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In this article, we investigate a hybrid difference scheme for finding the numerical 

solution of a singularly perturbed second-order reaction-diffusion problem with a 

discontinuous source term. Such types of problems arise in the modeling of 

semiconductor devices and geophysical fluid dynamics etc. Solutions of these types of 

problems are difficult to obtain due to the presence of boundary and interior layers. A 

hybrid difference scheme i.e., cubic spline method and central finite difference 

approach, are applied on a fine region and coarse region, respectively. Shishkin mesh 

is utilized to generate the mesh point for the given domain. We use a second-order 

hybrid difference operator at the point of discontinuity. The solution rapidly changes in 

the interior layers and boundary layer. Truncation error is studied, and the stability of 

the method is analyzed. The proposed method is implemented on two problems, and 

numerical results are compared with the existing method, which shows that the 

proposed method is efficient for reducing maximum absolute errors and increasing the 

rate of convergence. 
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1. INTRODUCTION

A challenge in the modeling of semiconductor devices [1] 

is the source of motivation for the knowledge of singularly 

perturbed differential equations having discontinuous source 

terms (DST). A differential equation (DE) whose largest 

derivative term is multiplied by a small positive parameter ε 

and contains a point of discontinuity in the source term and/or 

diffusion coefficient is known as a singularly perturbed 

differential equation with a discontinuous source term. These 

types of problems have an immense application in applied 

mathematics and engineering fields such as chemical reactor 

theory, reaction-diffusion process, quantum mechanics and 

electrical circuits, etc. These problems frequently have 

boundary and interior layers where the solution rapidly differs. 

For the smooth data, the solution of the problem exhibits a 

steep gradient in some part or all of the boundary of an interval, 

and for the non-smooth type data, the solution produces extra 

interior layers. Two main types of singularly perturbed 

problems are taking attention: problems of the reaction-

diffusion kinds where the order is decreased by 1 and 

convection-diffusion kinds where the order is decreased by 2. 

In recent years, the singularly perturbed boundary value 

problem (SPBVP) has drawn much attention from several 

researchers. Various numerical techniques are implemented in 

order to obtain the numerical solution of singularly perturbed 

problems in the literature, more information can be found in 

the books [2-5]. Here we consider a second-order reaction-

diffusion kind boundary value problem: 

( ) ( ) ( ) ( ),L u t b t u t g t t
− +

 − + =   (1) 

(0) , (1)
0 1

u u u u= = (2) 

where, 0 < 𝜀 ≪ 1  is a singular perturbation parameter, 

𝑏(𝑡) ≥ 𝛽(𝑡) > 0 and 𝑔(𝑡) are sufficiently smooth on 𝛹\{𝑤}. 
Here single discontinuity in the source term has occurred at the 

point 𝑤 ∈ 𝛹,  where 𝛹 = (0,1),  𝛹− = (0, 𝑤),  𝛹+ = (𝑤, 1).
Since 𝑔 is discontinuous at 𝑤, the solution 𝑢(𝑡) does not have 

a continuous second-order derivative at 𝑤,  i.e., 𝑢 ∉ 𝐶2(𝛹).
We denote the jump at 𝑤  in any function with [𝑔](𝑤) =
𝑔(𝑤 +) − 𝑔(𝑤 −). 

Farrell et al. [6] applied a finite difference method (FDM) 

using Shishkin mesh for a second-order SPBVP having non-

smooth data and obtained a first-order uniform convergence. 

Roos and Zarin [7] have solved the same problem using 

Galerkin finite element method using the Backhvalov-

Shishkin mesh with convergence two. Shanthi et al. [8] 

obtained a numerical solution of second-order SPBVP with 

discontinuity term in the right-hand side of the inhomogeneous 

equation containing two parameters using the fitted mesh 

method and obtained the error bounds. Researchers have 

solved the SPBVP with discontinuous source terms by 

numerical techniques [9-12] to achieve a better numerical 

solution. Cen et al. [13] obtained fourth-order convergence 

using a high-order finite difference method having interior 

layers. The numerical solution of the two-point boundary 
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value problem having smooth data using splines has been 

studied by several researchers [14-22]. Splines are easy to 

apply with many benefits, as once the solution is calculated, 

one can easily get the spline interpolation information at any 

nodal point. For more details about the splines, reader may 

refer to the books in references [23-25]. Motivated by the 

above work of different researchers, we developed a hybrid 

method of second-order SPBVP having DST and 

discontinuous reaction coefficients. The method consists of a 

standard central FDM applied in the outer layer, and the cubic 

spline method (CSM) is used in the inner layer to preserve the 

monotonicity property. This method minimizes the absolute 

error as compared to the other existing method in the literature 

for the considered problem. 

The paper is organized as follows: Section 2, contains the 

maximum principle, existence theorem, stability, and bounds 

on solution and derivatives. In Section 3, we describe the 

derivation of the cubic spline method, hybrid scheme, and 

Shishkin mesh. Error analysis has been addressed in Section 4. 

Numerical results are provided in Section 5, and the final 

conclusion is summarized in Section 6. 

 

 

2. THEORETICAL RESULTS 

 

This section provides the derivation of the existence 

theorem of a given problem. Also, derivation of maximum 

principle is provided, which is important and useful for 

derivation of stability result. 

 

Theorem 1: The SPBVP (1-2) has a solution 𝑢 ∈ 𝐶1(𝛹) ∩
𝐶2(𝛹− ∪ 𝛹+). 

Proof: Proof by construction. Let 𝑆1, 𝑆2  be the particular 

solution of DE: −𝜀𝑆1
″ + 𝑏(𝑡)𝑆1 = 𝑔, 𝑡 ∈ Ψ− and − 𝜀𝑆2

″ +
𝑏(𝑡)𝑆2 = 𝑔, 𝑡 ∈ Ψ+. 

Consider the function: 
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where, 𝜉1(𝑡), 𝜉2(𝑡) are solutions of BVP given as: 

 

( ) ( ) ( )

( ) ( ) ( )
1 1 1 1

2 2 2 2

0,    , 0 1, 1 0.

0,   , 0 1, 1 1.

b t t

b t t

   

   

− + =  = =

− + =  = =
 

 

and 𝐸, 𝐹 are constant to be chosen so that 𝑆 ∈ 𝐶1(𝛹). Also, 

note that on (0,1), 0 < 𝜉𝑗 < 1, 𝑗 = 1,2. 

Thus 𝜉1, 𝜉2 cannot have an interval maximum or minimum, 

and hence 𝜉1
′ < 0, 𝜉2

′ > 0, 𝑡 ∈ (0,1). 
We wish to choose the constant 𝐸, 𝐹 so that 𝑆 ∈ 𝐶1(𝛹). 

So, we impose the conditions 𝑆(𝑤−) = 𝑆(𝑤+) and 
𝑆 ′(𝑤−) = 𝑆 ′(𝑤+). 

For the constant 𝐸, 𝐹 to exist, we require:  

|
𝜉2(𝑤) − 𝜉1(𝑤)

𝜉2
′ (𝑤) − 𝜉1

′ (𝑤)
| ≠ 0. 

This follows that 𝜉2
′ (𝑤)𝜉1(𝑤) − 𝜉2(𝑤)𝜉1

′ (𝑤) > 0. 
Let 𝐿𝜀 be the differential operator, which is defined as:  

𝐿𝜀𝑢 = −𝜀𝑢″ + 𝑏𝑢. 

Then 𝐿𝜀 satisfies the following maximum principle on 𝛹. 

Theorem 2: (Maximum Principle) Let a function 𝑢(𝑡) ∈

𝐶0(𝛹) ∩ 𝐶1(𝛹) ∩ 𝐶2(𝛹− ∪ 𝛹+) satisfies, 𝑢(0) ≥ 0, 𝑢(1) ≥

0, 𝐿𝜀𝑢(𝑡) ≥ 0, ∀𝑡 ∈ 𝛹− ∪ 𝛹+, [𝑢]𝑤 = 0, [𝑢′]𝑤 ≤

0. Then, 𝑢(𝑡) ≥ 0,∀𝑡 ∈ 𝛹. 
Proof: For the proof refer [9]. 

An immediate consequence of the maximum principle is the 

following stability result. 

Theorem 3: (Stability Result) Let 𝑢(𝑡) be a solution (𝐿𝜀) 

then, ‖𝑢(𝑡)‖𝛹 ≤ max {|𝑢(0)|, |𝑢(1)|,
1

𝛽
‖𝑔‖𝛹−∪𝛹+}. 

Proof: Let 𝛷±(𝑡) = 𝑅 ± 𝑢(𝑡), where 𝑅 =

max {|𝑢(0)|, |𝑢(1)|,
1

𝛽
‖𝑔‖𝛹−∪𝛹+}. 

Obviously, 𝛷±(0) ≥ 0, 𝛷±(1) ≥ 0 and for each 𝑡 ∈ 𝛹− ∪
𝛹+, 𝐿𝜀𝛷±(𝑡) = 𝑏(𝑡)𝑅 ± 𝐿𝜀𝑢(𝑡) ≥ 𝛽𝑅 ± 𝑔(𝑡) ≥ 0. 

Furthermore, since 𝑢 ∈ 𝐶 ′(𝛹) , 𝛷±(𝑤) = ±[𝑢](𝑤) = 0 

and 𝛷±
′ (𝑤) = ±[𝑢′](𝑤) = 0. 

It follows from the maximum principle that: 𝛷±(𝑡) ≥

0  ∀𝑡 ∈ 𝛹, which gives the desired bound on 𝑢. 
To derive the parameter-robust properties of the numerical 

method, we decompose the solution 𝑢𝜀  of Eqs. (1)-(2) into two 

components i.e. regular components 𝑢1𝜀  and singular 

components 𝑢2𝜀 . We write solution 𝑢𝜀  as 𝑢𝜀 = 𝑢1𝜀(𝑡) +
𝑢2𝜀(𝑡). 

The regular component 𝑢1𝜀 is defined to be solution of an 

inhomogeneous system: 𝐿𝜀𝑢1𝜀 = 𝑔 on Ψ− ∪ 𝛹+  with 

conditions 𝑢1𝜀(0) =
𝑔(0)

𝑏(0)
, 𝑢1𝜀(𝑤 −) =

𝑔(𝑤−)

𝑏(𝑤)
, 𝑢1𝜀(𝑤 +) =

𝑔(𝑤+)

𝑏(𝑤)
, 𝑢1𝜀(1) =

𝑔(1)

𝑏(1)
. 

The singular component 𝑢2𝜀  is defined to be solution of 

homogeneous system 𝐿𝜀𝑢2𝜀 = 0 on 𝛹− ∪ 𝛹+  which satifies 

[𝑢2𝜀(𝑤)] = −[𝑢1𝜀(𝑤)], [𝑢2𝜀
′ (𝑤)] = −[𝑢1𝜀

′ (𝑤)], 𝑢2𝜀(0) =
𝑢𝜀(0) − 𝑢1𝜀(0), 𝑢2𝜀(1) = 𝑢𝜀(1) − 𝑢1𝜀(1), where [𝑢](𝑤) =
𝑢(𝑤 +) − 𝑢(𝑤 −)  denotes the jump of any function at 

discontinuity point 𝑤. 
Theorem 4: For each integer i, satisfies 0≤i≤4, the smooth 

𝑢1𝜀(𝑡) and singular 𝑢2𝜀(𝑡) satisfy the bounds. 

 

( )
( )( )
( )( )

1
2

1

1
1

2
2

1 ,

1 ,

i

i

i

C t t

u t

C t t


 

 

− −

− +

 + 


 
 + 


 

( )
( )( )
( )( )

2
1

2

2
2

,

,

i

i

i

C t t

u t

C t t


 

 

−
−

− +

 


 
 


 

 

where, C is a constant independent of 𝜀 and 𝜆1(𝑡) = 𝑒
−𝑡√

𝛽

𝜀 +

𝑒
−(𝑑−𝑡)√

𝛽

𝜀 ,  𝜆2(𝑡) = 𝑒
−(𝑡−𝑑)√

𝛽

𝜀 + 𝑒
−(1−𝑡)√

𝛽

𝜀 . 
Proof: The bounds on the regular and singular components 

and their derivatives can be obtained by adopting the 

procedure fused in Tamilselvan et al. [26]. 

 

 

3. NUMERICAL SCHEMES 

 

In this section, we describe CSM, hybrid scheme and 

Shishkin mesh to generate mesh points. 
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3.1 Cubic spline difference scheme 

 

Cubic spline is a continuous function and has continuous 

first and second derivatives. The basic interpolation and 

approximate integration procedures both benefit from the use 

of the spline as a tool. Its efficiency in numerical 

differentiation, though, stands out as a standout feature. For 

SPBVP, cubic splines are widely utilized to determine the 

solution. We derive the cubic spline scheme on the interval 

𝛹 = [0,1],  where the step size is defined by ℎ𝑖 = 𝑡𝑖+1 −
𝑡𝑖 , 𝑖 = 0, … , 𝑁 − 1. Following is the main properties of cubic 

spline interpolating polynomials 𝑆(𝑡): 

(i) 𝑆(𝑡) is a polynomial of degree three on each subinterval 

[𝑡𝑖 , 𝑡𝑖+1], 0 ≤ 𝑖 ≤ 𝑁 − 1. 
(ii) 𝑆(𝑡)  is twice continuously differentiable function on 

0 ≤ 𝑡 ≤ 1. 

(iii) 𝑆(𝑡𝑖) = 𝑢(𝑡𝑖), 0 ≤ 𝑖 ≤ 𝑁 − 1. 
The expression of cubic spline is as follows: 
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(3) 

 

where, 𝑀𝑖 = 𝑆 ′′(𝑡𝑖), 𝑖 = 0, … , 𝑁.  
The first derivative of 𝑆(𝑡) is given by: 
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(4) 

 

and the second derivative of 𝑆(𝑡) is: 
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From Eq. (4), left-hand first derivative and right-hand first 

derivative is given by: 
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From Eq. (3) and Eq. (5), the function 𝑆(𝑡) and 𝑆″(𝑡) are 

continuous on 𝛹 and for 𝑆 ′(𝑡) to be continuous at the interior 

points 𝑡𝑖 , we have from Eqs. (6)-(7), the following famous 

continuity condition: 
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(8) 

 

Substituting −𝜀𝑀𝑗 + 𝑐(𝑡𝑗)𝑢(𝑡𝑗) = 𝑓(𝑡𝑗), 𝑗 = 𝑖, 𝑖 ± 1, in Eq. 

(8), following system is obtained: 
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(9) 

 

Using the boundary conditions we obtain the system of 

linear algebraic equations, which gives the approximate 

solution i.e. 𝑢0, 𝑢1, … , 𝑢𝑁 at nodal points 𝑡0, 𝑡1, … , 𝑡𝑁. 

 

3.2 Hybrid scheme 

 

The problem (1-2) is discretized by using the CSM and 

central FDM on fine region and outer regions respectively. A 

second order one sided difference approximation is used at the 

point of discontinuity 𝑡𝑖 = 𝑡𝑁

2

= 𝑤, given by: 
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Hence hybrid scheme is given by: 
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with given boundary conditions. 

The associated matrix for Eqs. (11)-(13) is not an M-matrix. 

To hold the monotonicity property of matrix for the hybrid 

scheme, we first find the value of 𝑢𝑁

2
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 from Eq. (13) by 

using CSM. 
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Substituting the values of 𝑢𝑁

2
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 in 𝐿𝑡
𝑁. We get,  
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A hybrid difference approach that is more precise is as 

follows: 
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3.3 Piecewise uniform Shishkin mesh 

 

We use fitted mesh method to construct a mesh on 𝛹− ∪
𝛹+.  We divide the intervals 𝛹− and Ψ+  into three sub-

intervals: 
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1

 satisfies 0 < µ
1

≤
𝑤

4
.  Now, 𝑤, 𝑤 + µ

2
,  𝑤 + µ

2
, 1 −

µ
2

 and 1 − µ
2

, 1 are sub-interval of 𝛹+ and µ2 satisfies  0 <

µ
2

≤
1−𝑤

4
. 

We generate 
𝑁

8
 mesh points on 0,µ

1
),  𝑤 − µ

1
, 𝑤),  𝑤, 𝑤 +

µ
2

,  1 − µ
2

, 1 and 
𝑁

4
 mesh points on µ

1
, 𝑤 − µ

1
),  𝑤 + µ

2
, 1 −

µ
2

. The interior points of the mesh are given as: 

𝛹𝜀
𝑁 = {𝑡𝑖, 1 ≤ 𝑖 ≤

𝑁

2
− 1} ∪ {𝑡𝑖,

𝑁

2
+ 1 ≤ 𝑖 ≤ 𝑁 − 1}  also 

𝑡𝑁

2

= 𝑤  and 𝛹𝜀

𝑁
= {𝑡𝑖}0

𝑁.  For the value of 𝜇1 =
𝑤

4
 and 𝜇2 =

1−𝑤

4
 the mesh becomes uniform. The choice of the 𝜇1 and 𝜇2 is 

very crucial for the convergence of the method and this 

transition points depends on the value of 𝑁, 𝜀 which is defined 

as follows: 
 

𝜇1 = 𝑚𝑖𝑛 {
𝑤

4
, 2√

𝜀

𝛽
𝑙𝑛 𝑁}  and 𝜇2 = 𝑚𝑖𝑛 {

1−𝑤

4
, 2√

𝜀

𝛽
𝑙𝑛 𝑁}  
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The step size in the intervals 0, 𝜇1), 𝑤 − 𝜇1, 𝑤) is ℎ1 =
8𝜇1

𝑁
, 

in the interval 𝜇1, 𝑤 − 𝜇1) step size is ℎ2 =   
4(𝑤 − 2𝜇1)

𝑁
, in the 

interval 𝑤, 𝑤 + 𝜇2 and 1 − 𝜇2, 1 step size is ℎ3 =
8𝜇2

𝑁
 and in 

the interval 𝑤 + 𝜇2, 1 − 𝜇2 step size is ℎ4 =
4(1−𝑤−2𝜇2)

𝑁
. 

 

 

4. ERROR ANALYSIS 

 

This section elaborates truncation error (TE) and stability of 

the proposed method. TE [14] for the hybrid difference 

scheme is defined as follows: 

 

( ) ( )
2

3

, 8
i

iv
i u

h
T u t O N

 −= +   (18) 

 

for 𝑖 = 1, … ,
𝑁

8
− 1,

3𝑁

8
+ 1, … ,

𝑁

2
− 1,

𝑁

2
+ 1, … ,

5𝑁

8
− 1,

7𝑁

8
+

1, … , 𝑁. 
TE is given as: 

 

( )
( )

( ) ( )

1

3 3
31

1

, 3

12

i i

i

i i
i

i i

i u

iv

h h
T u t

h h
u t O N

h h





−

−−

−

− −
= +

 +
+ 

+ 

  (19) 

 

In outer region the truncation error for points other than 

transition points can also be presented as: 

 

( ) ( )3 1 3 1

1 1

,

, , , ,2 i i i i

i i i i

i u

Q t t u Q t t u
T

h h h h

 − +

− −

 
= + 

+  
  (20) 

 

where, 𝑄𝑛(𝑞1, 𝑞2, 𝑟) =
1

𝑛
∫ (𝑞2 − 𝜁)

𝑞2

𝑞1
𝑟𝑛+1(𝜁)𝑑𝜁 is remainder 

term at the transition points 𝑖 =
𝑁

8
,

3𝑁

8
,

5𝑁

8
,

7𝑁

8
. The truncation 

error is given as: 

 

( ) ( )2 1 2 1

1 1

,

, , , ,2 i i i i

i i i i

i u

Q t t u Q t t u
T

h h h h

 − +

− −

 
= + 

+  
  (21) 

 

Theorem 5: Let 𝑢(𝑡) and 𝑢𝑖(𝑡) be the solution of Eqs. (1)-

(2) and Eqs. (11)-(12), respectively. Then the truncation error 

satisfies the following bounds: 

 

(i) |𝑇𝑖,𝑢| ≤ 𝐶𝑁−1𝜀
−1

2 𝛽
−1

2 𝑙𝑛 𝑁  for 0 ≤ 𝑖 <
𝑁

8
,

3𝑁

8
< 𝑖 <

𝑁

2
,

𝑁

2
+ 1 < 𝑖 <

5𝑁

8
,

7𝑁

8
< 𝑖 ≤ 𝑁. 

 

(ii) |𝑇𝑖,𝑢| ≤ 𝐶𝑁−1 (1 − 𝛽
−1

2 𝜀
1

2 𝑙𝑛 𝑁)  for 
𝑁

8
< 𝑖 <

3𝑁

8
,

5𝑁

8
<

𝑖 <
7𝑁

8
. 

 

(iii) |𝑇𝑖,𝑢| ≤ 𝐶𝜀 for 𝑖 =
𝑁

8
,

3𝑁

8
,

5𝑁

8
,

7𝑁

8
. 

 

(iv) |𝑇𝑖,𝑢| ≤ 𝐶𝑁−1𝛽
−1

2 𝑙𝑛 𝑁  for 𝑖 =
𝑁

2
. 

Proof: We divide the following cases: 

Case (i) For 𝑡𝑖 ∈ 0,µ
1

), (𝑤 − µ
1

, 𝑤), (𝑤, 𝑤 + µ
2

), 1 −

µ
2

, 1. 

ℎ1 = ℎ3 = ℎ
′
. 

From Eq. (18) and Theorem 4 i.e., bounds on the derivatives, 

we get: 

|𝑇𝑖,𝑢| ≤
2𝜀−1ℎ

′𝐶1(𝜆1+𝜆2)

8
. 

Using ℎ
′ = 16𝑁−1𝜀

1

2𝛽
−1

2 𝑙𝑛 𝑁 and bounding the 

exponential functions by constants, it is easy to show that, 

|𝑇𝑖,𝑢| ≤ 𝐶𝑁−1𝜀
−1

2 𝛽
−1

2 𝑙𝑛 𝑁  for 0 ≤ 𝑖 <
𝑁

8
,

3𝑁

8
< 𝑖 <

𝑁

2
,  

𝑁

2
+

1 < 𝑖 <
5𝑁

8
,

7𝑁

8
< 𝑖 ≤ 𝑁. 

Case (ii) For 𝑡𝑖 ∈ (µ
1

, 𝑤 − 𝜇1) 

Using ℎ2 =
4(𝑤−2𝜇1)

𝑁
 and from Eq. (19) and Theorem 4 we 

get,  

( )

( )

( )

1 2 1 1 2

1 1 2 1 2

1 1 2 1 2

, 12 12

4 ln

3
1 ln  for .

8 8

i u

C h C h
T

CN w N

N N
CN N i

 

 

 

− −

− −

+
 

 −

 −  

 

 

Similarly, we can show the bound-on truncation error for 
5𝑁

8
< 𝑖 <

7𝑁

8
. 

Case (iii) Transition point at 𝑡𝑁

8

= 𝜇1  and from the 

truncation error in Eq. (21), we have: 
 

( ) ( ), ,
2 2 1, 2 , 1

, 1 1
8

82 1

2
1 2 1

8 81
8

1
82 1

2 1 11 2 2
8 8

8

Q t t u Q t t u
i i i i

T
N h h h hu i i i i

t
N

t u t d
N Nh h h

t
N

t
N

t u t d
N Nh h h

t
N




 


 

 
 − +

= + 
+  − −

 

 
 

    
     −     +     
    −

 
 

 
 

   + 
    

+ −    +    + +
   


 






  

 

Using the bounds on the derivatives and simplifying, we get, 

|𝑇𝑁

8
,𝑢

| ≤ 𝐶𝜀. 

In the similar way at the remaining transition points, we can 

obtain the required truncation error. 

Case (iv) At the point of discontinuity i.e., 𝑡𝑁

2

= 𝑤. 

Using the Eq. (10) at the point of discontinuity and using 

Taylor’s Theorem, we have: 
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( )

( )

1
2 2

2

2

2

, 1
2 2 2 2 2 2

2

2

2 2 2 2

2

2

2 2 2 2

2

4 6
2

4
2

N N

N

N

N N N N N N
u

N

N N N N

N

N N N N

h
T u t h h u t h h u t

h
u t h u t u t u t

h
u t h u t u t

u

+ +

       
   = − + + + + + +     
          

       + + + − +            

      
  − + +     
       

− ( )

( )

2 1
2 2 2 2 2 2

1 2

1 1 1 1

2

2 2

NN N N N N N

N

t h u t h u t h u t

h u t h C e t

−

−

         
  − + − − +            

          

 
  
 

 

 

Bounding exponential functions by constant, we 

have |𝑇𝑖,𝑢| ≤ 𝐶𝑁−1𝛽−1/2𝑙𝑛𝑁, for 𝑖 =
𝑁

2
. 

Hence proved. 

 

 

5. NUMERICAL ILLUSTRATIONS 

 

This section validates, the effectiveness of the proposed 

method and it is implemented on two test problems. Maximum 

absolute error (MAE) is evaluated by using double mesh 

principle which is defined as: 

 

( ) ( )2  and  

=  

max

max

N N N
i i

N
ti

N N

E u t u t

E E .

  







= −

 

 

where, 𝑢𝜀
𝑁(𝑡𝑖) is numerical solution at point 𝑡𝑖 for number of 

mesh points N and perturbation parameter 𝜀  and 𝑢𝜀
2𝑁(𝑡𝑖) is 

numerical solution at point 𝑡𝑖 for number of mesh points 2N. 

The rate of convergence (ROC) is calculated through the 

given below formula: 

 

𝑝𝑁 = 𝑙𝑜𝑔2 (
𝐸𝑁

𝐸2𝑁)  

 

Both the test problems have an interior and boundary layer. 

All the mathematical computations are performed in 

MATLAB software. The problems are solved for maximum 

absolute errors for various values of mesh points and 

perturbation parameter. Tables 1 and 2 show the maximum 

absolute error for example 1 and 2 respectively which is 

compared with example 1 for existing method [6] in Table 3 

and it has been shown that the error obtained using current 

methodology is lesser than the method adopted in study [6]. 

Tables 4 and 5 represent the order of convergence for example 

1 and 2 respectively. Figures 1 and 2 depict the of numerical 

solution of example 1 and 2 for mesh points N=64 and 

perturbation parameter 𝜀 = 2−6. These numerical results are 

in agreement with the theoretical results presented in this paper. 

Example 1: Consider SPBVP (1-2) having: 

( ) ( ) ( ) ( )
0 7       t 0 5

1 0 1  1 0
0 6       t 0 5  

. , . ,
b t ,g t u , u .

. , . ,


= = = =

− 
 

 

 
t 
 

Figure 1. Graphical representation of numerical solution of 

example 1 for N=64 and 𝜀 = 2−6 
 

 
t 

 

Figure 2. Graphical representation of numerical solution of 

example 2 for N=64 and 𝜀 = 2−6 

u  

u 
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Table 1. MAE of example 1 for different values of N and 𝜀 

 

𝜀/𝑁 64 128 256 512 1024 2048 

2−1 
2.1500 

E-03 

1.0062 

E-03 

4.8534 

E-04 

2.3815 

E-04 

1.1794 

E-04 

5.8682 

E-05 

2−2 
3.7700 

E-03 

1.7569 

E-03 

8.4512 

E-04 

4.1406 

E-04 

2.0518 

E-04 

1.0220 

E-04 

2−3 
6.1148 

E-03 

2.8273 

E-03 

1.3689 

E-03 

6.7358 

E-04 

3.3409 

E-04 

1.6637 

E-04 

2−4 
9.0974 

E-03 

4.2614 

E-03 

2.0600 

E-03 

1.0125 

E-03 

5.0187 

E-04 

2.4985 

E-04 

2−5 
1.2967 

E-02 

6.0477 

E-03 

2.9167 

E-03 

1.4318 

E-03 

7.0929 

E-04 

3.5300 

E-04 

2−6 
1.7870 

E-02 

8.3162 

E-03 

4.0071 

E-03 

1.9662 

E-03 

9.7386 

E-04 

4.8462 

E-04 

2−7 
2.4221 

E-02 

1.1310 

E-02 

5.4624 

E-03 

2.6841 

E-03 

1.3304 

E-03 

6.6227 

E-04 

2−8 
3.2494 

E-02 

1.5345 

E-02 

7.4608 

E-03 

3.6790 

E-03 

1.8269 

E-03 

9.1030 

E-04 

𝐸𝑁 
3.2494 

E-02 

1.5345 

E-02 

7.4608 

E-03 

3.6790 

E-03 

1.8269 

E-03 

9.1030 

E-04 

 

Table 2. MAE of example 2 for different values of N and 𝜀 

 
𝜀/𝑁 64 128 256 512 1024 2048 

20 
1.3462 

E-03 

6.6183 

E-04 

3.2959 

E-04 

1.6446 

E-04 

8.2142 

E-05 

4.1049 

E-05 

2−1 
2.3615 

E-03 

1.1489 

E-03 

5.7276 

E-04 

2.8593 

E-04 

1.4285 

E-04 

7.1395 

E-05 

2−2 
3.8059 

E-03 

1.8411 

E-03 

9.0801 

E-04 

4.5359 

E-04 

2.2669 

E-04 

1.1331 

E-04 

2−3 
5.5340 

E-03 

2.6563 

E-03 

1.3042 

E-03 

6.4622 

E-04 

3.2165 

E-04 

1.6060 

E-04 

2−4 
7.7134 

E-03 

3.7310 

E-03 

1.8345 

E-03 

9.0954 

E-04 

4.5286 

E-04 

2.2595 

E-04 

2−5 
1.0231 

E-02 

4.9529 

E-03 

2.4372 

E-03 

1.2090 

E-03 

6.0213 

E-04 

3.0047 

E-04 

2−6 
1.3170 

E-02 

6.3826 

E-03 

3.1441 

E-03 

1.5607 

E-03 

7.7754 

E-04 

3.8808 

E-04 

2−7 
1.6834 

E-02 

8.1928 

E-03 

4.0463 

E-03 

2.0113 

E-03 

1.0028 

E-03 

5.0069 

E-04 

82−
 
2.1672 

E-02 

1.0662 

E-02 

5.2942 

E-03 

2.6384 

E-03 

1.3171 

E-03 

6.5802 

E-04 

𝐸𝑁 
2.1672 

E-02 

1.0662 

E-02 

5.2942 

E-03 

2.6384 

E-03 

1.3171 

E-03 

6.5802 

E-04 

 

Table 3. MAE of example 1 by Farrell et al. [6] for different 

values of N and 𝜀 

 
𝜀/𝑁 64 128 256 512 1024 2048 

2−1 
4.3680 

E-03 

2.1820 

E-03 

1.0890 

E-03 

5.4200 

E-04 

2.6900 

E-04 

1.3200 

E-04 

2−2 
7.7270 

E-03 

3.8600 

E-03 

1.9260 

E-03 

9.5900 

E-04 

4.7600 

E-04 

2.3400 

E-04 

2−3 
1.2746 

E-02 

6.3680 

E-03 

3.1780 

E-03 

1.5830 

E-03 

7.8500 

E-04 

3.8600 

E-04 

2−4 
1.9557 

E-02 

9.7720 

E-03 

4.8760 

E-03 

2.4290 

E-03 

1.2050 

E-03 

5.9300 

E-04 

2−5 
2.8476 

E-02 

1.4233 

E-02 

7.1040 

E-03 

3.5380 

E-03 

1.7550 

E-03 

8.6400 

E-04 

2−6 
4.0484 

E-02 

2.0250 

E-02 

1.0109 

E-02 

5.0350 

E-03 

2.4980 

E-03 

1.2290 

E-03 

2−7 
5.7174 

E-02 

2.8642 

E-02 

1.4303 

E-02 

7.1250 

E-03 

3.5350 

E-03 

1.7390 

E-03 

2−8 
8.0544 

E-02 

4.0467 

E-02 

2.0223 

E-02 

1.0076 

E-02 

4.9990 

E-03 

2.4600 

E-03 

𝐸𝑁 
8.0544 

E-02 

4.0467 

E-02 

2.0223 

E-02 

1.0076 

E-02 

4.9990 

E-03 

2.4600 

E-03 

 

 

Table 4. ROC of example 1 for different values of N and 𝜀 

 

𝜀/𝑁 64 128 256 512 1024 

2−1 1.095 1.052 1.027 1.014 1.007 

2−2 1.102 1.056 1.029 1.013 1.006 

2−3 1.113 1.046 1.023 1.012 1.006 

2−4 1.094 1.049 1.025 1.012 1.006 

2−5 1.100 1.052 1.027 1.013 1.007 

2−6 1.104 1.053 1.027 1.014 1.007 

2−7 1.099 1.050 1.025 1.013 1.006 

2−8 1.082 1.040 1.020 1.010 1.005 

 

Example 2: Consider SPBVP (1-2) having: 

 

𝑏(𝑡) = {
2𝑡 + 1, t ≤ 0.5,
3 − 2𝑡, t > 0.5,

 

𝑔(𝑡) = {
−0.5,  t ≤ 0.5,
0.5,  t > 0.5,

  

𝑢(0) = 1, 𝑢(1) = 𝑔(0).  
 

Table 5. ROC of example 2 for different values of N and 𝜀 

 
𝜀/𝑁 64 128 256 512 1024 

2−1 1.039 1.004 1.002 1.001 1.001 

2−2 1.048 1.020 1.001 1.001 1.000 

2−3 1.059 1.026 1.013 1.007 1.002 

2−4 1.048 1.024 1.012 1.006 1.003 

2−5 1.047 1.023 1.011 1.006 1.003 

2−6 1.045 1.022 1.010 1.005 1.003 

2−7 1.039 1.018 1.008 1.004 1.002 

2−8 1.023 1.010 1.005 1.002 1.001 

 

 

6. CONCLUSIONS 

 

An effective hybrid numerical method is proposed to solve 

SPBVP of reaction-diffusion type with DST. The CSM is 

applied on fine regions and a classical central FDM is applied 

on coarse regions based on Shishkin mesh. The present study 

improves the result by reducing the MAE and increasing ROC. 

Proposed method is applied on two test problems and 

numerical results are compared with the exiting method [6]. It 

gives first order convergence result which satisfy the 

theoretical results. In future, researchers can use some other 

numerical methods like higher order spline method to reduce 

the MAE and increase the ROC. 
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NOMENCLATURE 

 

𝜀 Perturbation parameter 

𝑤 Point of discontinuity 

𝐶1 Continuously first differentiable function 

𝐶2 Twice Continuously differentiable function 

𝐿𝜀 Differential operator 

𝐶 Constant 

𝜇1 and 𝜇2 Transition parameter 

𝑁 Number of mesh points 

𝑝𝑁 Rate of convergence 
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