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 The suspension system is classified into three types passive suspension, semi-active, and 

active suspension. The term a quarter car model originated in the early part of the 20th 

century. It is considered the best way for studying the effectiveness of vehicle stability. 

This paper presents the modelling and control of a nonlinear active suspension system for 

a quarter car, the mathematical model represents a spring-mass (Quarter of the chassis) 

and unsprung mass (the wheel), with two degrees of freedom (2-DOF) system 

characterized by a pair of the differential equations. The objective of this work is to 

determine control strategy to deliver better performance with respect sprung displacement; 

sprung mass velocity; suspension deflection; peak overshoot; setting time. The active 

control of the suspension system is achieved using fractional-order PID (FOPID) tuned by 

particle swarm optimization algorithms (PSO algorithms) because the ordinary FOPID did 

not give good results, and linear quadratic regulator (LQR) control actions. The results are 

developed and simulated in MATLAB/Simulink. It is observed that the LQR controller 

gives better ride comfort by reducing the RMS error and the vibration of various types of 

road conditions as compared to an intelligent FOPID controller. 
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1. INTRODUCTION 

 

Vehicle suspension's main task is to separate passenger and 

vehicular body interactions from oscillations generated by 

road abnormalities whilst nonetheless preserving continuous 

wheel-road contact [1]. The major performance requirements 

of an automotive suspension system are to provide good ride 

and handling characteristics when random disturbances from 

the environment and the driver’s maneuvers act upon the 

moving vehicle [2, 3]. The suspension systems used for 

improving the ride, it categorized into three types, that is 

passive suspension systems, semi-active, and active 

suspension systems [4]. One of the most terms used for the 

suspension systems is the term « suspension travel », and 

travel a vehicle's suspension has referred to the distance 

between the center of the wheel from full extension to full 

compression of the suspension, and we define it the inches of 

the wheel can move up and down [5, 6]. The more travel in the 

suspension, the more time sharks have to dampen or react to 

the terrain, thus transferring less of that harshness to driver and 

passengers, giving a smoother, more controlled ride [7]. 

Therese many works in the past decade were accomplished to 

design, model, and control the active suspension systems, 

Manurya, and Bhangal [8], used two control techniques PID 

and LQR control to suppress the vibration of the system and a 

comparison between passive and active suspension with road 

disturbances as input has been made, the authors found LQR 

control is better in suppressing the vibration as compared to 

PID control as well as passive suspension. 

In reference of Mahmoodabadi and Nejadkourki [9], the 

authors M.J. Mahmoodabadi, and N. Nejadkouriki proposes 

an optimal fuzzy adaptative robust proportional-integral-

derivative (PID) for a quarter car model with an active 

suspension system a fuzzy system consisting of the singleton 

fuzzifier, center average defuzzifier, and the product inference 

engine is applied to regulate the control parameters, the results 

show the dominance of the proposed active suspension system. 

Wang. H.P, and all in the study of Wang et al. [10], proposed 

the model-free fractional-order sliding mode control 

(MFFOSMC) and applied it for the nonlinear quarter car of an 

active suspension system to improve the ride comfort and keep 

acceptable limits for both suspension deflection and dynamic 

weel load. In the study Dong et al. and Izadkhah et al. [11, 12], 

the authors work for the fractional-order PID control of an 

active suspension, the results in two references show the 

performance of the active suspension system that uses the 

FOPID actuator is obviously superior to that of the active 

suspension system that uses a PID actuator and a passive 

suspension system. 

In this work, we have studied a comparison between 

fractional-order proportional integral derivative controller 

tuned by particle swarm optimization, and LQR control, this 

study applied for the controllers for an active suspension 

system. The remainder of this paper was organized as follows. 

In section 2, the dynamic model of nonlinear quarter vehicle 

active suspension system. In section 3 detailed the design 

procedure of FOPID, and LQR control. Section 4 gives the 

simulation results based on Matlab/Simulink and the 

interpretation of these results. Finally, in section 5 the 

conclusion of the paper. 
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2. MATERIAL AND METHODS 

 

A detailed nonlinear model is used to study the dynamic 

behavior of a quarter car active suspension system. The model 

in Figure 1 is shown to a standard quarter vehicle suspension 

system [13]: 

 

 
 

Figure 1. Active suspension of quarter car model 

 

The dynamic equation of the quarter car model of an active 

suspension with excitation of the road input can be expressed 

as follows [14, 15]: 

 

{
𝑀𝑠�̈�𝑠 = −𝐾𝑠(𝑋𝑠 − 𝑋𝑢) − 𝐶𝑠(X − �̇�𝑢) + 𝐹

𝑀𝑢�̈�𝑢 = 𝑀𝑠�̈�𝑠 − 𝐾𝑡(𝑋𝑢 − 𝑋𝑟) − 𝐶𝑡(�̇�𝑢 − �̇�𝑟) − 𝐹
 (1) 

 

where: 

𝑀𝑠  Sprung mass, 𝑀𝑢  Unsprung mass, 𝐾𝑠 , 𝐾𝑡  is Spring of 

suspension system, and Spring of wheel and tire, 𝐶𝑠 , 𝐶𝑡  is 

Demper of suspension and wheel, 𝑋𝑠 , 𝑋𝑢 , and 𝑋𝑟  is Body 

Displacement, wheel displacement, and Vertical position of 

the road profile [16]. 

Eq. (3) shows the dynamics of the quarter car model defined 

in a state-space format [17]: 
 

{
�̇� = 𝐴𝑋 + 𝐵𝐹 + 𝐸𝑋𝑟
𝑦 = 𝐶𝑋 + 𝐷𝐹 + 𝐺𝑋𝑟

 (2) 

 

where: 
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The following Table 1 shows the suspension values [18]: 

Table 1. Physical parameter values of quarter car suspension 

model 

 

Symbols 
Description and values 

Description Values Units 

𝑀𝑠 Sprung Mass 972.2 Kg 

𝑀𝑢 Unsprung Mass 113.6 Kg 

𝐾𝑠 
Suspension 

Stiffnes 
42,719.6 N/m 

𝐾𝑡 Wheel Stiffnes 101,115 N/m 

𝐶𝑠 
Suspension 

Demping 
1,095 N.s/m 

𝐶𝑡 Wheel Demping 14.6 N.s/m 

 

 

3. CONTROL DESCRIPTION 

 

3.1 Fractional-order PID tuning by PSO algorithm 

 

The fractional-order control turned into designed and 

analysed via pondlubny. The FOPID delivers more 

effectiveness than the traditional PID. Based on three 

parameters of the necessary controller, the FOPID has a 

further tuning parameter this is indispensable order and 

differential order µ [19, 20]. 

The differ-integral operator, denoted by, is a mixed 

differentiation-integration operator usually utilized in 

fractional calculus, this operator is a notation for taking both 

the fractional by-product and the fractional critical in a single 

expression and is described by [21, 22]: 

 

𝛼𝐷𝑡
𝑞
=

{
 
 

 
 

𝑑𝑞

𝑑𝑡𝑞
                  𝑞 > 0

 1                    𝑞 = 0     

∫ (𝑑𝜏)−𝑞         𝑞 < 0     
𝑡

𝛼

 (3) 

 

where, q is the fractional-order which can be a complex 

number, and a and t are the limits of operation.  

There are some definitions for fractional derivatives, the 

commonly used definition is Grunwald-Letnikov [23], 

Riemann-Liouville [24], and Caputo definition [25]. The 

Grunwald-Letnikov Definity: 

 

𝑎𝐷𝑡
𝑞
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(4) 

 

The Riemann-Liouville is given by definition: 

 

𝑎𝐷𝑡
𝑞
𝑓(𝑡) =

𝑑𝑞𝑓(𝑡)

𝑑(𝑡 − 𝑎)𝑞
1
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𝑡
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(5) 

 

With n is the first integral which is not less than q i.e n-

1≤q≤n and Γ is Gamma function definition by equation 

follows: 

 

𝛤 (𝑧) = ∫ 𝑡𝑧−1−𝑡𝑒−𝑡
∞

0

𝑑𝑡 (6) 



 

The Caputo fractional derivative gives by:  

 

𝐿{𝛼𝐷𝑡
𝑞
𝑓(𝑡)} = 𝑆𝑞𝐹(𝑆) −∑𝑆𝑘0𝐷𝑡

𝑞−𝑘−1
𝑓𝑘

𝑛−1

𝑘=0

(0) (7) 

 

With: n-1 ≤q≤ n ∈ ℕ  

The mathematical illustration of the FOPID Controller is as 

given [26]: 

 

𝐺(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑆𝜆
+ 𝐾𝑑𝑆

µ (8) 

 

The method used for tuning FOPID is PSO algorithms this 

technique is inspired by the social behavior of birds and fish, 

it initializes by n-swarm of particles and defined by the 

position of the particle of a swarm, and velocity of a particle, 

at iteration, are defined as following equation [27, 28]: 

 

𝑉𝑖𝑗(𝑖 + 1) = 𝑤𝑉𝑖𝑗 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗)

+ 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑗) 
(9) 

 

With: 

 

𝑋𝑖𝑗 = 𝑉𝑖𝑗 + 𝑋𝑖𝑗 (10) 

 

𝑤 = 𝑤𝑚𝑎𝑥 (
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) (11) 

 

where, i=1, 2,.., n, and j is a search space r1 and r2 is a random 

number (0,1). C1 called cognitive parameters pulls each 

particle towards a local best position. C2 called social 

parameters pulls the particle towards a global best position, 

wmax is final weight and wmin initial weight, maxiter is a 

maximum iteration number, iter is a current iteration number. 

The steps of particle swarm algorithm for optimization the 

FOPID shown in the points follows: 

• Step 01: Define objective function; 

• Step 02: Define PSO parameters; 

• Step 03: Initialization of position and velocity; 

• Step 04: Define function Evolution; 

• Step 05: Update Pbest and Gbest; 

• Step 06: Compute velocity and position handling 

boundary; 

• Step 07: Stope while getting the best value.  

The parameters of FOPID tuned by particle swarm 

optimization algorithm (PSO) are illustrated in Table 2: 

 

Table 2. Parameters of fractional-order PID controller 

(FIPID) 

 

Values of 

FOPID 

Parameters of FOPID 

Kp Ki λ Kd µ 

0.10 0.014 0.2 12𝑒03 1 

 

3.2 The linear quadratic regulator (LQR) control 
 

An advantage of the linear quadratic regulator or quadratic 

optimal control method over the pole-placement method is that 

the former provides a systematic way of computing the state 

feedback control gain matrix [29]. 

We Shall now consider the optimal regulator problem that 

given the system equation [29-31]: 

 

�̇� = 𝐴𝑋 + 𝐵𝑈 (12) 

 

Determine the matrix K of the optimal control vector: 

 

𝑈(𝑡) = −𝐾𝑋(𝑡) (13) 

 

The state variable feedback configuration is proven below 

in Figure 2: 

 

 
 

Figure 2. State variable feedback configuration 

 

So, as to minimize the performance index: 

 

𝐽 = ∫ (𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈)𝑑𝑡
∞

0

 (14) 

 

where, Q and R is a position definite Hermitian or real 

symmetric. 

The design steps are follows [32]: 

Solve the following equation for the matrix P [If a position-

definite matrix P (n x n) matrix exists (Sure systems might not 

have a position definite matrix P), the system is stable, or 

matrix A-BK is stable]: 

 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (15) 

 

Substitute this matrix P into the following equation, the 

resulting matrix K is the optimal matrix: 

 

𝐾 = 𝑅−1𝐵𝑇𝑃 (16) 

 

Q and R taking by: 

 

𝑄 = [

10−2 0 0 0
0 10−9 0 0
0 0 10−3 0
0 0 0 10−4

] , 𝑅 = [
0.001 0
0 0.12

] 

 

The values of obtained feedback gain matrix of LQR: 

 

𝐾 = [
0.0010 −0.0001 −0.0001 0.0010
0.2372 −0.3078 0.0878 0.3082

] 

 

 

4. SIMULATION RESULTS AND DISCUSSION  

 

The simulation results are based on the mathematical model 

of a quarter car, and we take five different types of road 

disturbance. The inputs for testing the performance of the 

closed-loop suspension system are a step input signal of 

amplitude 1(m) and a sinusoidal input signal to represent a 

bumpy road of amplitude 1(m), a variable -step to represent 

excavated rood of amplitude 1(m), a noisy road for a road 

made of high-intensity vibration of 0.2 noise power and 0.1 

sample time. The last road in this study is the ramp road of 



 

amplitude 0.1(m). The following table (Table 3) explains the 

description for select different road types: 

 

Table 3. Different road types for testing the model 

  
Roads 

Profiles 

Equation and values 

Equation Values 

Step Road 𝑅(𝑡) = 𝐴 × {
1 𝑓𝑜𝑟 𝑡 ≥ 0
0 𝑓𝑜𝑟 𝑡 < 0

 A=1m 

Sinusoidal 

Road 
𝑅(𝑡) = 𝐴 × sin (𝑤𝑡 + 𝛷) A=1m 

Variable-

Step 

𝑅(𝑡) = 𝐴 × [𝑅0(𝑡) − 2𝑅0(𝑡 − 3)
+ 2𝑅0(𝑡 − 6)
− 2𝑅0(𝑡 − 9)
+ ⋯ ] 

A=1m 

Random 

Road 
𝑅 = 𝑠𝑖𝑔𝑚𝑎 + 𝑟𝑎𝑛𝑑𝑛(𝑁, 1) + 𝑚𝑢 

N=0.2 

Mu=0.1 

Sigma=

2 

Ramp 

Road 
𝑅(𝑡) = 𝐴 × {

𝑡 𝑓𝑜𝑟 𝑡 ≥ 0
0 𝑓𝑜𝑟 𝑡 < 0

 A=1m 

 

The objective of this testing with different types of roads is 

to demonstrate the efficiency of controllers, especially LQR 

control. 

The figures show, the displacement of a car body, velocity, 

acceleration, and deflection of quarter car suspension for 

different road profiles. First, road profile 01 is a step input, the 

simulation results are shown in Figure 3 (a, b, c, and d), It show 

the comparison between passive, FOPID, and LQR controlled 

systems for body displacement, velocity, body acceleration, 

and suspension deflection respectively with road disturbance. 

 

 
 

Figure 3a. The respenses for sprung displacement of optimal 

FOPID and LQR controller of road profile 01 

 

 
 

Figure 3b. The respenses for sprung velocity of optimal 

FOPID and LQR Controller of road profile 01 

 

Figure 3 (a, b, c, and d) show a big improvement in 

performance and suppression of vibration with LQR control as 

compared to passive suspension and active suspension 

controlled by FOPID tuned by PSO algorithms. To prove the 

efficiency of LQR control, we tried the quarter car model other 

types of roads. 

The simulation results are shown in Figure 4 (a, b, c, and d), 

and Figure 5 (a, b, c, and d) for road profile 02 is a bumpy road, 

and road profile 03 is an excavated road. It shows the 

comparison between passive, FOPID, and LQR controlled 

systems for body displacement, velocity, body acceleration, 

and suspension deflection with roads disturbances. 

The results shown in the figures mentioned above prove the 

effectiveness of LQR in the stability of the quarter of the car, 

unlike the Fractional Order PID controller and inactive 

suspension, and this comparison evident in the RMS error 

percentage shows in Table 4 and Table 5. 

 

 
 

Figure 3c. The respenses for body acceleration of optimal 

FOPID and LQR controller of road profile 01 

 

 
 

Figure 3d. The respenses for suspension deflection of 

optimal FOPID and LQR controller of road profile01 

 

The simulation results are shown in Figure 6 (a, b, c, and d), 

and Figure 7 (a, b, c, and d) for road profile 04 is a road that 

has many vibrations (Noise Road), and road profile 05 is a 

sloping road (ramp input). It shows the comparison between 

passive, FOPID, and LQR controlled systems for body 

displacement, velocity, body acceleration, and suspension 

deflection with roads disturbances 

The results proved that the linear quadratic regulator control 

(LQR control) gave more stability on rough and steep roads 

for the car unlike the Fractional-Order controller (FOPID 

control) optimized by the PSO algorithm,  and the passive 

suspension and this is evident in amplified vibrations in the 

shaky road and the stability of the car following the road 

ripples in the inclined road, and this will give more comfort to 

the passengers and the driver. 



 
 

Figure 4a. The respenses for sprung displacement of optimal 

FOPID and LQR controller of road profile 02 

 

 
 

Figure 4b. The respenses for sprung velocity of optimal 

FOPID and LQR controller of road profile 02 

 

 
 

Figure 4c. The response for body acceleration of optimal 

FOPID and LQR controller of road profile 02 

 

 
 

Figure 4d. The respenses for suspension deflection of 

optimal FOPID and LQR controller of road profile 02 

 

 
 

Figure 5a. The respenses for sprung displacement of optimal 

FOPID and LQR controller of road profile 03 

 

 
 

Figure 5b. The respenses for sprung velocity of optimal 

FOPID and LQR controller of road profile 03 

 

 
 

Figure 5c. The respenses for body acceleration of optimal 

FOPID and LQR controller of road profile 03 

 

 
 

Figure 5d. The respenses for suspension deflection of 

optimal FOPID and LQR controller of road profile 03 

 



 

 
 

Figure 6a. The respenses for sprung displacement of optimal 

FOPID and LQR controller of road profile 04 

 

 
 

Figure 6b. The respenses for sprung velocity of optimal 

FOPID and LQR controller of road profile 04 

 

 
 

Figure 6c. The respenses for body acceleration of optimal 

FOPID and LQR controller of road profile 04 

 

 
 

Figure 6d. The respenses for suspension deflection of 

optimal FOPID and LQR controller of road profile 04 

 

 
 

Figure 7a. The respenses for sprung displacement of optimal 

FOPID and LQR controller of road profile 05 

 

 
 

Figure 7b. The respenses for sprung velocity of optimal 

FOPID and LQR controller of road profile 05 

 

 
 

Figure 7c. The respenses for body acceleration of optimal 

FOPID and LQR controller of road profile 05 

 

 
 

Figure 7d. The respenses for suspension deflection of 

optimal FOPID and LQR controller of road profile 05 

 

 



 

Simulation results show improvement in the ride comfort 

performance and suppression of vibration noise with LQR 

control and FOPID control as compared to passive with all 

types of road disturbance, in Figure 4 to Figure 7 we found the 

LQR control minimize the RMS error for all road disturbance 

which the min and max value of RMS error when used FOPID 

control, is 11% to 84%, and after using LQR increased the 

reduction of RMS between 12% for a min, 85% for max value. 

LQR control system improvement in terms of setting time and 

maximum overshoot in suspension deflection and body 

acceleration, but it gives a slow response unlike the FOPID 

control scheme gives a faster response but higher amplitude in 

a case of suspension deflection, velocity, and body 

acceleration. 

The Table 4 Illustrated a comparison of RMS error between 

FOPID and LQR control systems, and the Table 5 shows the 

reduction of error for all types of roads used: 

 

Table 4. RMS error between passive and active suspension 

controlled by FOPID and LQR control 

 

Methods 

RMS Error 

Step 

Input 
Sine Input 

Pulse 

Input 

Noise 

Input 

Ramp 

Input 

Passive 9.612e-1 2.400 3.54e-1 2.120 5.66e-2 

Active with 

FOPID 
8.52e-1 3.68e-1 1.69e-1 5.91e-1 3.98e-2 

Active with 

LQR 
8.46e-1 3.55e-1 1.53e-1 5.66e-1 3.94e-2 

 

Table 5. Reduction of RMS error 

 

Methods 

Reduction (%) of RMS Error 

Step 

Input 
Sine Input 

Pulse 

Input 

Noise 

Input 

Ramp 

Input 

Passive 0% 0% 0% 0% 0% 

Active with 

FOPID 
11% 84% 51% 72% 30% 

Active with 

LQR 
12% 85% 57% 73% 42% 

 

 

5. CONCLUSIONS 

 

In this paper, the fractional-order PID (FOPID) and linear 

quadratic regulator (LQR) controllers are effectively designed 

using MATLAB/SIMULINK. Both controllers can stabilize 

the suspension system very effectively compared to a passive 

suspension system. The previous results showed in Figures 

(Figure 4 to Figure 7) illustrated the FOPID controller scheme 

gives a faster response where rise time takes value 441.629 

(ms) unlike LQR control the value of rise time is 454.581 (ms), 

but the LQR control system gives much better results in the 

ride comfort performance compared to an active suspension 

system controlled by FOPID control and passive suspension. 
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