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 Ensuring information security is indispensable during data communication among a 

collective of entities. This requirement is exemplified in the context of online voting 

systems (OVS), which necessitate the conduction of fair and transparent elections. A 

pivotal aspect of securing the OVS involves authenticating authorized voters prior to 

vote casting and encrypting the votes before their transfer over a secure channel for 

tallying. The present study centers on the development of a mathematical model for an 

authentication scheme that can be implemented in an OVS to facilitate impartial 

elections. The devised model integrates mathematical and cryptographic principles of 

Galois fields, group codes, and pseudo-random key stream generators to formulate 

individual voter passcodes, thereby providing two-factor authentication. The proposed 

scheme is exemplified through a scenario suitable for orchestrating a medium-scale 

election involving 65,536 voters via an OVS. Furthermore, with the appropriate 

selection of inputs, the model exhibits the capacity to support large-scale elections. 
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1. INTRODUCTION 

 

Cryptology is the study of developing cryptosystems and 

methods to crack the designed cryptosystems. Algorithms are 

designed to encrypt and decrypt information, exchange keys 

used for encryption and decryption, generate keys and hack the 

cryptosystem designed [1]. These algorithms are developed 

from the concepts of mathematical sciences such as finite 

fields, modular arithmetic, matrices etc. and are implemented 

using the programming languages [2]. The security, time and 

space complexity of the developed algorithm is of main 

concern in applying it in real time. The security of a 

cryptosystem is mainly constituted in the cryptographic key 

used to encode data and retrieve it. To safeguard the 

cryptographic key accountable for the security, several key 

exchange protocols are developed depending upon the number 

of communicating parties. These protocols ensure the safe key 

transfer over communication channels. But most of the key 

exchange protocols are prone to the Man-In-The-Middle 

attack which can be eradicated by providing user 

authentication. 

One of the practical scenarios where user authorization and 

authentication are necessary is Election. Election is a fair 

process of electing a candidate based on the number of votes 

casted in favour. This process was manually conducted in 

ancient times. Electronic Voting Machines are invaded over 

time to facilitate elections by conducting them in short 

duration achieving total secrecy. With further onset of 

technology concerning human comfort, online voting systems 

are designed which overcome congestion at polling booths and 

support remote voting. Internet voting is implemented for 

small scale elections [3] but the need for an efficient protocol 

which could be practically implemented for large-scale 

elections is prevalent. 

A Voting System includes three major steps: Registration of 

voters, Vote Casting and Counting. The initial step of a voting 

system assures that no unauthorized voter casts the vote. 

Subsequently, votes are casted by the authorized voters at the 

polling booth which are stored in secret ballots. Finally, the 

encrypted votes are transferred to the counting officer over a 

secure channel for results. The entire framework of a secure 

Voting system is designed to achieve total secrecy and 

individual, eligible and universal verifiability [4, 5]. Internet 

Voting apply mathematical algorithms in software to establish 

the framework of a voting system [4, 6]. 

Porkodi and Sangavai [7] studied secure e-voting scheme 

over Circulant matrices is developed assuming the authenticity 

of the votes casted by the authorized voters. Falkner [8] et al. 

studied the initialization phase of registration operates a 

Pseudo Random Key Stream Generator (PRKG) to generate 

passwords for designing individual secret QR codes for voters. 

These QR Codes are employed by the voters to participate in 

the elections. 

A Pseudo Random Key Stream (PRKS) is a sequence of 

numbers produced by a mathematical algorithm with an input 

seed value. A PRKS is periodic after certain time and an 
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adversary could guess the key stream with the knowledge of 

the input seed value. Our aim of this paper is to develop an 

authentication scheme which provides two-factor 

authentication and overcome the threat of a PRKG. The 

scheme applies an efficient cryptographic technique inspired 

from Amiruddin et al. [9] and Verma and Jain [10] to generate 

multiple keys for voters which authorize them to vote and 

retain the authenticity of the voter. The authentication scheme 

supports the registration phase of an online voting system 

which supports medium to large scale elections. 

Amiruddin et al. [9] found that key generation techniques 

are proposed whose performance is measured by testing the 

algorithm for its key generation speed, key randomness, 

periodicity and complexity of the algorithm. Verma and Jain 

[10] studied Reed Solomon codes and parity check matrices 

are used in correcting passwords that are entered incorrect by 

the user with minute error. The designed method prompts the 

user with the correct password characters by retaining the 

security. In Cody Planteen [11], a method is proposed to 

develop a cryptographic key using the biometric fingerprints 

of a user. 

The proposed authentication scheme in this paper is 

procured through the following mathematical and 

cryptographic concepts: 

 

1.1 Galois field 𝐆𝐅(𝟐𝐦) 
 

A Galois field is a field which has finite number of elements 

whose order is either a prime or a prime power. The elements 

of a Galois field GF(2m) can be identified as polynomials of a 

maximum degree of (𝑚 − 1)  or group of 𝑚  bits which 

comprises of either 0s or 1s. When the elements are in the form 

of polynomials in GF(2m)  over a chosen irreducible 

polynomial of degree 𝑚 , the field operations are addition 

modulo 2 and multiplication modulo 2. Due to the modulo 2 

operations performed, the polynomials can be mapped to the 

group of binary bits. In Galois field GF(2m) , the chosen 

irreducible polynomial of degree 𝑚 plays an important role in 

identifying the elements of the field. With the change in the 

chosen irreducible polynomial, the mapping of polynomials 

with their equivalent group of 𝑚 bits consisting of 0s and 1s 

differ [12, 13]. 

 

1.2 Subfields of 𝐆𝐅(𝟐𝐦) 
 

A subset of Galois field GF(2m) is its subfield if it is a field 

with respect to the same operations. The order of a subfield of 

GF(2m), is necessarily a power (𝑛) of 2 where 𝑛 divides 𝑚. 

Thus, the total number of subfields of a field of order 2m is 

equal to the number of positive divisors of 𝑚. The subfield of 

GF(2m) can be constructed by means of a primitive element 

of GF(2m). In the section 3 of this paper, the subfields of a 

Galois field GF(28) are constructed [12, 13]. 

 

1.3 Group codes 

 

A group code 𝐵𝑎 is a collection of block codes which forms 

a subgroup of an abelian group 𝐵𝑏  where 𝑎 < 𝑏 and order of 

𝐵𝑎 = 2𝑎. An encoding function is a mapping from 𝐵𝑚 to 𝐵𝑛 

where 𝑚 < 𝑛. The set comprising of all the elements of 𝐵𝑚 

which are mapped to the elements of 𝐵𝑛 forms a group with 

respect to XOR operation if the last (𝑛 − 𝑚) × (𝑛 −𝑚) sub 

matrix of the parity check matrix of order 𝑚 × (𝑛 − 𝑚) 

chosen is an identity matrix [13]. 

The rest of the paper is organized as follows: Section 2 

presents the methodological approach of the proposed 

authentication scheme for OVS. Section 3 illustrates the 

proposed scheme through an example and describes its 

application in OVM. Section 4 covers the detailed analysis of 

the proposed scheme by describing its security aspects and 

implementation in medium scale elections. Section 5 

concludes the presented work by highlighting its uniqueness, 

merits and applications. 

 

 

2. PROPOSED AUTHENTICATION SCHEME FOR AN 

ONLINE VOTING SYSTEM 

 

In a fair Internet Voting, votes casted by the authorized 

candidates are valid. Hence, to provide authorization to the 

candidates an initial step of registration of voters is performed 

before contesting the election online. During registration, a 

pass code framer can be used to generate a unique pass code 

for each candidate against the input ID of the individual. The 

created ID pass code combination serves as the authentication 

tool while casting the vote. Thus, while voting only the 

authorized candidates could cast vote and the validation of the 

casted vote is achieved through authentication. 

Initially, this paper proposes a pass code framer which is 

designed applying mathematical and cryptographic techniques 

to generate multiple keys/pass codes against individual inputs 

by different users. Further, an authentication scheme 

employing the proposed pass code framer is developed which 

is implemented in an OVS to authorize and authenticate voters. 

 

2.1 Pass code framer 

 

The methodological approach to generate pass code is: 

Step 1: Consider a Galois Field 𝐺𝐹(2𝑎) with an irreducible 

polynomial of degree a (private to the system/central authority 

(CA)). 

Step 2: Calculate the number of proper subfields (𝑞) of the 

chosen Galois Field and their elements. The total number of 

non-repeating elements in 𝑞 subfields is 𝑙. 
Step 3: Define an encoding function 𝑒: 𝐵𝑎 → 𝐵𝑏 , 𝑏 > 𝑎 

which maps the elements of 𝐵𝑎  with some elements of 𝐵𝑏  

using a parity matrix 𝑃 of order (𝑏 − 𝑎) × 𝑎. (Private to the 

CA). 

Step 4: Corresponding to 𝑙 distinct elements of 𝑞 subfields, 

𝑙 different pass codes are generated with respect to a single 

parity check matrix. 

The pass code generation technique is explained through the 

pseudo code: 

 

Parameters: 

• Number of digits in the pass code (chosen by the 

system): 𝑘 

• Number of possible parity matrices: 𝑙 
Inputs to generate pass code: 𝐹𝑜𝑟 𝑖 = 1,2, … , 𝑙, 
• No. of 0s in the code word of 𝐵𝑏  to which an element 

of the subfields of 𝐵𝑎 is mapped: 𝑎[𝑖] (private to the booth). 

• No. of 1s in the code word of 𝐵𝑏  to which an element 

of the subfields of 𝐵𝑎 is mapped: 𝑏[𝑖] (private to the booth). 

• Prime number greater than 𝑘 input by the voter: 𝑐[𝑖] 
(private to the voter) // to support non-repetition of digits in 

the pass code. 
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Output: 

• Array to store the obtained key/pass code values 

corresponding to a booth: 𝐾[𝑘][𝑙] 
 

2.1.1 Pass code generation 

The pseudo code to generate pass code values is: 

𝑆𝑡𝑎𝑟𝑡 
𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑙 
{ 
𝐼𝑛𝑝𝑢𝑡 𝑐[𝑖] 
𝐾[1][𝑖] = 𝑎[𝑖] % 𝑐[𝑖] 
𝐾[2][𝑖] = 𝑏[𝑖] % 𝑐[𝑖] 
𝑓𝑜𝑟 𝑗 = 3 𝑡𝑜 𝑘 

{ 

𝐾[𝑗][𝑖] = {𝐾[𝑗 − 2][𝑖]𝐾[𝑗−1][𝑖] + 𝑗}%𝑐[𝑖] 

} 
} 
𝐸𝑛𝑑 

 

The distinct users input and pass code combinations 

generated for multiple voters are: 

 
(𝑐[𝑖], 𝐾[𝑖][𝑗]) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘, 𝑗 = 1,2,… , 𝑙 (1) 

 

Example: 

 

For a single voter with input values, 𝑘 = 5, 𝑐[1] =
7, 𝑎[1] = 2, 𝑏[1] = 3, the obtained stream values would be: 

𝐾[1][1] = 2%7 = 2 

𝐾[2][1] = 3%7 = 3 

𝐾[3][1] = (23 + 3)%7 = 4 

𝐾[4][1] = (34 + 4)%7 = 1 

𝐾[5][1] = (41)%7 = 4 

The pass code is: (7, 23414) 
 

However, the input by the voter can be taken in the form of 

fingerprints or unique Voter IDs. The proposed pass code 

framer requires a prime number greater than k as a user input. 

An algorithm could be applied essentially to convert the input 

by the voter to the required prime number. 

 

2.2 Deployment of pass code framer in the authentication 

scheme for OVS 

 

In an OVS, voter needs to be authorized to cast vote. The 

voter is authorized by assigning a unique ID and pass code 

combination. This combination is used to authenticate the 

voter before vote casting. The proposed mathematical model 

of authentication scheme employing pass code framer is: 

Consider a Galois field GF(2a) . The total number of 

elements in the proper subfields of GF(2a) is l. Consider an 

encoding function e: Ba → Bb as described in step 3 of section 

2.1. The total number of parity matrices is 2((b−a)(2a−b)). 
Each distinct element of the subfields is mapped with a 

unique element of Ba which is private to the booth. Therefore, 

maximum number of booths possible =l. 

Different pass codes are generated corresponding to distinct 

elements of subfields and the chosen parity matrix. Therefore, 

maximum number of voters in a single booth=number of 

parity matrices= 2((b−a)(2a−b)). 
Each voter is assigned a single booth where the private key 

of the booth is a codeword of Ba which is mapped to a unique 

codeword in  Bb . The codeword in Bb  is converted to its 

decimal form which serves as the first part of the pass code. 

The input by the voter: c[i], number of 0s in the codeword 

of Bb of the specified booth: a[i] , number of 1s in the 

codeword of Bb of the specified booth: b[i], is fed to the pass 

code framer which yields the pass code K[i][j]. 
The pass code (c[i], P1, P2)  comprises of two segments 

P1, P2, where, 

c[i]=Voter ID,  

P1=Decimal equivalent of the codeword in Bb and 

P2=K[i]. 

The first part of the pass code is verified by converting the 

decimal value to its equivalent binary value which is further 

decoded to retrieve the codeword in Ba  (private key of the 

booth) by dropping the last (𝑏 − 𝑎) bits of the codeword in Bb. 

The second part of the pass code is verified by matching the 

pass code-Id combination stored in the vault. 

 

 

3. IMPLEMENTATION OF THE PROPOSED 

AUTHENTICATION SCHEME IN AN ONLINE 

VOTING SYSTEM 

 

The proposed method is implemented through the example 

below: 

 

Step 1: 

Consider a Galois Field 𝐺𝐹(28)  with an irreducible 

polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 . The total number of 

elements in 𝐺𝐹(28) is 256. Let 𝛼 be the root of the polynomial 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 +1. Since the powers of 𝛼 generate all the 

elements of 𝐺𝐹(28)  and its order is 255 therefore 𝛼  is the 

primitive element of 𝐺𝐹(28). 
The example of identifying an element 𝛼9  of the Galois 

field 𝐺𝐹(28) with an irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 +
𝑥2 + 1: 

 

α9 = α. α8 

= α. (α4 + α3 + α2 + 1) 
= (𝛼5 + 𝛼4 + 𝛼3 + 𝛼) 

 

The vector associated with the polynomial α5 + α4 + α3 +
𝛼 is calculated as: 

 

𝛂𝟕 𝛂𝟔 𝛂𝟓 𝛂𝟒 𝛂𝟑 𝛂𝟐 𝛂𝟏 𝛂𝟎 

0 0 1 1 1 0 1 0 

 

The elements of 𝐺𝐹(28) and the vector associated to each 

element of the field is tabulated in the Table 1.  

 

Step 2: 

The number of proper subfields of GF(28)  are: q =
(Number of positive divisors of 8) − 1 = 3 , which are 

F2, F22 and F24. 

Here, o(F2) = 2, o(F22) = 4 and o(F24) = 16. 

Let us consider one of the primitive elements of GF(28), α 

for tracing the elements of the subfields F2, F22 and F24. 

 

𝐹2 = {0} ∪< 𝛼
255
1 >= {0,1} = {00000000, 00000001} 

𝐹22 = {0} ∪< 𝛼
255
3 > 

= {0, 1, 𝛼85, 𝛼170} 
= {0, 1, 𝛼7 + 𝛼6 + 𝛼4+𝛼2 + 𝛼, 𝛼7 + 𝛼6 + 𝛼4+𝛼2 + 𝛼 + 1} 
= {00000000, 00000001, 11010110, 11010111} 
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𝐹24 = {0} ∪< 𝛼
255
15 > 

= {
0,1, 𝛼17, 𝛼34, 𝛼51, 𝛼68, 𝛼85, 𝛼102, 𝛼119, 𝛼136,

𝛼153, 𝛼170, 𝛼187, 𝛼204, 𝛼221, 𝛼238
} 

=

{

0,1, (𝛼7 + 𝛼4 + 𝛼3), (𝛼6 + 𝛼3 + 𝛼2 + 𝛼), (𝛼3 + 𝛼),

(𝛼7 + 𝛼4 + 𝛼3 + 1), (𝛼7 + 𝛼6 + 𝛼4 + 𝛼2 + 𝛼),

(𝛼6 + 𝛼2), (𝛼7 + 𝛼4 + 𝛼 + 1),

(𝛼6 + 𝛼3 + 𝛼2 + 𝛼 + 1), (𝛼7 + 𝛼4 + 𝛼),

(𝛼7 + 𝛼6 + 𝛼4 + 𝛼2 + 𝛼 + 1),

(𝛼7 + 𝛼6 + 𝛼4 + 𝛼3 + 𝛼2),

(𝛼7 + 𝛼6 + 𝛼4 + 𝛼3 + 𝛼2 + 1),

(𝛼6 + 𝛼2 + 1), (𝛼3 + 𝛼 + 1) }

= {

00000000, 00000001, 10011000, 01001110, 00001010,
10011001, 11010110, 01000100, 10010011, 01001111,
10010010, 11010111, 11011100, 11011101, 01000101,

00001011

} 

The distinct elements in all the proper subfields of the 

chosen Galois field could be identified only by the person who 

has the knowledge of the chosen Galois field which is private 

to the system. Thus, an adversary has no knowledge of the 

input values which ought to be the no. of 0s and 1s in the code 

words associated with the subfield elements. 

Table 1. Elements of 𝐺𝐹(28)

Primitive Element (𝜶) 
Power 

Polynomial Vector 

𝛼−𝑖𝑛𝑓 0 00000000 

𝛼0 1 00000001 

𝛼1 𝛼 00000010 

𝛼2 𝛼2 00000100 

𝛼3 𝛼3 00001000 

𝛼4 𝛼4 00010000 

𝛼5 𝛼5 00100000 

𝛼6 𝛼6 01000000 

𝛼7 𝛼7 10000000 

𝛼8 𝛼4 + 𝛼3 + 𝛼2 + 1 00011101 

𝛼9 𝛼5 + 𝛼4 + 𝛼3 + 𝛼 00111010 

𝛼10 𝛼6 + 𝛼5 + 𝛼4 + 𝛼2 01110100 

𝛼11 𝛼7 + 𝛼6 + 𝛼5 + 𝛼3 11101000 

𝛼12 𝛼7 + 𝛼6 + 𝛼3 + 𝛼2 + 1 11001101 

𝛼13 𝛼7 + 𝛼2 + 𝛼 + 1 10000111 

𝛼14 𝛼4 + 𝛼 + 1 00010011 

𝛼15 𝛼5 + 𝛼2 + 𝛼 00100110 

𝛼16 𝛼6 + 𝛼3 + 𝛼2 01001100 

𝛼17 𝛼7 + 𝛼4 + 𝛼3 10011000 

𝛼18 𝛼5 + 𝛼3 + 𝛼2 + 1 00101101 

𝛼19 𝛼6 + 𝛼4 + 𝛼3 + 𝛼 01011010 

𝛼20 𝛼7 + 𝛼5 + 𝛼4 + 𝛼2 10110100 

𝛼21 𝛼6 + 𝛼5 + 𝛼4 + 𝛼2 + 1 01110101 

𝛼22 𝛼7 + 𝛼6 + 𝛼5 + 𝛼3 + 𝛼 11101010 

𝛼23 𝛼7 + 𝛼6 + 𝛼3 + 1 11001001 

⋮ ⋮ ⋮ 
𝛼254 𝛼7 + 𝛼3 + 𝛼2 + 𝛼 10001110 

Step 3: 

Let us define an encoding function 𝑒: 𝐵8 → 𝐵10  by

𝑒(𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8) = (𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10)  where

𝑥9 = 𝑥1⊕ 𝑥2⊕𝑥4⊕𝑥6⊕ 𝑥7  and 𝑥10 = 𝑥1⊕ 𝑥3⊕𝑥4⊕
𝑥8 . The parity check matrix is 𝑃 =

[
1 1
1 0

0 1
1 1

0 1
0 0

1 0
0 1

]. 

Different parity matrices in an encoding function yield 

different functional values for the same code word, thereby 

responsible to generate different pass codes. 

Step 4: 

The elements of the subfields F2, F22  and F24  are mapped

with the code words of B8↔B10 corresponding to the defined

encoding function in the step 3 which is depicted in the Table 

2. 

Table 2. Mapping of B8↔B10

Subfield 𝐁𝟖 𝐁𝟏𝟎

F2
00000000 

00000001 

0000000000 

0000000101 

F22

00000000 

00000001 

11010110 

11010111 

0000000000 

0000000101 

1101011010 

1101011111 

F24

00000000 

00000001 

10011000 

01001110 

00001010 

10011001 

11010110 

01000100 

10010011 

01001111 

10010010 

11010111 

11011100 

11011101 

01000101 

00001011 

0000000000 

0000000101 

1001100000 

0100111010 

0000101010 

1001100101 

1101011010 

0100010000 

1001001111 

0100111111 

1001001010 

1101011111 

1101110000 

1101110101 

0100010101 

0000101111 

Excluding the repeated elements in the subfields, a total of 

16 booths are possible in the example whose private keys are 

listed in the Table 3. Therefore, 𝑙 = 16. 

Table 3. Private key of each booth 

Booth 𝐁𝟖 𝐁𝟏𝟎

1 00000000 0000000000 

2 00000001 0000000101 

3 11010110 1101011010 

4 11010111 1101011111 

5 10011000 1001100000 

6 01001110 0100111010 

7 00001010 0000101010 

8 10011001 1001100101 

9 01000100 0100010000 

10 10010011 1001001111 

11 01001111 0100111111 

12 10010010 1001001010 

13 11011100 1101110000 

14 11011101 11011110101 

15 01000101 0100010101 

16 00001011 0000101111 

Step 5: 

The voter inputs the voter ID which is sent as an input to the 

pass code framer. Sequentially, the voter is mapped with one 

of the booths which are uniquely identified through the 

mapped code words. The number of voters that could be 

assigned to a single booth is equal to the number of parity 

check matrices possible through the proposed encoding 

function. The input by the voter, the codeword in B8 which is

assigned to the specified booth and its corresponding code 

word in B10 are fed as an input to the PRKG to compute the

required pass code. The Voter ID and the pass code 

combination are noted by the voter which is used to 
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authenticate the voter to cast vote. The voters who have 

generated their pass codes are registered in the respective 

booths and are considered to be authorized. The process is 

depicted through the Figure 1. Before voting the voters are 

verified at their assigned booths to validate their votes. This is 

performed by capturing their ID and pass code combination 

verified as illustrated in the Figure 2. 

 

 

 
 

Figure 1. Authorization 

 

 
 

Figure 2. Authentication 
 

The pass code framer generates ID and pass code 

combination in three segments where the first segment is the 

ID which determines the assigned booth, the second segment 

is a decimal equivalent to the code word assigned to the 

respective booth which determines the correctness of the booth 

and the third segment is the pass code generated through the 

PRKG which is verified against the stored ID-pass code 

combination. When all the three segments are not a mismatch, 

the voter is considered to be authenticated and allowed to cast 

vote. 
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4. ANALYSIS OF THE PROPOSED SCHEME 

 

4.1 Security aspects 

 

In authentication schemes, passwords are deduced against 

unique Ids applying a PRKG. The derived passwords are 

stored in a vault to verify them against the input Ids to 

authenticate the user. The other way is to generate a One Time 

Pad (OTP) which authenticates the user but is valid for a 

certain instant of time. The OTP generated is also a result of a 

PRKG. A PRKS is periodic after a certain instant of time and 

it can be cracked with the knowledge of the input seed. Also, 

the password-Id combinations are stored in a vault. Hence, the 

vault needs to be protected from an intruder. 

In the proposed scheme, the pass code is generated in two 

segments where the first part authenticates the booth and the 

second segment authenticates the pass code against the input 

voter Id. 

Each booth is assigned a private key which is a codeword 

in  B8 . The assigned codeword is an element of the proper 

subfields of the Galois Field GF(28). The first part of the pass 

code is a decimal equivalent of the codeword in B10 which is 

the encoding functional value of the private key (codeword in 

B8 ) of the booth. An intruder could convert the decimal 

equivalent to a code word in B10 but to reach the private key 

one must have the knowledge of the group code B8 and the 

encoding function which are private to the system. Hence, the 

first segment of the pass code is secure. 

An intruder can access the data as an authenticated user only 

when both the segments of the pass code are entered correctly. 

Although the second part of the pass code is a strong PRKS 

generated through a PRKG but the input values to the PRKG 

hail from the first part of the pas code which is resistant to 

adversarial attacks. The analysis of the applied PRKG is 

deployed in reference [14]. The PRKG algorithm is 

implemented using a DEV C++compiler on an Intel CORE i3 

processor with a speed of 1.70GHz and 4.00GB RAM using 

Windows 8.1 64-bit Operating System. The time taken to 

generate a single pass code through the PRKG is less than a 

millisecond which ensures the efficiency of the PRKG. 

 

4.2 Applicability of the model in medium scale elections 

 

In the example discussed, with a change in the parity check 

matrix, different pass codes can be produced with regard to the 

same element in B8 . In fact, 212 different parity check 

matrices can be used for generating different keys with the 

same combination of GF(28) , B8  and B10 . Thus, a single 

element of the subfield serves as the private key to the booth 

which could accommodate 212 voters. Since the total number 

of elements in the subfields of B8 are 16, therefore the total 

number of voters with authorization cannot exceed 212 ∗ 16 =
65,536. For the illustration provided above, the contesting of 

election is feasible for a maximum of 65,536 number of 

participants. Thus, the developed model is applicable in 

Internet Voting to organize medium scale elections. 

The proposed method can entertain a large scale election by 

applying encoding function from B8 to Bm where m > 10 to 

increase the number of voters in each booth. Also, with a 

suitable choice of m in a Galois field GF(2m), the number of 

election participants could be increased as the number of 

subfields depends on the value of m. With a change in the 

chosen irreducible polynomial, the same configuration can be 

used for generating different pass codes for the same election 

participants. 

 

 

5. CONCLUSIONS 

 

An efficient and secure pass code generation technique is 

proposed applying mathematical and cryptographic tools 

whose application in an OVS is witnessed. PRKG are periodic 

over a certain instant of time and rely on a predictable input 

seed value. The developed authentication scheme is 

advantageous over the systems which apply only Pseudo 

random numbers generators to authenticate the user. Our 

method ensures a two-factor authentication by generating the 

pass code in two segments. The first segment of the pass code 

is reliable and retains security as long as the encoding function, 

Galois field and the irreducible polynomial utilized in the 

method are private to the system. The developed method 

facilitates authorization and authentication in medium scale 

elections with a suitable choice of the chosen Galois field 

GF(2a)  and the domain Baand co-domain  Bb , b > 𝑎  of the 

encoding function e and hence satisfies the important criteria 

of eligibility in an e-Voting scheme. The proposed model is 

also helpful in telemedicine to provide authorization and 

authentication to the legitimate parties involved in an e-HCS 

platform. 
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