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 This paper aims to develop a clustering method that need not predefine the number of clusters 

or incur a high computing cost. For this purpose, Dirichlet Process Mixture Model (DPMM) 

which based on nonparametric Bayesian method was introduced. Three datasets, from simple 

to complex, were selected for experiment. The results of the first two datasets showed that the 

DPMM is highly flexible and reliable, because it did not need to know the number of clusters 

in advance and had robustness for different rational parameters. However, the DPMM failed 

to achieve desirable results in the third dataset. To overcome the limitation of one-time DPMM 

clustering on complex datasets, the notion of hierarchical clustering was adopted to form the 

hierarchical DPMM algorithm, which outputted better clustering results than DPMM. In this 

paper, the rules of selecting parameters and the algorithm of hierarchical DPMM are provided 

for the effective using of DPMM. 
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1. INTRODUCTION 

 

Clustering is an important unsupervised method of data 

analyzing. The classic clustering algorithms fall into K-means 

algorithms [1, 2], finite mixture models and density-based 

methods. The first two categories require the estimation of the 

number of clusters in the dataset. One of the typical density-

based methods is clustering by fast search and find of density 

peaks (CFDP) [3], which is good at locating the center point 

of big clusters. However, the location performance is realized 

at the cost of heavy computing resources. Several attempts [4, 

5] have been made to reduce its computing cost and enhance 

its efficiency. Against this backdrop, it is necessary to develop 

a clustering method that need not predefine the number of 

clusters or incur a high computing cost.  

The Dirichlet process mixture model (DPMM) [6-10] offers 

a good basis to design such a clustering method. DPMM is an 

infinite mixture model which bases on probability distribution 

and does not have a certain form. The realization of DPMM 

requires the method of nonparametric Bayesian. To be specific, 

it relies on Bayesian analysis to figure out the conjugate 

equation of posterior, and then through sampling, 

nonparametric means, to obtain the clustering result. 

Much research has been done to modify and improve the 

DPMM. For instance, Reference [11] solves the maximum a 

posteriori probability (MAP) problem for the DPMM. 

Reference [12] improves the run-time efficiency of parallel 

Gibbs sampler of the DPMM. Reference [13] enhances the 

prediction performance of the DPMM by enriched Dirichlet 

process. Reference [14] develops a new R package for the 

DPMM, named PReMiuM. References [15-18] extend the 

application scope of the DPMM to many new areas.  

This paper aims to optimize the applicability of the DPMM 

for clustering operation. Firstly, the concepts and equations of 

the DPMM were introduced in details. Then, the effects of 

parameter estimation rules on result accuracy were 

investigated. Finally, a hierarchical DPMM algorithm was 

developed to solve the problems that cannot be handled simply 

through parameter adjustment. 

 

 

2. BASIC THEORY OF DPMM 

 

Clustering can be realized by the model based on 

probability distribution. It is assumed that the samples are 

from several different distributions, and each distribution 

represents a cluster. For the reason of building an infinite 

mixture model, DPMM adds a new layer of “distribution” onto 

these different distributions, forming a “distribution of 

distributions”. The additive “distribution” is the Dirichlet 

process (DP). The DPMM can be expressed as [19]: 

 

𝐺~𝐷𝑃(𝛼, 𝐻) 

𝜽𝑖~𝐺 

𝒙𝑖~𝐹(𝜽𝑖) 

 

Because DP cannot be directly applied to data analysis, the 

above model can be written as: 

 

𝝅~𝐺𝐸𝑀(𝛼) 

𝑧𝑖~𝝅 

𝜽𝑘~𝐻(𝝀) 

𝒙𝑖~𝐹(𝜽𝑧𝑖
) 

 

where 𝝅 ~ 𝐺𝐸𝑀(𝛼) represents: 

 

𝛽𝑘~𝐵𝑒𝑡𝑎(1, 𝛼) 

𝜋𝑘 = 𝛽𝑘 ∏(1 − 𝛽𝑙) = 𝛽𝑘(1 − ∑ 𝜋𝑙

𝑘−1

𝑙=1

)

𝑘−1

𝑙=1
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The model has some important equations form [19]: 

𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝒙, 𝛼, 𝝀)

∝ 𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝛼)𝑝(𝒙𝑖|𝒙−𝑖, 𝑧𝑖 = 𝑘, 𝒛−𝑖 , 𝝀)  (1) 

This equation was obtained by Bayesian Analysis. The left 

side is posterior, and the right side is the conjugate equation of 

it. For the first item from the right side of (1): 

𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝛼) =
𝑝(𝒛1:𝑁| 𝛼)

𝑝(𝒛−𝑖| 𝛼)

=
𝑁𝑘,−𝑖 +

𝛼
𝐾

𝑁 + 𝛼 − 1
 

because 

lim
𝐾→∞

𝑁𝑘,−𝑖 +
𝛼
𝐾

𝑁 + 𝛼 − 1
=

𝑁𝑘,−𝑖

𝑁 + 𝛼 − 1

and 

1 − ∑
𝑁𝑘,−𝑖

𝑁 + 𝛼 − 1
=

𝐾

𝑘=1

𝛼

𝑁 + 𝛼 − 1

𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝛼) =  {

𝑁𝑘,−𝑖

𝛼+𝑁−1
  Existing cluster

𝛼

𝛼+𝑁−1
      New cluster

 (1.1) 

And for the second item from the right side of (1): 

Then, combining (1.1) and (1.2) the function can be written 

as: 

𝑝(𝑧𝑖 = 𝑘|𝒛−𝑖 , 𝒙, 𝛼, 𝝀)  ∝  {

𝑁𝑘,−𝑖

𝛼+𝑁−1
𝑝(𝒙𝑖|𝐷𝑘,−𝑖)    Existing cluster

𝛼

𝛼+𝑁−1
𝑝(𝒙𝑖|𝝀)                  New cluster

 (2) 

where 𝐷𝑘,−𝑖 = {𝒙𝑗 ∶  𝑧𝑖 = 𝑘, 𝑗 ≠ 𝑖} , 𝑁𝑘,−𝑖  Is the number of

samples in 𝐷𝑘,−𝑖 .
After these calculations, because the model has no specific 

form of distributions, the clustering result need to be obtained 

by nonparametric means, Gibbs sampling, which can be 

referred from Reference [20]. 

For better understanding, (2) can be transformed into: 

{
𝑝(𝒙𝑖 ∈ 𝑐𝑘) =

𝑁𝑘,−𝑖

𝛼+𝑁−1
𝑝(𝒙𝑖|𝐷𝑘,−𝑖)   𝒙𝑖 belongs to existing cluster 𝑘

𝑝(𝒙𝑖 ∈ 𝑐𝑛𝑒𝑤) =
𝛼

𝛼+𝑁−1
𝑝(𝒙𝑖|𝝀)               𝒙𝑖 belongs to new cluster

 (3) 

where 𝒙𝑖  Means sample i; 𝑐𝑘  Means cluster k; 𝐷𝑘,−𝑖 =

{𝒙𝑗: 𝑧𝑖 = 𝑘, 𝑗 ≠ 𝑖}; 𝑁𝑘,−𝑖 Is the number of samples in cluster

𝑐𝑘 Without 𝒙𝑖; 𝝀 is the parameter of base distribution H.

The process of Gibbs sampling is shown below: 

Algorithm 1. Gibbs sampling for DPMM 

Input: raw dataset 

Begin 

Normalize and shuffle the raw dataset to get a new set. 

Initialize n samples as n different clusters. 

For each 𝒙𝑖 In the new set do:

Remove 𝒙𝑖 From its current cluster.

For each 𝑐𝑘 Do:

Compute 𝑝(𝒙𝑖 ∈ 𝑐𝑘)
End 

Compute 𝑝(𝒙𝑖 ∈ 𝑐𝑛𝑒𝑤)
Find the maximum 𝑝. 

If 𝑝𝑚𝑎𝑥 = 𝑝(𝒙𝑖 ∈ 𝑐𝑘)
Assign 𝒙𝑖 To cluster k.

Else 𝑝𝑚𝑎𝑥  = 𝑝(𝒙𝑖 ∈ 𝑐𝑛𝑒𝑤)
Assign 𝒙𝑖 To a new cluster.

End 

End 

End 

Output: the set of data marked by clusters’ number 

3. EXPERIMENT

In this section, three datasets were cited to demonstrate the 

clustering by the DPMM. The experiment was carried out on 

MATLAB R2018a (Win 64) in a computer running on 

Windows 10 (64bit) with Intel® Core™ i7-7700HQ Processor 

and 32GB RAM. 

3.1 Testing of simulated data 

The sample dataset was generated from three 2D-Gaussian 

distributions: Cluster 1 has 200 samples from 𝑁 ([−2 4], 𝐼), 

Cluster 2 has 100 samples from 𝑁 ([2 4], 𝐼) and Cluster 3 has 

50 samples form 𝑁 ([−2 0], 𝐼). The original point diagram 

and histogram are shown in Figure 1 below. 

Figure 1. Samples of three 2D-Gaussian distributions 
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𝑝(𝒙𝑖|𝒙−𝑖 , 𝑧𝑖 = 𝑘, 𝒛−𝑖 , 𝝀) =  {
𝑝(𝒙𝑖|𝐷𝑘,−𝑖)     𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑝(𝒙𝑖|𝝀)                   𝑁𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
 (1.2) 



 

In the left part of Figure 1, each cluster is marked in a 

different color. The Gaussian distribution was taken as the 

base distribution of the DPMM. Some settings are presented 

below: 

 
𝐻(𝝀) = 𝑁(0, 𝐼) 

𝝀 = {0, 𝐼} 

𝑝(𝒙𝑖|𝐷𝑘,−𝑖) = 𝑝(𝒙𝑖 , |𝒙𝑘,−𝑖 , 𝝀) =
𝑝(𝒙𝑖 , 𝒙𝑘,−𝑖|𝝀)

𝑝(𝒙𝑘,−𝑖|𝝀)
 

= ∫ 𝑝(𝒙𝑖|𝜽𝑘) 𝐻(𝜽𝑘|𝝀)𝑑𝜽𝑘 = 𝑁(𝒙𝑖|𝜽𝑘) 

𝑝(𝒙𝑖|𝝀) = ∫ 𝑝(𝒙𝑖|𝜽) 𝐻(𝜽|𝝀)𝑑𝜽 = 𝑁(𝒙𝑖|𝝀) 

 

𝜽𝑘 = 𝜽𝑘̂ = {
1

𝑛+1
∑ 𝒙𝑖

𝑛𝑘
𝑖=1 , 𝐼} , biased estimation of mean,  𝒙𝑖 ∈

{𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘}. 

Because 𝑃(𝒙𝑖 ∈ [𝜇 − 3𝜎, 𝜇 + 3𝜎]) ≈ 99.731 %  in 

Gaussian distribution, each dimension was normalized into the 

interval [-3, 3]. Then, the clustering results at α=0.100 and 

H(λ)=N(0, I) were obtained (Figure 2). 

The results show that the DPMM automatically divided the 

sample dataset into three clusters at the accuracy of 95.430 %. 

Five iterations were completed before the convergence. The 

parameters estimated from the results are displayed in Table 1 

below. It can be seen that the estimated parameters were close 

to the real parameters. 

 

 

 
 

Figure 2. Results of DPMM 

 

Table 1. Estimated parameters and statistics of the result 

 
Cluster 

number 

Mean of dimension 

1 

Mean of dimension 

2 

Variance of dimension 

1 

Variance of dimension 

2 

The number of 

elements 

1 -1.981 3.858 0.962 1.310 214 

2 2.220 3.913 0.876 1.141 95 

3 -2.083 -0.420 0.860 0.446 41 

 

3.2 Rules of parameters 

 

To begin with, a dataset was cited from Reference [23]. 

Then, the data were normalized into the ranges [-3, 3], [-5, 5] 

and [-7, 7]. Next, the clustering results of different ranges at 

α=0.100 and H(λ)=N(0,I) were obtained (Figure 3). 

 

 
Normalizing range [-3, 3] 

 
Normalizing range [-5, 5] 

 
Normalizing range [-7, 7] 

 

Figure 3. Result of different normalizing ranges with fixed α 

 

Figure 3 reveals an interesting rule that the normalizing 

range is positively correlated with the number of clusters. To 

observe the impact of α, the clustering was performed at 

different values of α but a fixed normalizing range [-5, 5]. The 

clustering results are shown in Figure 4. 

As shown in Figure 4, the number of clusters will be 

increased by the increasing of α. And a smaller α performs 

better than a larger one, for a large α can generate a lot of 

single-point clusters. Thus, to optimize the clustering result, 

more emphasis should be put on the normalizing range than α, 

and the latter should be kept at a relatively small value. When 

normalizing range is [-5, 5] and α=0.100 or α=0.001, each 

cluster can be marked accurately in different colors, that is, the 

results are optimized under these two pairs of parameters. In 
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addition, the optimized results also reflect model’s robustness 

for different parameters at the same time. 

 

 
α=0.001 

 
α=1 

 
α=1000 

 

Figure 4. Result of different α with fixed normalizing range 

 

As can be seen from Table 2, the mean of each cluster is 

successfully found, which can represent the center of each 

cluster. 

The above phenomenon can be explained by the rules 

derived from equation (3). The value of 𝑝(𝒙𝑖 ∈ 𝑐𝑛𝑒𝑤) will be 

increased by the growing of α significantly. This is why a large 

α can lead to a lot of single-point clusters in the result. When 

the normalizing range is enlarged, the value of 𝑝(𝒙𝑖|𝜽𝑘̂) for 

the point far from the center of some existing big clusters will 

be very small, thus the point has more possibility to fall into 

the nearest cluster than one big cluster. 

 

Table 2. Estimated parameters and statistics of the best result 

 
Cluster 

number 

Mean of 

dimension 1 

Mean of 

dimension 2 

Variance of 

dimension 1 

Variance of 

dimension 2 

The number 

of elements 

1 17.420 7.180 13.821 7.751 273 

2 9.367 22.952 8.290 11.894 170 

3 32.695 22.138 3.512 9.828 128 

4 33.143 8.793 3.405 8.296 104 

5 21.543 23.003 3.090 1.375 45 

6 7.282 11.810 1.477 1.037 34 

7 6.517 3.541 1.115 0.715 34 

 

3.3 Hierarchical Dirichlet process mixture model 

 

The data set in this part is from Reference [22]. It contains 

31 clusters and each cluster has 100 elements. In this sub-

section, H(λ)=N(0,I) is still the setting. Firstly, trying range [-

5, 5], [-25, 25] and α=0.001. The clustering results are plotted 

in Figure 5 below. 

From Figure 5, there are a lot of undivided clusters for each 

result. And the second result has too many erroneous small 

clusters after the normalizing range was increased largely. 

Thus, continually enlarging the normalizing range goes into 

invalid for this dataset.  

 

 

 
Normalizing range [-5, 5] 
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Normalizing range [-25, 25] 

 

Figure 5. Clustering result of different normalizing range 

with fixed α 

 

To solve this problem, these inaccurate big clusters need to 

be break into several precise small clusters. Here, an algorithm 

which combines DPMM with the notion of Hierarchical 

Clustering is raised. The algorithm of Hierarchical DPMM is 

shown below. 

 
Algorithm 2. Recursion algorithm of Hierarchical DPMM 

Input: dataset 

Begin 

 do Algorithm 1 for data set and get a set of clusters 

𝑪 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑠𝑒𝑡)  
 if size of 𝑪 equals to 1 

  do nothing 

 else 

 for each 𝒄𝑖 in 𝑪 do: 

if size of 𝒄𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

   do Algorithm 2 for 𝒄𝑖 

end 

end 

 end 

End 

Output: the set of data marked by clusters’ number 

In this algorithm, one condition for ending the recursion 

loop is that the size of clustering result equals to one, which 

means the cluster cannot be separated if it is accurate. 

However, because the optimal normalizing range and α are 

different for each cluster’s re-clustering, a constant pair of 

parameters will lead to the inaccurate dividing in the recursion 

loop. As the result, Algorithm 1 needs a method that can 

dynamically produce reasonable parameters for different 

cluster. 

Aiming at the data of this section, two-step normalization is 

a good way to generate parameters dynamically. First, the 

original data were normalized to the range [-halfRange, 

halfRange]. Then, the minimum variance of each dimension 

was obtained, and taken as the newHalfRange. Finally, the 

data was normalized again into the range [-newHalfRange, 

newHalfRange]. The algorithm is shown as below. 

 

Algorithm 3. Two-step Normalization 

Input: dataset 

Begin 

 normalize the dataset into the range 
[−ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒, ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒] to get newSet 

 for each column 𝑐𝑜𝑙𝑗in newSet do: 

  𝜎𝑗
2 =

∑ (𝑥𝑖𝑗−𝜇𝑗)2𝑁
𝑖=1

𝑁
 

 end 

 find the minimum variance 𝜎𝑚𝑖𝑛
2  

 normalize the newSet into the range [−𝜎𝑚𝑖𝑛
2 , 𝜎𝑚𝑖𝑛

2 ] 
End 

Output: two-step normalized newSet 

 

Another condition to end the recursion loop is a setting of 

threshold as the minimum number of elements for every 

cluster. If the amount of points in one cluster is smaller than 

the threshold, this cluster does not need dividing. 

For the case of this section, setting 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 200 , 

ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 = 3.800  and 𝛼 = 0.025 × ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 . The 

result of Hierarchical DPMM is shown as follows: 

 

 

 
Figure 6. Clustering results of hierarchical DPMM 
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Table 3. Estimated parameters and statistics of first ten clusters 

 
Cluster 

number 

Mean of 

dimension 1 

Mean of 

dimension 2 

Variance of 

dimension 1 

Variance of 

dimension 2 

The number 

of elements 

1 5.640 20.084 1.270 0.671 118 

2 24.963 24.218 0.948 0.482 110 

3 14.170 26.633 0.897 0.678 108 

4 17.510 11.691 0.552 0.657 107 

5 22.106 5.620 0.531 0.580 104 

6 25.191 27.827 0.821 0.709 102 

7 15.401 21.940 0.478 0.565 101 

8 11.692 14.428 0.543 0.528 101 

9 11.368 8.337 0.553 0.539 101 

10 25.568 6.060 0.646 0.637 101 

The 31 clusters in Figure 6 share similar sizes, except one 

cluster with only 23 samples. The results of hierarchical 

DPMM were much better than those of the DPMM and close 

to the clusters of real dataset. The estimated parameters of the 

first ten clusters are listed in Table 3, where the mean value is 

the center of each cluster. 

 

 

4. CONCLUSIONS 

 

From equation (1) to Algorithm 1, this paper provides one 

path for the realization of the DPMM. Next, three examples 

were cited to verify the clustering ability of the DPMM 

algorithm. In the first example, the clustering accuracy 

reached 95.430 %, and the number of clusters equaled the 

setting of simulated data. In the second example, the results 

could be optimized by parameter adjustment, and the 

normalizing range had more influence on the results than α. In 

the third example, the DPMM failed to provide accurate 

results, while the clustering results of hierarchical DPMM 

were close to the dataset setting. Overall, the three examples 

can prove the flexibility of the DPMM and the excellent 

clustering effect of hierarchical DPMM. of course, the 

hierarchical DPMM also faces the dissimilarity of each sub-

cluster in optimal parameters (i.e. normalizing range and α). 

Thus, the future research will look for a self-adaption method 

to provide faithful parameters for the DPMM. 
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