-

5, hidden_layer_sizes=(15, ),  

                     random_state=1).fit(DistanceX, DistanceY) 

 

Direction angle (the angle between the pedestrian's position 

and the goal's (exit) position) can be perceived by the 

pedestrian (decision maker) as one of the classes (knowledge 

sets): “Zero”, “SmallPos”, “LargePos”, “SmallNeg”, or 

“LargeNeg” , where pedestrians are turned left or right by the 

commands “Neg” and “Pos”, respectively. In the same way, 

their intervals are defined in the following Python code. 

 

Zero = np.arange(-10, 10, 1) 

SmallPos = np.arange(15, 110, 1) 

LargePos = np.arange(120, 180, 1) 

SmallNeg = np.arange(-110, -15, 1) 

LargeNeg = np.arange(-180, -120, 1) 

DirectionX = np.reshape(np.concatenate([Zero,  

     SmallPos, SmallNeg, LargePos, LargeNeg]), (-1, 1)) 

DirectionY = np.concatenate([np.full((len(Zero), 3),  

                                                             [0,0,0]), 

                              np.full((len(SmallPos), 3), [0,0,1]), 

                              np.full((len(SmallNeg), 3), [0,1,0]), 

                              np.full((len(LargePos), 3), [0,1,1]), 

                              np.full((len(LargeNeg), 3), [1,0,0])]) 

DirectionModel = MLPClassifier(solver='lbfgs',  

                   alpha=1e-5, max_iter=1000, 

                   hidden_layer_sizes=(15, ),  

                   random_state=1).fit(DirectionX, DirectionY) 

 

 

A Multi-Layer Perceptron Classifier, called 

DirectionModel, is built and trained with this data, where 

DirectionX is a concatenation of all direction value intervals 

and DirectionY is the concatenation of category (class) codes. 

Pedestrians can perceive the movement speed of a kind 

coming in the opposite direction to be one of the following 

categories “Stop”, “Slow” and “Fast”. A Multi-Layer 

Perceptron Classifier, called SpeedModel, is built and trained 

with the given data, where SpeedX is a concatenation of all 

speed value intervals and SpeedY is the concatenation of 

category (class) codes. 

 

Stop = np.array([0]) 

Slow = np.arange(1, 20, 0.1) 

Fast = np.arange(30, 50, 0.1) 

SpeedX = np.reshape(np.concatenate([Stop,Slow,Fast]),  

                                                             (-1, 1)) 

SpeedY = np.concatenate([np.full((len(Stop), 2), [0,0]),  

                         np.full((len(Slow), 2), [0,1]),  

                         np.full((len(Fast), 2), [1,0])]) 

SpeedModel=MLPClassifier(solver='lbfgs',alpha=1e-5,  

                   hidden_layer_sizes=(15,), 

                   random_state=1).fit(SpeedX,SpeedY) 

 

During the simulation, in addition to the prediction 

functions of the direction model DirectionModel.predict() and 

the speed model SpeedModel.predict(), it is necessary to 

define the direction_crisp() and speed_crisp()functions to 

calculate the apparent (crisp) value of the corresponding class 

direction angle and velocity, respectively using the random 

selection method to update the pedestrian’s state. 

 

def direction_crisp(d): 

    if d == "Zero": return random.choice(Zero) 

    if d == "SmallPos": return random.choice(SmallPos) 

    if d == "SmallNeg": return random.choice(SmallNeg) 

    if d == "LargePos": return random.choice(LargePos) 

    return random.choice(LargeNeg) 

 

def speed_crisp(s): 

    if s == "Stop": return random.choice(Stop) 

    if s == "Slow": return random.choice(Slow) 

    return random.choice(Fast) 

 

A pedestrian p moving in the physical space s is an object 

of the Python class “Pedestrian”, which is characterized by 

location information, which is a point with coordinates (xp, yp), 

to track its movements, direction information, which is the 

angle between the pedestrian’s position and the goal’s (exit) 

position, and movement speed to track its speed to move from 

one position to the next. 

MovementsNbre, MovementsDistance and 

MovementsSpeed information are used to track the number of 

movements (a movement is a change in direction, speed, or 

both), the distance of the pedestrian movements, and their total 

velocities, respectively, to reach the arrival (goal) position. 

They are used to calculate the pedestrian energy to exit from 

the physical space. The data member of the “Blocked” 

information will indicate if the pedestrian is bloking due to 

physical obstacles preventing him from moving and the 

“ReachedGoal” information will indicate if the pedestrian has 

already reached the goal. 
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class Pedestrian: 

    def __init__(self, p): 

        self.position = p 

        self.direction = self.perceiveDirection( 

                         self.get_angle(p, goal_position)) 

        self.speed = "Stop" 

        self.MovementsNbre = 0 

        self.MovementsDistance = 0 

        self.MovementsSpeed = 0 

        self.Blocked = False 

        self.GoalReached = False 

 

Pedestrian objects (we also call them decsion-makers) can 

update their data members during the simulation steps of the 

model by calling the method member update(self, sp, speed) 

to change their positions, directions, and speeds, where the 

parameter self is the decision maker, sp is the position of the 

visual sector to establish the direction of movement towards 

the goal and the speed is the specific movement speed of the 

pedestrian. 

Pedestrians can have perceptions of distance, direction, and 

velocity data using their member methods that perceive 

distance (perceiveDistance(self, d)), direction 

(perceiveDirection(self, a)) and velocity (perceiveSpeed(self, 

s)), which call corresponding model prediction functions, 

respectively.  

To complete the model description, we need to create a set 

of pedestrians without overlapping each other. For a 

simulation, we call the function generate_pedestrians(n) to 

generate n pedestrians, where the i-th pedestrian occupies the 

position positions[i] in the space s. 

 

def generate_pedestrians(n): 

    Pedestrians = [] 

    if n > len(positions): n = len(positions) 

    for i in range(n): 

        Pedestrians.append(Pedestrian(positions[i])) 

    return Pedestrians 

 

A pedestrian’s visual field is defined as an area in the form 

of a circle with a central point, which is the pedestrian’s 

position, radius R units, and central angle (𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 =
360°). This region is divided into 𝑛 similar but not congruent 

sectors occupying the central angles of 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖 , 𝑖 =
1, … , 𝑛 (∑ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖i=1,…,n = 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒). 

A trade-off between model complexity and accuracy 

determines how many sectors make up the visual field. By 

integrating goal details and environmental information already 

received in all sectors of the visual field, pedestrian motion 

states can be updated in conjunction with a predefined space 

representation approach. 

 

3.3 Pedestrian’s behavior 

 

Pedestrians want to survive and get away from harmful 

situations. In Section 3.1 and Section 3.2, we proposed an AI-

based structural model of pedestrian behavior in a crowd. To 

make the suggested model clearer and easier to understand, the 

following presumptions are made: 

(1) Every pedestrian knows the intricacies of their goals and 

the regional information within their field of vision, but they 

are not aware of the global knowledge about their 

surroundings. 

(2) In an ignored rest time, the pedestrian may choose to 

transition between any two predefined states. 

The general structure of the artificial intelligence-based 

model consists of a prediction system, which is used to 

describe a combination of obstacle-avoiding behavior and 

goal-seeking behavior. The input information mainly includes 

obstacles information, pedestrians’ information, and goal 

information.  

For example, the decision maker's (the pedestrian's) closest 

distance from barriers determines the decision maker's 

behavior of avoiding them, whereas the decision maker's path 

(or goal)-searching behavior is greatly influenced by the 

distance and speed of the person walking in the opposite 

direction. Turning angles, or directions, and movement speeds 

are the system's output data that are utilized to calculate the 

final motion states. 

Local goal-seeking and obstacle-avoiding behaviors 

combine to establish crowd evacuation behaviors. A 

pedestrian must travel in the direction of the goal at the proper 

speed, avoiding collisions with other pedestrians as well as 

obstacles and borders that come into view. 

It is clear that pedestrian behavior is mostly influenced by 

the goal's location, the distribution of pedestrians of the same 

kind, and the presence of impediments. The location of the 

goal should be known in advance to all pedestrians. The visual 

field is defined as follows: it is a circle with a radius of Radius 

units (50 units by default).  

The central angle of the pedestrian’s visual field 

Central_Angle is subdivided into identical sector angles with 

the same value as the angle 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒, then we have 𝑛 =
𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒/𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒  sectors that make up the 

visual field. Each sector defines a direction from the pedestrian 

position to the sector position 𝑠𝑝. 

In general, the decision-making process of pedestrians can 

be described as follows. First, the decision maker (the 

pedestrian) scans his visual field, sector by sector, and chooses 

which sector to pass through to reach the exit (goal) based on 

personal consideration. Then, in order to accomplish the aim, 

he moves in the direction of the chosen sector position sp while 

maintaining the proper pace and direction of travel to avoid 

colliding with oncoming traffic and frontal obstructions. 

The closest pedestrian-obstacle distances in each sector are 

the algorithm's inputs, and its outputs are the turning angle and 

movement speed. A combination of goal-seeking and 

obstacle-avoiding behavior is used to determine the decision 

maker's final turning angle and movement speed. The decision 

maker will avoid the obstacle in front of it before pursuing the 

goal. Therefore, avoiding obstacles is more vital than pursuing 

goals. As a result, the pedestrians may accomplish their 

objective and stay clear of any impediments and other 

pedestrians that may cross their path. 

To control pedestrians’ motion, the following information 

must be known. The position (xp, yp) of the decision maker 

(pedestrian) p, a goal g, which is located at position (xg, yg) 

representing the place where pedestrians want to reach in s and 

is located at goal angle γg (the angle between the pedestrian 

position p and goal position g, which is called the direction 

angle of the pedestrian) and is at goal distance dg from the 

position of the pedestrian p.  

During model simulation, the method 

get_distance_perceptions(self) (self is the pedestrian’s 

reference), will be called by the method behavior(self) defined 

below, to get pedestrian perception of minimum distances 

between his location and his surrounding obstacles, borders, 

and other pedestrians coming in opposite directions in 
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different sectors of his visual field.  

These distance perceptions are saved to a list called 

distance_perceptions. Its maximum length is the number of 

sectors, which equals 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒/𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒  (the 

sector’s angle 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒 is equal, by default, 45 degrees).  

The list distance_perceptions after executing 

get_distance_perceptions(self) will contain information about 

the distances that the subject perceives himself in each sector 

of his visual field. 

 

def get_distance_perceptions(self): 

    sector_angle = 0 

    obstacles_borders = obstacles + borders 

    distance_perceptions = [] 

    while sector_angle < Central_Angle:  

        sector_pos = Point(( 

            self.position.x+Radius*math.sin(sector_angle),  

            self.position.y+Radius*math.cos(sector_angle))) 

        if (sector_pos.x < -SpaceWidth+Radius or  

             sector_pos.x > SpaceWidth-Radius or  

             sector_pos.y < -SpaceLength+Radius or  

             sector_pos.y > SpaceLength-Radius):  

               sector_angle += Sector_Angle 

               continue 

        MinDistance = VisualDistance 

        for ob in range(len(obstacles_borders)):  

            d = Poly(obstacles_borders[ob] 

                           ).boundary.distance(sector_pos) 

            if d >  Poly(obstacles_borders[ob] 

                              ).boundary.distance(self.position):  

                continue 

            if d < MinDistance: MinDistance, kind = d, -1 

        for k in range(len(Pedestrians)): 

            if self != Pedestrians[k]: 

                d =sector_pos.distance(Pedestrians[k].position) 

                if d > self.position.distance( 

                                    Pedestrians[k].position): continue 

                if d < MinDistance: MinDistance, kind = d, k 

        if MinDistance < VisualDistance: 

            distance_perceptions.append((sector_pos,  

                      self.perceiveDistance(MinDistance), kind)) 

        else: 

          distance_perceptions.append((sector_pos,"Far",-1)) 

        sector_angle += Sector_Angle 

    return distance_perceptions 

 

All sector information are triples, the first element being the 

position of the sector, and the second element being the 

minimum perceived distance from the pedestrian’s position to 

all obstacles, borders, and other pedestrians observed through 

the sector’s window of the visual field. 

The third information item in the triple, is used to determine 

whether the obstacle is a pedestrian walking in the opposite 

direction or another obstacle. When this information are 

collected for the current pedestrian (decision maker), he will 

make a decide to change position with appropriate speed and 

angle of direction in relation to his strategy. 

The method behavior(self) is defined below to change the 

state of the pedestrian to make him move from one location to 

another until it reaches the exit (goal). The current pedestrian 

can also go into a state of blocking (stop moving) if he is in 

front of physical obstacles in all sectors of the visual field.  

To determine the movement of each pedestrian, we call the 

function get_distance_perceptions(self) defined above to get 

decision-making information for the pedestrian self. The 

method behavior(self) combines the obstacle-avoiding 

behavior and the goal-seeking behavior to get new positions. 

These new positions are candidates for moving the 

pedestrian (decision-maker). The selection of the best new 

position is based on a formula giving the small weighting 

between the distance and dierction angle from the goal using 

two weighting parameters alpha and beta to define the 

preference between them. 

First, the pedestrian self (the decision maker) checks 

whether he is close to a kind, who has already reached the goal, 

and then his state changes to as he has reached the goal (exit). 

If not, he will check if all obstacles/borders/pedestrians are 

far from him to decide to follow the path for seeking the goal 

by calling the method goal_seeking_behavior(self, 

distance_perceptions). 

 

def behavior(self): 

   if not self.GoalReached and not self.Blocked: 

     distance_perceptions =  

                                       self.get_distance_perceptions() 

     if [k for (x, (sp, od, k)) in  

                              enumerate(distance_perceptions)  

        if od == "Near" and  

            k != -1 and  

           Pedestrians[k].GoalReached] != []: 

                   self.GoalReached = True 

        else: 

            # The goal-seeking behavior 

            new_positions =  

                      self.goal_seeking_behavior( 

                                  distance_perceptions) 

            if new_positions == []: 

                # The obstacle-avoiding behavior 

                new_positions =  

                              self.obstacle_avoiding_behavior( 

                                                        distance_perceptions) 

            if new_positions != []: 

                new_positions.sort( 

                           key = lambda x:x.get('index')) 

                if new_positions[0].get('speed') != "Stop": 

                      self.update(new_positions[0].get('sp'),  

                                         new_positions[0].get('speed')) 

            else: self.Blocked = True 

 

One sort of global conduct known as "goal-seeking 

behavior" is the propensity of the decision-maker to constantly 

move in the direction of his goal, regardless of the 

surroundings around him. It is defined by the goal angle γg 

(which can belong to one of the classes LargeNeg, SmallNeg, 

Zero, SmallPos, and LargePos) and the goal distance dg 

(which can belong to one of the classes Near or Far). 

Formulating global goal-seeking behavior motivates 

pedestrians to walk in the direction of the goal. The decision 

maker reduces his speed and turns sharply towards the target 

without missing it when the pedestrian approaches the exit but 

does not face it. On the contrary, facing the target, he moves 

freely in the direction of the target at a high (fast) speed. 

With this method, the decision maker first scans the sectors, 

which indicate distant internal obstacles, external obstacles 

(boundaries), and blocked pedestrians, in which case he adds 

to the list of decisions "gsb" (goal-seeking behavior) to move 

to a direction specified by the expression 

abs(self.get_angle(self.position,sp)-self.get_angle 
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(self.position, goal_position)) with fast movement speed. 

If the obstacle is of some kind, the decision maker checks if 

that kind is going in the opposite direction and then adds to the 

decisions the same angle of movement direction but stops 

moving otherwise he will add fast as the movement speed. 

 

def goal_seeking_behavior(self, distance_perceptions): 

    gsb = [(sp, sp.distance(goal_position), 

                abs(self.get_angle(self.position, sp) - 

                self.get_angle(self.position, goal_position)),  

               "Fast")  for (x, (sp, od, k)) in  

                enumerate(distance_perceptions)  

                if od == "Far" and (k == -1 or (k != -1 and  

               Pedestrians[k].Blocked))] 

    gsb = gsb + [(sp, sp.distance(goal_position),  

                         abs(self.get_angle(self.position, sp)- 

                         self.get_angle(self.position,  

                         goal_position)), "Slow")  

                         for (x, (sp, od, k)) in enumerate    

                         (distance_perceptions)  

                         if od == "Far" and k != -1 and not  

                            Pedestrians[k]. Blocked and 

                            self.opposite(self.perceiveDirection( 

                                     self.get_angle(sp, goal_position)),                     

                            Pedestrians[k].direction)]  

    gsb = gsb + [(sp, sp.distance(goal_position),  

                         abs(self.get_angle(self.position, sp)- 

                         self.get_angle(self.position,  

                                                 goal_position)), "Fast")   

                         for (x, (sp, od, k)) in   

                                      enumerate(distance_perceptions)  

                          if od == "Far" and k != -1 and not  

                              Pedestrians[k].Blocked and not  

                              self.opposite(self.perceiveDirection( 

                                                                self.get_angle(sp, 

                                                                goal_position)),  

                                                   Pedestrians[k].direction)] 

    return [{'index':(alpha * d + beta * a)/ 

                        (alpha+beta), 'sp':sp, 'speed':speed} 

 

If the decision maker cannot find a sector position (the list 

new_positions is empty) to seek the goal, which means he is 

surrounded by obstacles from all the directions defined by the 

sectors of his visual field, then the obstacle-avoiding behavior 

must be invoked, which is defined with the method 

obstacle_avoiding_behavior(self, distance_perceptions), to 

avoid frontal obstacles because the distances between decision 

maker and the obstacles are close at the local scope.  

This method is called because all obstacles are close to 

pedestrians, in which case he checks if one of the obstacles is 

some kind. In the code, the decision maker adds to the list 

"pab" (pedestrian (obstacle)-avoiding behavior), the decision 

to follow the direction, which is calculated by the following 

expression. The absolute value of the angle between the sector 

position (from which the decision maker has observed a kind 

walking in his direction) and the goal minus the angle between 

the decision maker and the goal, at a slow speed in motion. 

If the kind is going in the opposite direction, the resolution 

to add has the same direction as above but with a stop moving 

until future simulation steps.  

If no kind is an obstacle, then all the obstacles are internal 

or external obstacles, which puts the decision maker in a state 

of blocking (see the method of behavior) and then cannot be 

evacuated (i.e., access to the exit). 

def obstacle_avoiding_behavior(self,  

                                                    distance_perceptions): 

    oab = [(sp, k) for (x, (sp, od, k)) in enumerate  

               (distance_ perceptions)  

    if od == "Near" and k != -1 and not  

       Pedestrians[k].Blocked]  

    new_positions = [] 

    if oab != []: 

        pab = [(sp, sp.distance(goal_position),  

                    abs(self.get_angle 

                  (self.position, sp) self.get_angle(self.position, 

                   goal_position)), "Slow")  for (x, (sp, k)) in  

                        enumerate(oab) if not Pedestrians[k]. 

                               GoalReached and  not self.opposite( 

                               self.perceiveDirection( 

                                    self.get_angle(sp, goal_position)),  

                               Pedestrians[k].direction)]  

        pab = pab + [(sp, sp.distance(goal_position),  

                             abs(self.get_angle(self.position, sp) –  

                             self.get_angle (self.position,  

                                                     goal_position)), "Stop")   

       for (x, (sp, k)) in enumerate(oab) if not  

                                      Pedestrians[k]. GoalReached and 

                                  self.opposite(self.perceiveDirection( 

                                     self.get_angle(sp, goal_position)), 

                                     Pedestrians[k].direction)]  

        new_positions = [{'index':(alpha * d + beta * a)/ 

                                   (alpha+beta), 'sp':sp, 'speed':speed}  

                        for (i, (sp, d, a, speed)) in enumerate(pab)] 

    return new_positions 

 

The definition of obstacle-avoiding behavior is the tendency 

of a pedestrian to shift direction gradually and smoothly as 

opposed to abruptly. Because of this, if there is an identical 

pedestrian-obstacle distance in every sector, the code is built 

so that pedestrians will generally go in the same direction. 

This crowd evacuation model is described by a way that can 

help analysis of its simulation results using a method by which 

we can change parameters like space dimensions, number of 

sectors of visual field, weighting parameters, numbers of 

obstacles, shape of each obstacle, number of pedestrians, etc. 

Some values of these parameters can make the model more 

complex and then its simulation more time and space 

consuming. 

 

 

4. MODEL VALIDATION AND SIMULATION 

 

This model of crowd evacuation must be validated before 

running the simulation (i.e. executing the Python code). The 

model is validated by animating the behavior of a small 

number of pedestrians in the physical space to understand their 

movements.  

The function do_animation() below, can be called for 

generating animation data from the model simulation, then 

generating animation by calling the partial function animate() 

using the Python functional tools. 

The result of the animation is saved as an animated GIF 

(Graphics Interchange Format) file to be displayed to check 

pedestrian behaviors. 

 

def animate(i, ax, animation_data): 

    ax.clear() 

    for p in range(len(Pedestrians)): 
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        ax.plot(animation_data[p][i].x,  

                    animation_data[p][i].y, color=’green’,  

                    label=’original’, marker=’o’) 

        ax.annotate(f”({p})”, (animation_data[p][i].x, 

                           animation_data[p][i].y), textcoords =  

                           ”offset points”, xytext=(0,10),  

                            ha=’center’) 

    plot_physical_space(ax) 

 

The generate_animation_data(n) function is used to 

generate animation data from the initial state of a number of 

pedestrians to their last state, in which all pedestrians have 

reached the goal (exit) position or entered the blocking state. 

 

def do_animation(): 

    fig, ax = plt.subplots(1,1) 

    plt.ylim(-SpaceLength/2-200,SpaceLength/2+200) 

    plt.xlim(-SpaceWidth/2-200,SpaceWidth/2+200) 

    animation_data = generate_animation_data() 

    ani = FuncAnimation(fig, functools.partial(animate,  

                           ax = ax,  

                           animation_data = animation_data),  

                 frames =  len(animation_data[0]),   

                 interval=500, repeat=False) 

    # Save the animation as an animated GIF 

    ani.save("animation.gif", dpi=100, writer=   

                   PillowWriter(fps=1))  

    fig.savefig("animationEnd.png") 

 

The animation function below can be called to clear the 

previous state and plot the new state after one step to move all 

the pedestrians. In the plots, all pedestrians represented by 

their location points are annotated with the associated numbers. 

 

def generate_animation_data(): 

    animation_data = [[] for _ in Pedestrians] 

    for p in range(len(Pedestrians)): 

        animation_data[p].append(Pedestrians[p].position) 

    plot_for_animation(animation_data,  

                                    "animationStart.png") 

    while not pedestrians_behavior_done(): 

        for p in range(len(Pedestrians)): 

           Pedestrians[p].behavior() 

           animation_data[p].append(Pedestrians[p].position) 

    return animation_data 

 

Figure 1(a) shows the initial state of the distribution of all 

pedestrians (in green) annotated by their numbers in the 

physical space. The obstacles are colored red and the exit (goal) 

is a green line at the bottom. 

 

 
(a) Initial state 

 
(b) Final state 

 

Figure 1. Animation with graphical information format file 

 

When we open the GIF file, we see the animation of the 

pedestrians’ movements from this initial state to the last state 

shown in Figure 1(b). In this latter case, we observe that all 

pedestrians have reached the goal. 

 

 
(a) Initial distribution 

 
(b) Final state 

 

Figure 2. Simulation of the crowd evacuation model 

 

This model of crowd evacuation is being tested extensively 

to verify how pedestrians avoid obstacles and borders, their 

kinds, and how they change direction and update their speeds 

to reach the goal. After this verification process, which helped 

us fix many bugs in particular errors of pedestrians behaviour, 

a simulation can be launched with a large number of 

pedestrians and obstacles. 

Python code has been written to run the simulation, in which 

several results can be tracked for performance evaluation in 

Section 5. Figure 2(a) shows the initial randomization of the 

100-pedestrian crowd in blue and the inner and outer obstacles 
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in red. For this simulation, every pedestrian is moving in the 

direction of the exit at the required speed until the final stop 

shown in subgraph (b) of Figure 2 after the simulation is 

terminated. For performance evaluation, this crowd 

evacuation model was simulated on different parameter values. 
 

 

5. EXPERIMENTS AND PERFORMANCE 

EVALUATION 
 

The evaluation of the performance of this crowd evacuation 

analysis using the simulation of the model described in Section 

3, is based on an assessment of the scalability over crowds of 

large sizes, which must adhere to the pedestrian randomization 

composed of crowds and obstacles. Therefore, the evaluation 

will measure trade-offs between scalability and pedestrian 

randomization. 

The performance evaluation is based on a set of metrics. The 

first metric is the effectiveness of the crowd evacuation, which 

is the ability to evacuate as many pedestrians as possible. The 

degree of effectiveness of crowd evacuation is measured in 

terms of the percentage of pedestrians 𝑅 who reach goal by 

model simulation on the total number of pedestrians 𝑁 

(𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑅/𝑁 ∗ 100%).  

The evacuation of the crowd is effective if all the 

pedestrians that make up the crowd have reached the goal 

(exit).  

The second metric is the efficiency of crowd evacuation, 

which is the ability to evacuate an intended number of 

pedestrians with the least pedestrian energy, which is 

expressed as follows:  

If we express the total number of pedestrian movements by 

𝑁𝑀 (pedestrian movement is the movement after updating its 

state in direction and speed, used to measure the pedestrian 

dynamics and velocity-density relationship), the total distance 

traveled by all pedestrians to reach the goal by 𝐷. 

Then the efficiency degree is 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ((𝑁/𝑁𝑀 +

𝐼𝐷/𝐷) ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) ∗ 100% , where 𝐼𝐷  is the ideal total 

distance from the initial positions of the pedestrians to the goal 

position, and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦  is the model density, which 

is  𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑁 + ∑𝑃𝑂)/𝑁𝑃 , where  ∑𝑃𝑂  is the total 

number of positions occupied by internal obstacles and 𝑁𝑃 is 

the total number of associated positions by physical space. 

The third metric is the total time 𝑇 spent by all pedestrians 

to reach the goal or stop moving. In addition to these metrics, 

there is a common metric of evacuation performance that 

measures evacuation time and effectiveness/efficiency [31] 

together to help assess potential trade-offs between evacuation 

time and evacuation capacity, as well as overall crowd 

evacuation performance. 

To measure these performance metrics, several experiments 

must be done using model simulation for evacuating large 

crowds. So, we need to be able to vary the number of 

pedestrians, and see how it scales. We randomly created a 

physical space (a square hall), which is composed of 10 

internal obstacles that have different shapes.  

We have achieved eight experiments (𝑒 = 1, … ,8), in which 

the eight diverse crowds were randomly distributed in the hall 

consisting of 20, 40, 60, 80, 100, 120, 140, and 160 pedestrians, 

respectively, to be evacuated from the single exit (goal) with a 

specified width. 

The model simulations were run on a laptop running 

Windows 10 (64 bits) with an Intel (R) Core (TM) i5-4210U 

CPU clocked at 1.70 GHz and 8 GB of RAM. 

The experiments by model simulations are to see if we can 

evacuate these large-scale crowds from the physical space and 

to measure its effectiveness and efficiency. 

Table 1 shows for each experiment  𝑒 , the number of 

pedestrians 𝑁 composing the crowd, the model 

density  𝐷𝑒𝑛𝑠𝑖𝑡𝑦 , the total number 𝑅  of the pedestrians 

reached the goal, the total number of pedestrians’ 

movements  𝑁𝑀 , the total distance 𝐷  traveled by the 

pedestrians before reaching the goal or stopping the movement, 

the ideal distance 𝐼𝐷, the total time spent by all the pedestrians 

during their movements 𝑇  in seconds, crowd evacuation 

effectiveness 𝐸𝑆 and efficiency 𝐸𝑌. 

The results showed that almost all pedestrians reached the 

goal (exit) location and there was a proportional increase in the 

number of simulation steps (number of movements) and 

simulation time with increasing number of pedestrians (model 

intensity). These results are consistent with those of previous 

researchers [32, 33]. 

Figure 3 shows that the total number of movements and the 

total distance traveled obviously increase with the increase in 

density (the number of pedestrians in the physical space), 

causing the average velocity to decrease until the crowd almost 

reaches a steady state when the density exceeds a critical 

condition. 

However, if the density is at an acceptable level, the 

pedestrian will move at the desired speed due to sufficient 

space and slight influences from other pedestrians. These 

results are consistent with what was expected from the model 

description. 

 

Table 1. Experimental results 

 

Experiment 
N. of 

Pedestrians 
Density 

N. of reached 

Goal 

N. of 

Movements 

Travelled 

Distance 

Ideal T. 

Distance 
T (seconds) Effectiveness Efficiency 

e=1 20 12.0% 20 359 71554.5 61784.67 7.65 100.0% 85.94% 
e=2 40 24.0% 39 680 135547.5 109938.96 18.52 97.5% 80.73% 

e=3 60 36.0% 60 1015 198974.0 150560.28 31.31 100.0% 75.31% 

e=4 80 48.0% 80 1260 245035.0 193382.25 44.46 100.0% 78.55% 
e=5 100 60.0% 100 1600 315699.5 236088.38 67.29 100.0% 74.44% 

e=6 120 72.0% 119 1825 360660.0 256611.76 80.78 99.17% 70.83% 

e=7 140 84.0% 138 1985 390559.0 291358.11 99.03 98.57% 74.26% 
e=8 160 96.0% 159 2258 441845.0 334681.13 121.38 99.38% 75.4% 
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Figure 3. Density relationships of average speed (left), total number of moves (center) and total distance traveled (right) 

 
 

Figure 4. Performance evaluation 

 

It is important to evaluate the overall performance of the 

crowd evacuation model by combining the metric results 

above. The metric 𝐹𝑒 (F-Score of combining effectiveness and 

efficiency) is used to calculate the trade-off between crowd 

evacuation effectiveness 𝐸𝑆 and efficiency 𝐸𝑌 (Eq. (1)). 

 
2

2

( 1) e e
e

e e

EY ES
F

EY ES





+  
=

 
 (1) 

 

In the preceding formula, 𝐸𝑌𝑒  and 𝐸𝑆𝑒  (∈ [0,1]) represent 

the experiment (𝑒)  model simulation efficiency and 

effectiveness, respectively. Consequently, the relative 

weighting between them is ascertained using this formula. We 

employ the metric in addition to computing the crowd 

evacuation model performance 𝑃𝑒  (Precision of experiment) 

for the experiment 𝑒 (Eq. (2)). 
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In the formula, 𝑇𝑒 is the simulation time (seconds) for the 

experiment  𝑒 . The number 𝑁𝑒  is the total number of 

pedestrians. To allow for comparison of the metric values 

across experiments of different sizes, we use the simulation 

time per pedestrians number (i.e. 𝑇𝑒/𝑁𝑒) in the calculation.  

To distinguish between the experiment results over different 

sizes, two control parameters 𝛾 (called the slope) and 𝛿 (called 

the shift) are used. Their values are chosen to make 𝑃𝑒 (the fast 

model simulation with respect to  𝑁𝑒 ) close enough to one 

(above 0.99). For these experiments, 𝛾 = 2 and 𝛿 = 5.  

The overall performance metric 𝑂𝑃  (F-Score of P and F 

combination) rewards the model simulation when it makes 

pedestrians reach the goal faster, more efficiency and more 

effectively and it is defined as a composite metric of 

simulation time, efficiency and effectiveness for each 

experiment 𝑒, where 𝑒 = 1, ⋯ , 8 as in the following (Eq. (3)). 
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The values of 𝛽 and 𝛼 are set to 1, which means the weights 

of crowd evacuation efficiency and effectiveness are equal, 

and the weight of model simulation time against the weight of 

efficiency and effectiveness are also equal.  

Figure 4 shows the results of the overall performance metric 

𝑂𝑃  of the model simulation that is calculated for each 

experiment. The trade-off between the efficiency and 

effectiveness of crowd evacuation, is more than 80%, with an 

overall performance of more than 90%, and the evacuation 

performance is almost perfect, which is more than 99%. 

The aggregate results show that the model simulation runs 

extremely smoothly across the board for every experiment. 

These numerical findings, displayed in Figure 4, aid in our 

comprehension of our model's overall effectiveness in crowd 

evacuation. 

 

 

6. CONCLUSIONS AND PERSPECTIVES 
 

We have presented a description with the Python language 

of a model for the simulation of  the evacuation of crowds 
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located in physical spaces with dangerous situations. The 

behavior of the pedestrians composing this model is described 

using the technique of artificial intelligence, especially the 

perception of numerical quantities such as distances, angles of 

direction and speeds of movement which transform by nature 

into qualitative quantities for human reasoning. 

Before the simulation, this model was validated using an 

animation (an animated execution) which helped us to fix 

several errors, especially in the description part of pedestrian 

behavior. The simulation results are analyzed to evaluate the 

performance of this model. We obtained a good compromise 

between its effectiveness and its efficiency. These 

performance analysis results are very promising for future 

prospects. 

The first perspective is to vary the behavior of pedestrians 

according to characteristics such as gender, age, whether they 

have diseases, etc. The second perspective is to automate the 

description of physical spaces. The input to this automation 

will be images on the physical spaces and through the object 

detection technique we can have their descriptions. The third 

perspective is to use artificial intelligence to predict pedestrian 

behavior. 
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