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The fundamental purpose of this investigation is to make use of an analytical approach 

in order to solve and assess initial boundary value problems that are in the form of 

fractional partial differential equations (FPDEs). Intricate scientific phenomena that are 

marked by hereditary characteristics that are passed down from one generation to the 

next can be better understood with the help of the FPDEs, which are extremely useful 

instruments. In particular, when working with non-linear equations, it can be difficult 

to obtain analytical solutions that are either exact or approximate for these equations. 

In order to address these obstacles, the homogeneous balancing method (HBM) is being 

investigated in great detail and expanded in an innovative way in order to solve 

nonlinear physical problems that include FPDEs. HBM is renowned for its capacity for 

solving both linear and nonlinear fractional models, employing a direct approach that 

utilises a closed-form solution. The present study introduces an expanded version of the 

HBM that integrates the ideas of fractional calculus, specifically focusing on fractional 

derivative techniques. The approach is illustrated by analytically solving and examining 

two types of nonlinear FPDEs: the space-time fractional-coupled Burger's equation and 

the conformable fractional version of the Gerdjikov-Lvanov equations (GL), which 

encompass hyperbolic, trigonometric, and rational solutions. The efficiency of the 

extended form of the HBM is demonstrated by analyzing and comparing the acquired 

results with those reported in the literature. HBM would make a significant contribution 

towards overcoming the obstacles of existing methods, such that the proposed method 

will help us simplify the complexity of the nonlocal derivative when solving FPDEs. 

Overall, this work presents a feasible and efficient analytical approach for solving 

nonlinear FPDE using an extension form of the HD method with result analysis. 

Keywords: 

fractional differential equation, boundary value 

problems, homogeneous balance method 
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1. INTRODUCTION

Indeed, fractional-order models can offer more precise and 

adaptable representations of systems that exhibit long-term 

memory effects [1]. Fractional calculus provides a potent 

mathematical technique for capturing such effects by 

permitting the use of derivatives and integrals with non-integer 

orders. Nevertheless, it is crucial to acknowledge that the 

utilisation of fractional calculus is not universally essential or 

suitable, and conventional integer-order models can still be 

efficacious for numerous practical applications [2]. 

Moreover, although fractional calculus has a lengthy 

historical background that dates back to the 17th century, its 

application in engineering and research has experienced 

significant growth in recent years. This can be attributed to 

advancements in computing capabilities and the demand for 

more advanced modelling methods [3]. Fractional calculus 

remains a nascent and dynamic discipline, characterised by 

continuous investigation and advancement of novel techniques 

and practical uses [4, 5]. To summarize, fractional calculus is 

a potent mathematical technique used to represent systems that 

exhibit long-term memory effects. However, it is not 

universally necessary or suitable for all applications. 

Traditional calculus remains applicable in several real-world 

situations, while the utilisation of fractional calculus 

necessitates meticulous evaluation and specialized knowledge. 

This observation emphasises the significance of resolving 

intricate models within the realm of fractional calculus theory. 

To completely comprehend the physical and technical features 

of the problem, it is crucial to not only accurately model 

complicated real-world problems using this theory, but also to 

obtain solutions to these models [6]. Recently, there have been 

significant advancements in applied sciences and engineering 

in this field. These include areas such as biological processes, 

control theory, electrical networks, groundwater flow and 

Geo-Hydrology, viscoelasticity, finance systems, wave 
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propagation, plasma physics and fusion, rheology, chaotic 

processes, and fluid mechanics, among others [7-12]. 

By solving these models, researchers can gain a better 

understanding of the system's behaviour, which in turn allows 

them to make more accurate predictions and develop more 

effective remedies. Nevertheless, owing to the intricate 

dynamics at play, solving these models can be no easy feat. 

Researchers have made efforts to create analytical methods 

and algorithms that can solve these models, and they are still 

working on making these methods better. Engineering, 

physics, economics, and many more disciplines rely on precise 

answers to complicated models to advance their respective 

professions [13]. 

The popularity and importance of the homogeneous 

balancing approach in finding exact solutions for travelling 

waves [13]. This algebraic technique was first proposed by 

Fan and has since been developed by other researchers [14-

19]. The method involves finding a nonlinear transformation 

that can be used to obtain an exact solution to the problem at 

hand [14, 15].  
 

 

2. PRELIMINARIES  

 

Fractional calculus is a branch of calculus that generalizes 

the traditional calculus operators of differentiation and 

integration to non-integer orders. In other words, fractional 

calculus deals with the concept of fractional or non-integer 

order differentiation and integration. This section presents 

some the basic concepts and definitions linked with fractional 

calculus theory, which will help us comprehend the study in 

the next sections. 

 

Definition 1: Let there be a continuous function f such that 

𝑓: 𝑅 → 𝑅, 𝑡 → 𝑓(𝑡) then it is Riemann Liouville derivatives of 

fractional order α is expressed below [20]: 

 

𝐷𝑐
𝛼 =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)

(𝑥−𝑡)𝛼−𝑚+1

𝑥

𝑐
𝑑𝑡  

0 < 𝛼 < 1 
(1) 

 

𝐷𝑐
𝛼 =

1

Γ(𝑚−𝛼)

𝑑𝑚

𝑑𝑥𝑚 ∫
𝑓(𝑡)

(𝑥−𝑡)𝛼−𝑚+1

𝑥

𝑐
𝑑𝑡  

0 < 𝛼 < 1 
(2) 

 

From Eq. (1) and Eq. (2) we get  
 

𝐷𝛼𝑡𝑚 =
Γ(1+𝑚)

Γ(1+𝑚−𝛼)
𝑡𝑚−𝛼 , 𝑚 > −1,  

0 < 𝛼 < 1 
(3) 

 

Some Liouville derivative: 

If 𝑓: 𝑅 → 𝑅 continuous function, then its fractional 

derivative in the form of integral with respect to (𝑑𝑥)𝛼: 
 

𝐷𝑥
𝛼𝑓(𝑥) =

1

Γ(𝛼)
∫ (𝑥 − 𝜏)𝛼−1𝑥

0
𝑓(𝜏)𝑑(𝜏) =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫ 𝑓(𝜏)(𝑑(𝜏))

𝛼𝑥

0
, 0 < 𝛼 < 1  

(4) 

 

Fractional derivative for the linear combination of the 

functions 𝑓(𝑥) and 𝑔(𝑥) and the constants 𝑎 and 𝑏 is define 

as: 
 

𝐷𝑥
𝛼(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = 𝑎𝐷𝑥

𝛼(𝑓(𝑥)) + 𝑏𝐷𝑥
𝛼(𝑔(𝑥)) (5) 

 

For 𝑓(𝑥) = 𝑥𝑘, the fractional derivative is: 

𝐷𝑥
𝛼((𝑥)𝑘) =

Γ(1+𝑘)

Γ(1+𝑘−𝛼)
(𝑥)𝑘−𝛼  (6) 

 

Definition 2: Let 𝑓: [0, ∞) → 𝑅 be a function. Then its 

fractional conformable derivative which is 𝛼 th order is [21]: 
 

𝑇𝛼𝑓(𝑥) = lim
𝜀→0

𝑓(𝑥+𝜀𝑥1−𝛼)−𝑓(𝑥)

𝜀
,  (7) 

 

where, 𝛼 ∈ (0,1) and it hold for all 𝑥 > 0. 

If the function 𝑓 is 𝛼-differentiable in (0,1) for 𝑙 > 0 and 

further; 

If the function 𝑓 is 𝛼-differentiable in (0,1) for 𝑙 > 0 and 

further lim
𝑥→0+

𝑓(𝑛)(𝑥) exists, then the conformable derivative at 

0 is defined: 
 

𝑓𝑛(0) = lim
𝑥→0+

𝑓(𝑛)(𝑥) (8) 

 

Also, the conformable integral of function 𝑓 is defined as:  

 

𝐼𝛼
𝑙 𝑓(𝑥) = ∫

𝑓(𝑡)

𝑡1−𝛼 𝑑𝑡
𝑥

𝑙
, 𝑙 ≥ 0 and 𝛼 ∈ (0,1]  (9) 

 

Definition 3: Let 𝑓: [0, ∞) → 𝑅 be a function. Then its 

fractional conformable derivative which is 𝛼 th order is [21]: 

 

𝐷𝛼𝑓(𝑥) = lim
𝜉→0

𝑓(𝑥+𝜉𝑥1−𝛼)−𝑓(𝑥)

𝜉
,  (10) 

 

where, 𝛼 ∈ (0,1) and it holds for all 𝑥 > 0. If the function 𝑓 is 

𝛼 -differentiable in (0,1)  for 𝑙 > 0  and further lim
𝑥→0+

𝑓𝑛(𝑥) 

exists, then the conformable derivative at 0  is defined as 

𝑓𝑛(0) = lim
𝑥→0+

𝑓𝑛(𝑥). 

 

Theorem 1: Suppose the functions 𝑢 and 𝑣  are 𝛼 -

differentiable at any point 𝑥 > 0 for 𝛼 ∈ (0,1]. Then we have 

the following properties [21]: 

 

1) 𝐷𝛼(𝑎𝑢 + 𝑏𝑣) = 𝑎𝐷𝛼(𝑢) + 𝑏𝐷𝛼(𝑣) for all 𝑎, 𝑏 ∈ 𝑅. 

2) 𝐷𝛼(𝑥𝑛) = 𝑛𝑥𝑛−𝛼 for all 𝑛 ∈ 𝑅. 

3) 𝐷𝛼(𝑘) = 0 for all 𝑣(𝑥) = 𝑘 (constant function). 

4) 𝐷𝛼(𝑢𝑣) = 𝑢𝐷𝛼(𝑣) + 𝑣𝐷𝛼(𝑢). 

5) 𝐷𝛼 (
𝑢

𝑣
) =

𝑣𝐷𝛼(𝑢)−𝑢𝐷𝛼(𝑣)

𝑣2 . 

6) Additionally, if the function 𝑣  is differentiable, then 

𝐷𝛼(𝑣)(𝑥) = 𝑥𝑙−𝛼 𝑑𝑣

𝑑𝑥
. 

 

 

3. DESCRIPTION OF HB METHOD AND ANALYSIS 

 

Consider a nonlinear conformable fractional equation to 

explain the fundamental concept behind our approach. 

 

𝐹(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝐷𝑡
𝛼𝑢, 𝐷𝑥

𝛼𝑢, 𝐷𝑡𝑡
2𝛼𝑢, 𝐷𝑥𝑥

2𝛼𝑢, … ), 0 < 𝛼 < 1 (11) 

 

where, F represents any polynomial of a function and its 

partial fractional derivatives. The suggested method consists 

of the following phases: 

Step 1: Assuming the transformation 

 

𝑢(𝑥, 𝑡) = 𝑈(𝑟), 𝑟 = 𝑘
𝑥𝛼

𝛼
+ 𝑐

𝑡𝛼

𝛼
  (12) 

 

where, k and c are unknown nonzero constants. The nonlinear 
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FPDE in Eq. (11) was transformed into the non-linear ordinary 

differential equation. 

 

𝐻( 𝑈, U′, U′′, 𝑈′′′, … ) = 0 (13) 

 

Here, 𝐻 is a function of 𝑈(𝑟), and the prime indicates its 

derivatives with respect to 𝑟. 

Step 2: Suppose that Eq. (13) has a solution of the form. 

 

𝑈(𝑟) = ∑ 𝑎𝑖𝜑
𝑖𝑛

𝑖=0   (14) 

 

where, 𝑎𝑖(𝑖 = 0,1,2, … 𝑛) are constant to be computed later, n 

is a positive integer chosen by balancing the highest order 

derivatives term with the nonlinear term in Eq. (13). 

Step 3: Eq. (14) may be substituted for (13), yielding the 

algebraic system of equations. This system's solution can be 

obtained by using Maple and the answers to Eq. (13) are all 

precise solutions to Eq. (11).  

 

 

4. APPLICATION 

 

In this section, two nonlinear FPDE test problems are 

considered to illustrate the performance of the proposed HB 

method. 
 

4.1 The space–Time fractional–Coupled burgers equation 

 

Consider the space –time fractional coupled Burger 

equation [22]: 

 

𝐷𝑡
𝛼𝑢 − 𝐷𝑥

2𝛼𝑢 + 2𝑢𝐷𝑥
𝛼𝑢 + 𝜆𝐷𝑥

𝛼(𝑢𝑣) = 0, 𝑡 > 0, 0 <
𝛼 ≤ 1  

(15) 

 

Dt
αv − Dx

2αv + 2vDx
αv + μDx

α(uv) = 0, t > 0, 0 <
α ≤ 1  

(16) 

 

We employ the newly defined transformation to study 

precise wave solutions to Eqs. (15)-(16): 

 

𝑢(𝑥, 𝑡) = 𝑈(𝑟), 𝑣(𝑥, 𝑡) = 𝑉(𝑟), 𝑟 =  
𝑥𝛼

𝛤(1+𝛼)
+

𝑐𝑡𝛼

𝛤(1+𝛼)
  (17) 

 
Eqs. (5)-(6) can be changed into an ODE system: 

 

𝑐𝑈′ − 𝑈′′ + 2𝑈𝑈′ + 𝜆 (𝑈𝑉)′ = 0 (18) 

 

cV′ − V′′ + 2VV′ + μ (UV)′ = 0 (19) 

 

Balancing number 𝑛 = 1 can be obtained by balancing 𝑈′′ 

and 𝑈𝑈′  and 𝑚 = 1 can be obtained by 𝑉′′ and 𝑉𝑉′  in Eqs. 

(18)-(19). The solutions can be expressed as follow: 

 
𝑈 = 𝑎0 + 𝑎1𝜑, 𝑉 =  𝑏0 + 𝑏1𝜑 (20) 

 

where, 𝑎0 ,  𝑎1 , 𝑏0 , 𝑏1  are unknown constant. We are 

subsuming Eq. (17) into Eq. (19) along with Eq. (20) to collect 

all the coefficient with the same power of (𝜑)𝑖 and equate to 

zero and we solving the system of algebraic equation by using 

the Maple for obtained the following result. 

 

Case 1:              𝑎0 = −
𝜆−1

𝜆𝜇−1
,  𝑎1 =

−𝜆+1

𝜇𝜆−1
, 

𝑏0 =  
−𝜇 + 1

𝜇𝜆 − 1
, 𝑏1 = −

−𝜇 + 1

𝜇𝜆 − 1
, 𝑐 = 1 

 

𝑢1 =
3

2
(

−𝜆+1

𝜇𝜆−1
) −

1

2
(

−𝜆+1

𝜇𝜆−1
)tanh (

𝑟

2
)  (21) 

 

𝑣1 =
1

2
(

−𝜇+1

𝜇𝜆−1
) + (

−𝜇+1

𝜇𝜆−1
)tanh (

𝑟

2
)  (22) 

 

Case 2:    𝑎0 = 0,  𝑎1 = −
−𝜆+1

𝜇𝜆−1
, 𝑏0 =  0,  𝑏1 = −

−𝜇+1

𝜇𝜆−1
, 𝑐 =

−1 
 

𝑢2 = −
1

2
(

−𝜆+1

𝜇𝜆−1
) −

1

2
(

−𝜆+1

𝜇𝜆−1
)tanh (

𝑟

2
)  (23) 

 

𝑣2 = −
1

2
(

−𝜇+1

𝜇𝜆−1
) −

1

2
(

−𝜇+1

𝜇𝜆−1
)tanh (

𝑟

2
)  (24) 

 

Case 3:        𝑎0 = 0,  𝑎1 = 0, 𝑏0 =  −1, 𝑏1 = 1, 𝑐 = 1 
 

𝑣3 = −
1

2
−

1

2
tanh (

𝑟

2
)  (25) 

 

Case 4:          𝑎0 =  𝑎1 = 0, 𝑏0 =  0, 𝑏1 = 1, 𝑐 = 1 
 

𝑣4 =
1

2
−

1

2
tanh (

𝑟

2
)  (26) 

 

Case 5:          𝑎0 = −1,  𝑎1 = 1, 𝑏0 =  𝑏1 = 0, 𝑐 = 1 
 

𝑢5 = −
1

2
−

1

2
tanh (

𝑟

2
)  (27) 

 

Case 6:          𝑎0 = 0,  𝑎1 = 1, 𝑏0 =  𝑏1 = 0, 𝑐 = −1 
 

𝑢6 =
1

2
−

1

2
tanh (

𝑟

2
)  (28) 

 

Next, we compare between the exact solution of Eq. (23) 

solved by our methods with exact solution of Eqs. (4)-(5) by 

(
𝐺

𝐺′) − expansion method we obtained the same solution under 

special value of 𝑝 = 𝑞 = 2𝜎 = 1, 𝜇 = 0, 𝐶1 = 0, 𝐶2 = 1, 𝜂 =
−1

4
, 𝑝0 = 𝑞0 =

−1

2
 as shown in Table 1. 

 

Table 1. Comparison between exact solution of proposed 

method with (
𝐺

𝐺′)-expansion method [23] 

 

(
𝑮

𝑮′) −Expansion 

Method  
Proposed Method 

If 𝑝 = 𝑞 = 2𝜎 = 1, 𝜇 =
0, 𝐶1 = 0, 𝐶2 = 1, 𝜂 =
−1

4
, 𝑝0 = 𝑞0 =

−1

2
 then 

Eqs. (4)-(5) became 

𝑢 = −
1

2
−

1

2
tanh (

𝜉

2
) 

Eqs. (25)-(27) are 

 

𝑣3 = −
1

2
−

1

2
tanh (

𝑟

2
) 

𝑢5 = −
1

2
−

1

2
tanh (

𝑟

2
) 

 

4.2 The conformable fractional form GL equation 

 

Consider the conformable fractional form GL equation [24]: 

 

𝐷𝑡
𝛼𝑢 − 2𝑘𝐷𝑥

𝛼𝑢 − 𝛽𝑢𝐷𝑥
𝛼𝑢 − 𝜒𝐷𝑥

𝛼𝑢𝐷𝑥
2𝛼𝑢 − 𝜇𝐷𝑡𝑥𝑥

3𝛼 𝑢 −
𝛾𝐷𝑥𝑥𝑥

3𝛼 𝑢 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1  
(29) 

 

The investigation of real constants and consideration of 

fractional transformation. 
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𝑈(𝑥, 𝑡) =  𝑢(𝜉), 𝜉 =
𝑥𝛼

𝛼
− 𝜆

𝑡𝛼

𝛼
  (30) 

 

where, 𝜆 is a parameter which will be determined later. 

Substituting Eq. (30) in Eq. (29) and integrating we get: 

 

(2𝑘 − 1)𝑈 + 𝜇𝜆𝑈′′ −
𝛽

2
𝑈2 +

(𝛾−𝜒)

2
 (𝑈′)2 − 𝛾𝑈𝑈′ =

0  
(31) 

 

Balancing the highest order derivative and nonlinear we 

obtained: 

 

𝑈(𝑥, 𝑡) = 𝑎0 + 𝑎1φ + 𝑎2𝜑2 (32) 

 

substituting the Eq. (32) in Eq. (29) with derivatives of Eq. (32) 

then as a result we get the system of algebraic equation by 

equating the coefficients to zero and solving the system of 

equation, we get:  

 

Case 1:                    𝑎0 = 0,  𝑎1 = − 𝑎2, 

𝑎2 = 𝑎2, 𝛽 =
−1

2
(

48𝑘𝜇 + 𝜒𝑎2(𝜇 − 1)

𝜇𝜆 − 1
), 

𝜆 = −
−2𝑘

𝜇 − 1
, 𝛾 =

−1

2
χ 

 

𝑢1 =
−1

4
(𝑎2𝑠𝑒𝑐ℎ2 𝜉

2
) −

1

2
(𝑎2)tanh (

𝜉

2
)  (33) 

 

Case 2:                   𝑎0 =
−4𝑘𝜇

𝜒𝜇+𝜒
,  𝑎1 =

48𝑘𝜇2

𝜒𝜇2−𝜒
, 

 𝑎2 =
−48𝑘𝜇2

𝜒𝜇2 − 𝜒
, 𝛽 =

𝜒𝜇

𝜇 + 1
, 

 𝜆 =
−4𝑘𝜇 − 2𝑘

𝜇2 + 2𝜇 + 1
, 𝛾 =

−1

2
χ 

 

𝑢2 =
−4𝑘𝜇

𝜒𝜇+𝜒
+

12𝑘𝜇2

𝜒𝜇2−𝜒
(3 − tanh2 (

𝜉

2
))  (34) 

 

Case 3:                   𝑎0 =
12𝑘𝜇

𝜒𝜇−𝜒
,  𝑎1 =

−12𝑘𝜇

𝜒𝜇−𝜒
, 

𝑎2 = 0, 𝛽 =
1

2
𝜒, 

𝜆 =
−2𝑘

𝜇 − 1
, 𝛾 =

−1

3
χ 

 

𝑢3 =
6𝑘𝜇

𝜒𝜇−𝜒
+

6𝑘𝜇

𝜒𝜇−𝜒
tanh (

𝜉

2
)  (35) 

 

Case 4:             𝑎0 = 0,  𝑎1 =
12𝑘𝜇

𝜒𝜇−𝜒
,  𝑎2 = 0, 𝛽 =

1

2
𝜒, 

𝜆 =
−2𝑘

𝜇 − 1
, 𝛾 =

1

3
χ 

 

𝑢4 =
6𝑘𝜇

𝜒𝜇−𝜒
−

6𝑘𝜇

𝜒𝜇−𝜒
tanh (

𝜉

2
)  (36) 

  
𝑎1

= −𝑎2, 𝑎2 = 𝑎2, 

 

𝛽 =
−1

24

24𝑎2
2𝜒2𝜇 + 36𝑎2

2𝜒2𝜇 − 1152𝑎2𝜒𝑘𝜇2

𝑎2(𝑎2𝜒𝜇2 + 𝑎2𝜒𝜇 − 48𝑘𝜇2)
, 

 

Case 5:                   𝑎0 =
1

24

𝑎2𝜒𝜇+3𝑎2𝜒−48𝑘𝜇+𝐴

𝜒
, 

 

𝜆 =
−1

288

(6𝑎2
2𝜒2𝜇2 + 36𝑎2

2𝜒2𝜇 − 576𝑎2𝜒𝑘𝜇2 + 12𝐴𝑎2𝜒𝜇 + 54𝑎2
2𝜒2 − 1728𝑎2𝜒𝑘𝜇 + 1382𝑘2𝜇2 + 36𝐴𝑎2𝜒)

𝑎2𝜒𝜇2 + 𝑎2𝜒𝜇 − 48𝑘𝜇2 + 𝐴𝜇 + 2𝑎2𝜒
, 

𝛾 =
1

2
𝜒 

 

 

𝑢5 =
1

24

𝑎2𝜒𝜇+3𝑎2𝜒−48𝑘𝜇+𝐴

𝜒
−

1

2
𝑎2 −

3

2
𝑎2 tanh (

𝜉

2
) +

𝑎2

4
𝑡𝑎𝑛ℎ2 (

𝜉

2
),  

(37) 

 

where,  
 

𝐴 = √𝑎2
2𝜒2𝜇2 + 6𝑎2

2𝜒2𝜇 − 96𝑎2𝜒𝑘𝜇2 + 9𝑎2
2𝜒2 + 96𝑎2𝜒kμ + 2304𝑘2𝜇2  

 

Now, we will comparison between the exact solution of Eqs. 

(35)-(36) solved by our methods under the value 𝜇 =
1

2
, 𝑘 =

1 with exact solution of Eqs. (20)-(22) by (
𝐺

𝐺′) −expansion 

method under the special value of 𝜇 =
1

2
, 𝑘 = 3 we obtained 

the same solution shown in Table 2. 
 

Table 2. Comparison between exact solution of HB method 

with (
𝐺

𝐺′)-expansion method [25] 

 

Proposed Method ( 
𝑮

𝑮′)-Expansion Method 

If 𝜇 =
1

2
, 𝑘 = −1 then 

𝑢3 =
6

𝜒
+

6

𝜒
tanh (

𝜉

2
) 

𝑢4 =
6

𝜒
−

6

𝜒
tanh (

𝜉

2
) 

If 𝜇 =
1

2
, 𝑘 = 3 then 

𝑢4 =
6

𝜃
+

6

𝜃
tanh (

𝜂

2
) 

𝑢5 =
6

𝜃
−

6

𝜃
tanh (

𝜂

2
) 

5. STABILITY ANALYSIS 

 

The stability of soliton solutions, as well as the Hamiltonian 

system characteristics is addressed in this section. The 

momentum of the Hamiltonian system (HSM) is given by the 

reference [26]: 

 

𝑄 =
1

2
∫ 𝑢2𝑎2

𝑎1
𝑑𝜉  (38) 

 

where, 𝑢 is the independent variable 𝑎1 , 𝑎2  are arbitrary 

constant. The stability for the attained solutions depends on the 

HBM when satisfying the following condition 
𝜕𝑄

𝜕𝑐
> 0, where 

𝑐 is the speed of waves. 

The generated solutions meet the stability requirement for 

the chosen parameter values. For instance, the solutions to the 

coupled burger equation in Eq. (26) are 0.248684 and Eq. (28) 

are .0.24868. Also, we obtained the result of the GL equation 

of Eq. (33) are 0.0016 and Eq. (36) are 35.753 meet the 

stability condition for the specified parameter values. Hence, 

for the various values of the parameters in the provided range, 

the soliton solutions of the other families likewise meet the 

condition Eq. (38), which has been illustrated graphically in 

the next section. 
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6. RESULT AND DISCUSSION 
 

The efficient homogeneous approach is utilized to solve the 

space-time fractional-coupled Burger’s equation and the 

conformable fractional-form GL equation to get the soliton 

solution. The major focus of this effort is to develop novel and 

more general solutions for fractional order at various 

parameter values. Several different types of solutions have 

been produced in the literature by utilizing various strategies, 

such as trigonometric, hyperbolic, and rational kinds of 

solitary wave solutions by employing the HB method. 

Compared to previous results, we found that our approach is 

new and more comprehensive. Contour graphs are a new 

simulation of 3D graphs that provide more detailed 

information about the physical qualities of the exact solution. 

The physical behaviour of Eq. (11) is summarized and 

illustrated in Figures 1-8. 

 

 
 

Figure 1. Solitary wave 3D graphics of Eq. (21) for 𝑘 =
0.5 , 𝛼 = 1, 𝜇 = 0.2, 𝑥 = −10, … , 10 and 𝑡 = −10, … ,10 

 

 
 

Figure 2. Plot of Eq. (23) for 𝑐 = 2, 𝑥 ∈ [−10, 10], 𝑡 ∈
[−10,10], contours = 3, and Filledregion=true 

 

 
 

Figure 3. The solitary wave 3D graphics of Eq. (26) for 𝛼 =
1, 𝑥 = −10, … , 10 and 𝑡 = −10, … ,10 

 
 

Figure 4. Graphics of Eq. (28) for 𝑐 = 2, 𝛼 = 1, 𝑥 =
−5, … , 5 and 𝑡 = −5, … ,5. Contour =3, filled region=true 

 

 
 

Figure 5. The solitary wave 3D graphics of Eq. (35) for 𝜇 =
0.5, 𝑘 = −1, 𝜆 = 2 𝑥 = −10, … , 10 and 𝑡 = −10, … ,10 

 

 
 

Figure 6. Contour plot of Eq. (33) for 𝜇 = 0.5, 𝑘 = −1, 𝜆 =
2, 𝑥 = −5, … , 5 and 𝑡 = −5, … ,5. Contour=3, 

filledregion=true 

 

The type wave is described from the solution 

𝑢1(𝑥, 𝑡)demonstrated in Figure 1 for choosing the parameter 

value for k=0.5, α=1, μ=0.2 with x=-10, …, 10 and t=-10, …, 

10. Figure 2 shows the stability of the dark solitary wave 

solution for c=2 , x=-10,…, 10, t ∈ [-10,10] contours=3 

Filledregion=true of 𝑢2(𝑥, 𝑡) in the interval [-5,5]. Figure 3 

represents 3D of the solitary wave solution of 𝑣4(𝑥, 𝑡)  at 

distinct values of parameters α=1, x/in[-10, 10] and t\in [-

10,10]. Figure 4 shows graphics stability of 𝑢6(𝑥, 𝑡) for c=2, 

α=1, x=-5, …, 5 and t=-5, …,5. Contour =3, filled region=true 

in the interval [-5,5]. Figure 5 shows the wave structure 

solution for different values of 𝑢3(𝑥, 𝑡) for μ=0.5, k=-1, λ=2 

x=-10, …, 10 and t=-10, …,10 of Eq. (35). Stability of the 

189



 

bright solitary wave solution of 𝑢1(𝑥, 𝑡) in Eq. (33) for μ=0.5, 

k=-1, λ=2, x=-5, …, 5 and t=-5, …,5. Contour= 3 , filled 

region=true is illustrated in Figure 6. Figure 7 presents the 

solitary wave 3D graphics of Eq. (36) for μ=0.5, k=-1, λ=2,x=-

10,…, 10 and t=10,…,10.of 𝑢4(𝑥, 𝑡).  Figure 8 shows the 

stability contour plot of 𝑢4(𝑥, 𝑡) in Eq. (36) for μ=0.5, k=-1, 

λ=2, x=-5,…, 5 and t=-5, …, 5. Contour=3, filled region=true. 

 

 
 

Figure 7. The solitary wave 3D graphics of Eq. (36) for 𝜇 =
0.5, 𝑘 = −1, 𝜆 = 2, 𝑥 = −10, … , 10 and 𝑡 = 10, … ,10 

 

 
 

Figure 8. Contour plot of Eq. (36) for 𝜇 = 0.5, 𝑘 = −1, 𝜆 =
2, 𝑥 = −5, … , 5 and 𝑡 = −5, … ,5. Contour=3, 

Filledregion=true 

 

 

7. CONCLUSION 

 

FPDEs have grown in popularity among scholars and 

practitioners due to their capacity to represent and explain 

complicated phenomena such as boundary value problems. 

However, the existing analytic method is incapable of 

managing the computing work of solutions. Therefore, the 

present work focused on analyzing and formulating an 

analytical method, called HB, for solving some FPDEs. The 

HBM has the ability to obtain close form solutions with less 

computational work. A homogeneous balancing approach was 

used to effectively investigate the space-time fractional-

coupled Burger’s equation. The conformable fractional form 

GL equation was used as a case study to demonstrate the 

accuracy of the HBM in solving nonlinear cases by 

Transforming the given FPDE into a nonlinear ordinary 

differential equation using the 𝛼 -dereivative operator. 

Moreover, the method is found to provide many distinct and 

accurate soliton solutions and we have tested their stability 

using Hamiltonian system properties. The fact that we have 

not observed any breaks or discontinuities in the plotted 

solutions is a good indication of their stability. It's also worthy 

to notice that reducing the value of the order of fractional 

derivative causes the wave to move further from the center. 

This suggests that the fractional derivative plays an important 

role in determining the behavior of the soliton solutions. The 

study has contributed to the field of mathematics by 

theoretically forming the constructed method and establishing 

close-from solutions with less computing work. Therefore, the 

developed HBM can deal with nonlinear FPDEs. Overall, this 

focus is in finding and analyzing soliton solutions for a 

particular nonlinear partial differential equation. Solitons are 

special solutions that have the property of maintaining their 

shape and velocity as they propagate through a medium. They 

have important applications in fields such as optics, fluid 

dynamics, and plasma physics. Among the examples in the 

experimental part of the study, the HBM version that applied 

in this work of HBM of several interesting FPDEs, have been 

created in the study to provide new reliable close from solution 

of the above applications which would contribute in assisting 

researchers to handle potential nonlinear cases with respect to 

these important equations. 
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