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This research aimed to classify soils using data mining techniques in accordance with 

the unified soil classification system (USCS). Data were collated via certified soil 

mechanics studies and laboratory data collection sheets, providing a comprehensive 

matrix that reflects various soil properties as categorized by the USCS. The USCS 

system categorizes soils based on physical properties such as particle size and plasticity. 

The methodology employed was knowledge discovery in databases (KDD), executed 

in distinct phases. In the selection phase, influential variables for soil type were 

identified, with gravel, sand, plasticity index, and maximum dry density offering the 

most significant information. During the processing phase, anomalous and duplicate 

data were purged using various Python libraries. In the transformation phase, the 

variables were condensed by proposing five models. Lastly, during the data mining 

phase, classification algorithms such as k-nearest neighbors, support vector machine, 

decision trees, and random forest were implemented from the Scikit-learn library 1.1.2. 

These algorithms achieved accuracy levels of 68.22%, 73.83%, 84.11%, and 69.16% 

respectively. The decision trees algorithm, combined with the PL_03 model, predicted 

soil type with a reliability exceeding 84%. The implemented model is expected to assist 

engineers in making informed and precise decisions. 
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1. INTRODUCTION

Soil classification systems serve as a common language 

among engineers, enabling them to categorize soils based on 

defining characteristics. Such classification is performed 

through a systematic approach, focusing on specific properties 

and usage criteria as stipulated by the American Society for 

Testing and Materials (ASTM). The physical and mechanical 

properties of the soil dictate its suitability for use as structural 

fill or foundation soil [1]. A comprehensive understanding of 

soil classification thus furnishes professionals with insights 

into its predicted behavior [2]. 

In the realm of civil engineering, the Unified Soil 

Classification System (USCS) and the American Association 

of State Highway and Transportation Officials (AASHTO) 

approach are commonly employed. Both methodologies hinge 

on granulometry and Atterberg limits, fundamental elements 

in soil characterization. Granulometry provides an 

understanding of the particle size distribution within the soil, 

thereby identifying the relative proportions of sand, silt, and 

clay. Conversely, Atterberg limits signify three specific 

moisture content points at which the soil's behavior alters: the 

liquid limit, the plastic limit, and the shrinkage limit. These 

limits inform about the soil's plasticity and water retention 

capacity [3]. 

The USCS classification process commences with soil 

sampling from the study area, after which the samples undergo 

laboratory testing. Granulometric analysis separates the 

sample into distinct sizes (sand, silt, and clay), determining the 

percentage of each fraction. Concurrently, Atterberg limit tests 

ascertain the liquid, plastic, and shrinkage limits, offering 

insights into soil plasticity and its response to water content 

variations. The outcomes of these tests feed into a flow 

diagram, with soils coded by symbols and letters indicating 

their characteristics. 

Given its pivotal role in the design and execution of 

infrastructure projects, accurate soil classification holds 

immense value in civil and geotechnical engineering. 

Consequently, advancements in classification systems 

utilizing novel methodologies can significantly enhance the 

precision and efficiency of geotechnical analysis and design. 

In light of this, the current research proposes a novel 

classification method employing data mining techniques to 

analyze and extract patterns and relationships within soil 

property data. This approach enables soil classification in line 

with the criteria set by the USCS system. Data mining, a 

technique adept at uncovering patterns and relationships 

within large datasets, is particularly beneficial when analyzing 

and categorizing numerous soil samples with various 

characteristics. The applied data mining algorithms, namely 

support vector machine, random forest, k-nearest neighbors, 

and decision trees, identify intricate relationships between the 
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physical and mechanical properties of soils. 

The study utilizes artificial intelligence (AI) techniques 

centered on data mining. It applies soil classification 

algorithms for engineering purposes to enhance and automate 

the soil classification process by integrating data mining with 

the USCS. This approach expedites the determination of soil 

categories based on their properties, offering a more efficient 

method. Such advancements bear significant practical 

implications for civil and geotechnical engineering, where 

accurate soil classification is essential for effective decision-

making in construction and infrastructure projects. 

Additionally, this methodology may reveal patterns and 

relationships that could potentially remain undetected in 

manual analysis, thereby enriching our understanding of soil 

characteristics and behavior across varying conditions and 

locations. 
 

 

2. LITERATURE REVIEW 

 

The intersection of data mining and expert systems has been 

explored extensively in the literature, with various authors 

employing these techniques to address soil classification and 

related concerns. Bui et al. [4], for instance, utilized data 

mining to construct models of soil property distribution in 

mainland Australia. A linear decision tree model was 

developed, integrating 19 variables derived from the area's 

edaphoclimatic traits. Arce [1] presented an alternative 

approach with the creation of software for soil classification, 

integrating physical-mechanical soil property data. The 

methodology underpinning the software included the 

identification of static equations and dynamic variables for 

each method, implemented based on algorithms established by 

the SUCS and AASHTHO systems. 

Data mining algorithms have been harnessed to address a 

variety of engineering problems, as evidenced by the works of 

several authors. Javadi and Rezania [5] implemented neural 

networks and data mining to model soil behavior. In contrast, 

Palomino Ojeda and Rosario Bocanegra [6] applied data 

mining techniques to estimate seismic vulnerability. 

Hernández Pereira and Medina González [7] employed data 

assimilation techniques to estimate soil moisture, while Cortés 

Henao [8] leveraged data mining methods for predictive 

maintenance of drinking water distribution networks. 

Over the past few years, the development of computational 

techniques for pattern recognition and data mining has gained 

momentum, driven by their potential to model diverse 

engineering problems. A core premise of pattern recognition 

systems is their adaptive learning capability, which allows 

them to generate predictions for new scenarios [5]. 

The field of data mining, which revolves around the 

unveiling of patterns and relationships within large databases, 

has its roots in artificial intelligence, machine learning, and 

pattern recognition literature. It is often associated with the 

concept of knowledge discovery in databases [4]. Additionally, 

data mining is perceived as the process of extracting 

knowledge from large datasets via algorithms that identify 

patterns integral to informed decision-making [9]. 
 

 

3. MATERIALS AND METHODS 

 

3.1 Soil classification 

 

Soil classification was performed according to ASTM 

standards to determine physical and mechanical properties. A 

representative sample of the soil was taken and air-dried to 

eliminate surface water content. Then the granulometric test 

(ASTM D 422) was performed using sieves of different sizes, 

weighing the fractions retained in each sieve. The results were 

expressed as cumulative percentages of retained weight as a 

function of particle size. The Atterberg liquid and plastic limit 

test (ASTM D4318) was then performed. For the liquid limit, 

a sample is taken that passes the 40 mesh sieve, and the soil is 

kneaded with water until a homogeneous paste is obtained, 

using the Casagrande cup, the sample is molded in the 

Cascador with the spatula and a groove of 2 mm is made along 

the sample, then it is rotated and the number of blows is noted 

until it closes at 13 mm, three repetitions are made for a 

different number of blows, at the end three samples are taken 

to determine the moisture content (ASTM D 2216). The plastic 

limit is carried out by taking a wet soil sample in the form of 

an ellipsoid and then rolling it with the fingers of the hand on 

a smooth surface with the pressure strictly necessary to form 

cylinders. If the cylinder has not crumbled before it reaches a 

diameter of about 3.2 mm (1/8"), it is turned back into an 

ellipsoid, and the process is repeated as many times as 

necessary until it crumbles to about that diameter. The portion 

obtained is placed on watch glasses until about 6g of soil is 

collected to determine its moisture content (ASTM D 2216). 
 

3.2 Algorithms 
 

Data mining is a set of tools designed for rapid, automated, 

and exploratory data analysis. These tools include decision 

trees, rule induction, inductive logic programming, k-nearest 

neighbors, clustering algorithms, neural networks, genetic 

algorithms, and Bayesian networks, among others [4]. 

The algorithms used in the research are k-nearest neighbors, 

support vector machine, decision trees, and random forest. 

K-nearest neighbors (KNN) is a nonparametric classifier 

that predicts the label of an entry by identifying its k nearest 

neighbors based on specified distance metrics, such as 

Euclidean distance or cosine similarity. It then determines the 

majority vote of the neighboring labels to assign the entry to a 

particular class [10]. It is often used for its simplicity and 

ability to obtain faster results, unlike other methods by storing 

a set of prototypes representing the knowledge of the problem 

[5]. Based on the idea that patterns closer to a target pattern x', 

provide more information about the label. KNN assigns the 

class label of most patterns closest to K the data space. This 

metric is used to calculate the distance or similarity between 

data points. Choosing an appropriate distance metric is critical 

because it determines how close or similar two data points are 

in the feature space. In this Rq, it is reasonable to employ the 

Minkowski metric (p-norm) corresponding to the Euclidean 

distance p=2. In other data spaces, we have to choose suitable 

distance functions, e.g., the Hamming distance in Bq. In the 

case of binary classification, the label set y={1, -1} is used, 

and the KNN is defined as with neighborhood size K and with 

the index set 𝑁𝐾(𝑥′) of the K nearest patterns see Eq. (1) and 

Eq. (2). It is recommended to employ a value K=5 in the 

models because it produces the best performance with a low 

standard deviation between K=1, 2, ..., 20 [11]. 
 

‖𝑥′ − 𝑥𝑗‖
𝑝

= (∑ |(𝑥𝑖)′ − (𝑥𝑖)𝑗|
𝑝𝑞

𝑖=1 )
1/𝑝

  (1) 

 

𝑓𝐾𝑁𝑁(𝑋′) = {
1 if ∑ 𝑖 ∈ 𝑁𝐾(𝑥′) 𝑦𝑖 ≥ 0

−1 if ∑ 𝑖 ∈ 𝑁𝐾(𝑥′)
𝑦𝑖

< 0
  (2) 
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Support vector machine (SVM) is a method used in various 

fields such as object classification, face recognition, and text 

categorization. SVM aims to find an optimal hyperplane that 

best separates data points of different classes in the feature 

space [12]. 

The SVM training procedure for pattern recognition 

involves solving a quadratic optimization problem. The main 

goal of SVM is to find the optimal hyperplane that maximizes 

the distance between data points of different classes 

{(𝑥1, 𝑦1), . . . , (𝑥𝑖 , 𝑦𝑖)} , where 𝑥 ∈ 𝑅𝑁 , y ∈ {−1, 1}.  Kernel 

mapping is a technique used to identify training data from the 

input space to a higher dimensional feature space where the 

mapped training data can become linearly separable. This is 

particularly useful when working with data that is not linearly 

separable in the original feature space. 

Maximize: 
 

𝑊(𝛼)= ∑ 𝛼𝑖 −
1

2

𝑙
𝑖=1 ∑ ∑ 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗

𝑙
𝑖=1

𝑙
𝑖=1 𝐾(𝑋𝑖 . 𝑋𝑗)  (3) 

 

subject to ∑  𝛼𝑗𝑦𝑗 = 0𝑙
𝑖=1 . 

The decision function becomes: 

 

𝑓(𝑥) = 𝑠𝑛𝑔(∑ 𝛼𝑗𝑦𝑗𝐾(𝑋𝑖 , 𝑋) + 𝑏𝑙
𝑖=1 )  (4) 

 

Decision trees are classification and prediction techniques 

that can handle both numerical and nominal data. They are 

constructed in two stages: Induction and Pruning. During the 

induction phase, the tree is built by recursively partitioning the 

data according to features and selecting the best partitioning 

criterion at each node. On the other hand, in the pruning phase, 

excessive complexity is removed from the tree to improve its 

generalizability. The most commonly used decision tree 

algorithms are C4.5, ID3, CART, and J48 [13]. 

Random forest is a robust learning algorithm that uses 

multiple randomized decision trees and combines their 

predictions by averaging. Its operation consists of two phases: 

construction, where multiple decision trees are built using 

different training instances to ensure an accurate and less 

overfit model, and prediction, which is determined by 

averaging the results of each tree. Performance is evaluated 

based on several criteria, variations in classifier parameter 

values, sensitivity to noise, and changes in training size. To 

measure efficiency, they are compared to classification trees 

by analyzing the performance relative to classification trees 

[14]. 
 

3.3 Data matrix 
 

Soil classification information according to SUCS was 

collected using a data collection sheet, from different 

laboratories certified by the National Quality Institute 

(INACAL) and certified soil mechanics files. A total of 474 

soil classifications were obtained from 2018 to 2022, forming 

a data matrix of 474 instances and 9 variables. The variables 

collected were: gravel (GV), sand (AR), fines (FN), liquid 

limit (LL), plastic limit (LP), plasticity index (PI), maximum 

dry density (MDS), optimum moisture content (OCH), and 

soil type extracted from granulometry (ASTM D 422), 

Atterberg Limits (ASTM D4318), and Proctor (ASTM D1557) 

tests, see Figure 1 and Tables 1-2. For repeatability, each test 

was repeated three times until the results obtained varied 

within ±0.5% in the laboratory [15]. 

 

 
 

Figure 1. Descriptive statistics of the variables 
 

Table 1. Description of variables collected 
 

Variable Description Unit Type 

Gravel It is the percentage of gravel contained in the soil, obtained by sieving grain size analysis (ASTM D 422). % Discreet 

Sand The percentage of sand contained in the soil is obtained by a sieve analysis (ASTM D 422). % Discreet 

Fines The percentage of fines contained in the soil is obtained by sieve particle size analysis (ASTM D 422). % Discreet 

Liquid limit 
It is the moisture content in percentage, which defines the boundary between the semi-liquid and plastic 

consistency states (ASTM D4318). 
% Discreet 

Plastic limit 
Moisture content in percent, which defines the boundary between the plastic and semi-solid consistency 

states (ASTM D4318). 
% Discreet 

Plasticity index 
The moisture content range over which the soil behaves plastically is obtained by the difference between 

LL and LP (ASTM D4318). 
% Discreet 

Maximum dry 

density 
The highest density that soil can reach when compacted to optimum moisture (ASTM D1557). g/cm3 Discreet 

Optimum 

moisture content 
It is the percentage of moisture necessary to obtain the maximum density of the soil (ASTM D1557). % Discreet 

Soil type It is the symbol assigned to a certain soil so that it can be interpreted by everyone. - Nominal 
 

Table 2. Statistical data from the database 
 

Variable Quantity Mean Standard Deviation Minimum 25% 50% 75% Maximum 

Gravel 474 29.76 25.16 0 2.00 27.51 54.30 94.00 

Sand 474 36.86 16.23 0 26.93 34.96 45.98 100.00 

Fines 474 33.25 24.15 0 13.15 26.40 49.00 100.00 

Liquid limit 474 25.99 12.48 0 19.00 25.70 35.00 60.00 

Plastic limit 474 16.51 8.84 0 14.05 17.00 22.00 48.40 

Plasticity index 474 8.22 6.75 0 3.00 7.00 11.57 29.40 

Maximum dry density 474 1.97 0.24 1.32 1.78 1.97 2.20 3.37 

Optimum moisture content 474 10.43 4.00 4.50 6.90 10.37 13.00 23.00 

Soil type 474 - - - - - - - 

1996



 
 

Figure 2. Soil types contained in the database 

 

 
 

Figure 3. Types of distribution of each variable 

 

The soil classification present in the data matrix contains 11 

soil types according to SUCS: silty sand (SM), clay (CL), 

clayey gravel (GC), clayey sand (SC), gravel graded with silt 

(GW-GM), silt (ML), silty gravel (GM), well-graded gravel 

(GW), poorly graded gravel with silt (GP-GM), clayey sand 

with silt (SC-SM), and silty gravel with clay (GM-GC), see 

Figure 2. 

 

3.4 Methodology for employing data mining 

 

The knowledge discovery database (KDD) methodology 

was used, which is known for its iterative nature, where certain 

phases can lead to revisiting previous steps. In many cases, 

multiple iterations are required to efficiently extract high-

quality, interactive knowledge. The involvement of subject 

matter experts is crucial throughout the process, as they 

contribute to data preparation and validate the extracted 

knowledge [16]. 

The KDD methodology uses a set of techniques, 

collectively referred to as data mining, to discover trends in 

large amounts of data [17]. The term KDD was coined in 1989 

to convey the idea that knowledge is the ultimate result of data-

driven discovery. The KDD process consists of extracting 

patterns, in the form of rules or functions, from data for 
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analysis by the user [18]. 

The phases involved in the KDD process are: 

 

3.4.1 Selection 

Identified the need to classify soils for engineering purposes 

through data mining. 

A data set was created, on which the discovery process was 

carried out. For the selection of the attributes, the distribution 

of each variable was analyzed, see Figure 3. 

Then the Sklearn library was used in the Jupyter Lab 

interface and the “RandomForest” algorithm was run, which 

evaluates the value of the variables by measuring the gain 

concerning the output variable (soil type) using the command 

“model.feature_importances_”. The variables with a Ranked 

value greater than 8.0 were selected. 

 

3.4.2 Preprocessing and cleaning 

During data collection, it is common for the obtained set to 

contain null or anomalous instances, which can cause noise in 

the knowledge extraction process. In this phase, data cleaning 

was applied to improve the quality of the data using the Python 

programming language with the Jupyter Lab interface and the 

Numpy, pandas, and seaborn libraries, which use statistical 

analysis as a whisker box to clean and remove anomalous data. 

Missing data were imputed using three different methods: 

average, median, and regression algorithms. In addition, 

duplicate data were removed using the Set command in Python. 

To deal with anomalous data, the Panda’s library was used, 

and the boxplot was used, which allows visualization of the 

distribution and detection of outliers by identifying points that 

fall outside the boundaries of the graph (see Figure 4). In 

addition, the library assigned visual attributes to the data, 

calculated statistical transformations, and decorated the graph 

with informative labels on the axes [19]. 

 

 
 

Figure 4. Database without outliers 

 

3.4.3 Transformation and reduction 

Useful characteristics were sought to represent the data 

about soil type, using transformation methods to reduce the 

effective number of variables and invariant representations of 

the data (see Table 3); the variables were grouped according 

to the type of distribution in Figure 3. 

 

3.4.4 Data mining 

We used the Python programming language with the 

Jupyter Lab interface and the Scikit-learn 1.1.2 package 

developed for machine learning with Python. Scikit-learn 

offers a wide range of machine learning algorithms, including 

supervised and unsupervised techniques, all presented through 

a consistent, task-oriented interface. This design facilitates a 

direct comparison of methods for a specific application, 

ensuring ease of use and flexibility in the machine-learning 

process [20]. The prediction algorithms used for training and 

pattern extraction were k-nearest neighbors, support vector 

machine, decision trees, and random forest, which consist of 

three parts: knowledge representation, evaluation, and search, 

maintaining minimal bias without affecting variance; adapting 

to data types. 

To build the models, the data were divided into training 

(70%) and test (30%) sets, and then the hyperparameters were 

configured as shown in the following Table 4. 

 

Table 3. Grouping of variables according to their importance 

 
Group Variables 

PL_1 

• Gravel 

• Sand 

• Plasticity index 

• Maximum dry density 

PL_2 

• Fine 

• Plasticity index 

• Maximum dry density 

• Optimum moisture content 

PL_3 

• Gravel 

• Fine 

• Plastic limit 

• Plasticity index 

PL_4 

• Gravel 

• Fine 

• Maximum dry density 

• Optimum moisture content 

PL_5 

• Gravel 

• Sand 

• Liquid limit 

• Maximum dry density 

 

Table 4. Hyperparameters of the algorithms 

 
Algorithms Hyperparameters 

Support vector 

machine 

C=1.1 

Kernel=rbf (radial basis function) 

Gamma=0.1 

Random forest 

n_estimators=120 

max_depth=15 

max_features=sqrt (square root of the 

total number of characteristics) 

K-nearest 

neighbors 

n_neighbors=5 

weights=uniform 

Decision trees 

max_depth=None 

criterion=gini (Gini index) 

min_samples_split=2 

 

Table 5. Confusion matrix 

 

Actual Class 
Predicted Class 

Positive Negative 

Positive True positives (VP) False negatives (FN) 

Negative False positives (FP) True negatives (VN) 

 

3.4.5 Intervention and evaluation of data 

After training the five groups PL_1, PL_2, PL_3, PL_4, and 

PL_5 with the collected database and the proposed data mining 

models, the predicted results were compared with the actual 

values using performance metrics such as the confusion matrix, 

also known as the error matrix. This has a special table design 

that allows visualizing the performance of the algorithm, 

where each row represents the instances of an actual class, 

while each column represents the instances of a predicted class. 
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This design allows a clear evaluation of the performance of the 

algorithm in correctly classifying the data points into different 

classes. The analysis of the confusion matrix provides insight 

into the accuracy, precision, recall, and other performance 

parameters of the data mining models [21]. The distribution of 

the errors committed by the algorithms is expressed by true 

positives (VP), false negatives (FN), false positives (FP), and 

true negatives (VN), see Table 5. 

Three main metrics were used to evaluate the performance 

of each algorithm: Recall, Specificity, and Precision. Recall 

measures the proportion of positive cases correctly identified, 

Specificity measures the proportion of negative cases correctly 

identified, and Precision measures the closeness of measured 

values to established or known values. By using these 

measures. These metrics allow a better understanding of the 

capabilities of the algorithms and facilitate informed decision-

making in their practical application [22], see Eqs. (5)-(8). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅)=
𝑉𝑃

𝑉𝑃+𝐹𝑁
  (5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝐸)=
𝑉𝑁

𝑉𝑁+𝐹𝑃
  (6) 

 

Precision (𝑃)=
𝑉𝑃

𝑉𝑃+𝐹𝑃
  (7) 

 

F-measure=2*
𝑅+𝑃

𝑅∗𝑃
  (8) 

 

The various metrics used to evaluate the algorithms were: 

Recall is the ability of the algorithm to accurately predict the 

correct results, especially in identifying positive cases. 

Specificity is the ability of the algorithm to correctly identify 

negative results, thereby reducing false positives. Precision 

quantifies the number of correct positive results relative to the 

total number of positive instances in the population, providing 

a measure of accuracy in identifying positive instances. The F-

measure indicates the overall goodness of fit of the algorithm, 

combining the precision and recall measures in a balanced 

manner. 

 

 

4. RESULTS 

 

The data matrix consisted of 474 soil classifications and 9 

variables, compiled from certified laboratories and soil 

mechanics studies, which were extracted from technical files 

of public works in Peru. After the selection stage, the 

relationship between the independent and dependent variables 

(soil type) was evaluated, see Figure 5. 

In the selection stage with the Random Forest algorithm, the 

importance of the variables concerning the output variable 

(soil type) was evaluated, obtaining the following results see 

Table 6. 

 

Table 6. Ranking of variables according to their importance 

 
Variables Symbol Ranked 

Fine FN 21.23 

Plasticity index IP 15.60 

Gravel GV 12.56 

Optimum moisture content OCH 11.44 

Maximum dry density MDS 11.25 

Sand AR 9.66 

Liquid limit LL 9.46 

Plastic limit LP 8.80 

 

Table 7. Evaluation of groups during soil type prediction 

 

Group 
Well-Classified 

Instances (%) 

Misclassified 

Instances (%) 
F-Measure (%) 

PL_1 68.22 31.78 66.99 

PL_2 71.03 28.97 69.63 

PL_3 84.11 15.89 83.37 

PL_4 63.51 36.49 58.83 

PL_5 61.68 38.32 56.15 

 
 

Figure 5. Relationship between soil type and the variables collected 
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In the preprocessing and cleaning stage, outliers were 

eliminated using the Python programming language and the 

Numpy, pandas, and seaborn libraries, obtaining the following 

high-quality database, see Figure 4. 

In the construction phase of the data mining models, the data 

were divided into training (70%) and testing (30%), using k-

fold cross-validation, configured with the following 

hyperparameters for the support vector machine algorithm, a 

radial kernel was used, and the regularization parameter C was 

set to a value of 1.1. For Random Forest, a forest of 120 

decision trees was constructed and the maximum depth of each 

tree was limited to 15 to avoid overfitting. The maximum 

number of features considered when searching for the best 

split at each node was set to the square root of the total number 

of features. For the K-Nearest Neighbors algorithm, 5 nearest 

neighbors were considered and a uniform weight approach 

was applied, and for decision trees, trees were allowed to grow 

without a depth limit and the Gini index was used as a criterion 

to measure the quality of splits at nodes. Node splitting was 

performed when there were at least 2 samples at each node. 

After programming the code in Jupiter Lab with Python, the 

database was imported and configured according to the 

hyperparameters. The results of the soil type prediction, with 

the different trained and validated algorithms of the Scikit-

learn 1.1.2 library are presented in Figure 6 and Table 6, where 

groups PL_1, PL_2, and PL_3, present the lowest error in soil 

type classification. 

 

 
 

Figure 6. Accuracy of algorithms for each type of group 

 

 
 

Figure 7. Confusion matrix of PL_3 

 

Table 7 shows the results of the evaluation of the soil type 

prediction for the different groups by the percentages of 

correctly and incorrectly classified instances and the F-

measure for each group. In group PL_1, 68.22% of the 

instances were correctly classified, while 31.78% were 

incorrectly classified. The F-measure, which is the harmonic 

mean of accuracy and recall, is 66.99%. In the PL_2 group, 

71.03% of the instances were correctly classified, while 

28.97% were misclassified. The F-measure of this group was 

69.63%. The PL_3 group showed a higher accuracy, with 

84.11% of the instances correctly classified and only 15.89% 

misclassified. The F-measure was a remarkable 83.37%. In 

contrast, the PL_4 group had a lower rate of well-classified 

instances with 63.51% and 36.49% misclassified instances. 

The F-measure for this group was 58.83%. Similarly, the PL_5 

group also showed moderate accuracy, with 61.68% of 

instances correctly classified and 38.32% misclassified. The 

F-measure for this group was 56.15%. 

 

 
 

Figure 8. The algorithm that predicts soil type for 

engineering purposes 

 

The F-measure, a balance between accuracy and recall, 

provides a comprehensive assessment of the predictive 

performance of each group. The results in Table 6 highlight 

the different levels of accuracy achieved in predicting soil 

types for the different groups, with group PL_3 showing the 

highest overall performance both in terms of well-classified 

instances and F-measure. 
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The PL_3 group with the decision trees algorithm is the one 

that best classifies the soil type for engineering purposes with 

84.11 % accuracy. The results are shown in the confusion 

matrix where the predicted vs. actual classes were compared 

see Figure 7. 

The algorithms with the best performance were decision 

trees, and support vector machine, presenting higher accuracy 

in the five proposed groups, unlike the K-Nearest Neighbors 

algorithm which presents low accuracy in soil type 

classification see Table 8. 

Group PL_03 with the Decision Tree algorithm best 

predicts the soil type for engineering purposes with 84.11% 

accuracy. Figure 8 details the decision tree generated from the 

algorithm. 

 

Table 8. Evaluation of algorithms during soil type prediction 

 

Algorithms 
Well-Classified 

Instances (%) 

Misclassified 

Instances (%) 

F-Measure 

(%) 

K-nearest 

neighbors 
68.22 31.78 66.99 

Support vector 

machine 
73.83 26.17 69.40 

Decision trees 84.11 15.89 83.37 

Random forest 69.16 36.49 58.83 

 

 

5. DISCUSSION 

 

The data matrix consisted of 474 soil classifications and 9 

variables collected from 2018 to 2022 from certified 

laboratories and mechanical studies, based on tests 

standardized by the Ministry of Transport and 

Communications (MTC) and the Peruvian Technical Standard 

(NTP). The variables collected were of a discrete and nominal 

type, similar to Bui et al. [4], who use discrete variables in their 

research. 

The algorithms chosen to estimate the engineering soil type 

were k-nearest neighbors, support vector machines, decision 

trees, and random forests recommended by Al-Shamiri [9]. Al-

Shamiri conducted research on pattern extraction from 

databases using various algorithms, such as decision tree 

algorithms, k-nearest neighbors, neural networks, naive Bayes, 

support vector machines, random forests, regression, AIS, 

SETM, Apriori, FP-Growth, and K-Means and found that 

these algorithms performed best during the training and 

validation phase. Like Rao and Chaparala [23], they used a 

support vector machine to construct decision tables that 

minimize features extracted from large data sets. 

The modeling of soil types for engineering purposes was 

performed with 5 groups (PL_1, PL_2, PL_3, PL_4, and 

PL_5) conformed by 4 different variables and trained with four 

algorithms from the Scikit-learn library in Jupyter Lab with 

the Python programming language, obtaining a percentage of 

correct classification of 68. 22%, 71. 03%, 84.11%, 63.51%, 

and 61.68%, respectively, which exceed by 84.11% the results 

obtained by Manjula and Narsimha [24], of 75.39% and 

75.38% of correctly classified instances, and are in the range 

of the results obtained by Palomino Ojeda and Rosario 

Bocanegra [6], Hernández Pereira and Medina González [7] 

and Cortés Henao [8], guaranteeing the validity of the models. 

Promising results have been obtained in soil classification 

by data mining. However, it is important to consider some 

limitations. To improve the generalization and robustness of 

the models, it is necessary to collect other variables that 

represent all the conditions and types of soils present in the 

region studied, such as chemical compounds and electrical 

resistivity, among others. This will allow for obtaining a broad 

and diverse database. In future research, it is recommended to 

vary the hyperparameters of the models. Although 

hyperparameter optimization was performed, the entire search 

space may not have been exhaustively explored, and advanced 

optimization techniques, such as Bayesian optimization, could 

be used to find more optimal hyperparameter combinations 

and further improve model performance. 

 

 

6. CONCLUSIONS 

 

Data mining is related to several fields, the most important 

being artificial intelligence (AI), databases, mathematical 

modeling, machine learning, and management science. 

The soil type for engineering purposes was determined by a 

data mining algorithm that created 5 groups; for this purpose, 

the KDD methodology and the algorithms k-nearest neighbors, 

support vector machine, decision trees, and random forest 

were used, obtaining the highest accuracy in PL_3 of 84.11% 

with the decision trees algorithm. 

The models made it possible to determine soil type for 

engineering purposes by applying them to characterization 

studies in other geographic areas. The methodology is 

adaptable and can be extended to classify soils in other regions, 

provided quality and representative data are available. 

The application of data mining techniques to SUCS soil 

classification has valuable practical implications in the fields 

of engineering and geotechnics. The developed models are 

useful tools to improve decision making, reduce risks in 

construction projects and soil analysis. As research and 

development of new methodologies continue, opportunities 

for better understanding and use of soils in different 

geotechnical applications and contexts will open up. 

These algorithms can be used by engineering firms to 

improve decision-making in infrastructure and geotechnical 

projects. By having an accurate soil classification model, they 

could reduce the risks and costs associated with the design and 

construction of structures, roads, and foundations. 

The study provides a solid basis for soil classification using 

data mining techniques according to SUCS. However, there 

are limitations that need to be addressed in future research. 

Obtaining new variables, optimizing hyperparameters, 

comparing systems and algorithms, and validating in different 

geotechnical contexts can significantly contribute to the 

advancement and improvement of soil classification and its 

practical applicability in geotechnical engineering. 
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