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Problems exhibiting wave-like characteristics pervade a diverse array of physical 

phenomena, including but not limited to longitudinal vibrations of elastic rods or beams, 

acoustic problems in fluid flow, electric signal transmission along cables, shock waves, 

chemical exchange processes in chromatography, sediment transport in rivers, plasma 

wave behavior, and the propagation of both electric and magnetic fields in the absence 

of charge and dielectric. This study introduces a novel series solution for wave-like 

problems, leveraging a newly developed technique within the Homotopy Perturbation 

Method (HPM). The proposed technique operates in the absence of a need for 

discretization, linearization, or restrictive assumptions, offering distinct advantages 

over conventional methods. This new version of HPM is designed to address wave-like 

problems. The technique rests on the assumption that the required solution can be 

represented as an infinite series sum. The proposed series demonstrates rapid 

convergence through the use of a control parameter. Initially, the parameter's scope is 

determined, followed by the selection of a single value that facilitates convergence. 

Various examples were applied using this technique, yielding satisfactory results. The 

novel version of HPM presented in this study hinges on the concept of representing the 

solution as an infinite series sum. This approach exhibits rapid convergence to the 

precise solution, enabled by the use of a control parameter. The parameter region is 

initially determined, followed by the selection of a single value that ensures 

convergence with a satisfactory sum count. 
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1. INTRODUCTION

Wave-like problems, which describe the propagation of a 

wave or disturbance, are a fundamental aspect of various 

physical systems. These disturbances are not limited to a 

particular domain but permeate a plethora of physical 

phenomena, thereby establishing their universal relevance. 

The list of physical systems influenced by wave-like problems 

includes the vibrations of strings and membranes, longitudinal 

vibrations of elastic rods or beams, acoustic problems 

concerning the velocity potential for sound-transmitting fluid 

flow, and electric signal transmission along cables. Even more 

complex scenarios, such as shock waves, chemical exchange 

processes in chromatography, sediment transport in rivers, 

wave phenomena in plasmas, and the propagation of both 

electric and magnetic fields in the absence of charge and 

dielectrics, can be modeled using wave-like equations [1, 2]. 

In the realm of applied mathematics, wave-like problems 

are often articulated using nonlinear second order wave partial 

differential equations (WPDEs). These WPDEs have been 

instrumental in describing the progression of waves, as 

exhibited in the vibration of strings and membranes. Therefore, 

an effective methodology to solve these equations is crucial 

for advancing our understanding of these physical phenomena. 

The Homotopy Perturbation Method (HPM) emerges as a 

specialized approach in this context, demonstrating its 

effectiveness in treating Partial Integral Equations (PIEs) of 

various types and kinds [3]. The versatility of the HPM is 

underscored by its successful application to a diverse set of 

problems, such as systems of nonlinear coupled equations [4], 

nonlinear Volterra-Hammerstein integral equations [5-7], 

singular Volterra integral equations of the first kind [8, 9], 

singular integro-differential equations [10], stochastic partial 

differential equations [11], and a specific type of Volterra 

integral equations in two-dimensional space [12]. 

Moreover, modifications to the HPM have proven to be 

fruitful in obtaining exact solutions for Nonlinear Integral 

Equations (NIE) [13]. A novel Inverse Iterative Numerical 

Scheme (IINS) is used to examine Eigen functions in 

mathematical treatment of 2nd-order Fredholm integral 

problems a partial differential equation solution technique [14]. 

It uses Homotopy perturbation theory, a well-known approach 

[15]. In this research, we aim to extend the utility of the HPM 

by introducing a novel technique that focuses on solving wave-

like problems. This technique operates without the 

requirement for discretization or linearization, eliminating the 

need for restrictive assumptions that often limit the 

applicability of other methods. This new version of the HPM, 
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designed specifically to address wave-like problems, is 

predicated on the assumption that the required solution can be 

represented as an infinite series sum. Importantly, the 

convergence of the series is expedited through the use of a 

control parameter. The parameter scope is initially determined, 

and then a single value is selected to facilitate rapid 

convergence. 

A series of examples are provided to validate the efficacy of 

this method. These examples have been carefully chosen to 

represent a diverse set of wave-like problems, and the results 

obtained from our method are compared with existing 

solutions to verify the accuracy and speed of convergence. The 

outcomes are promising, showcasing the potential of this novel 

method in dealing with complex wave-like problems. 

The structure of this paper aims to provide a comprehensive 

journey through the development and application of this new 

method. Following this introduction, the paper presents the 

motivation behind this research, explaining the need for such 

a method in the context of wave-like problems. Thereafter, the 

mathematical manipulation and solution strategy are detailed, 

offering a deep dive into the workings of the method. This is 

followed by numerical results obtained from various test cases, 

providing quantitative evidence of the method's effectiveness. 

The discussion section then elaborates on these results, 

providing insights and potential implications. The paper 

concludes with a summary of the research and potential future 

directions. Finally, references are provided to allow readers to 

delve deeper into the concepts discussed. 

 

1.1 Research motivation 

 

The present paper, is a trial to present new version of the 

series method based Homotopy perturbation techniques. As 

far we know from our search in the Homotopy perturbation 

used by different ways, so in our paper, we try to make good 

connection between series and Homotopy perturbation. 

 

1.2 Mathematical manipulation 

 

Consider the following non-linear, 2ndorder, 1-D wave 

equation: 
 

𝜕2𝑇(𝑥,𝑡)

𝜕𝑡2
= ℑ(𝑇)

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
+

𝜕ℑ(𝑇)

𝜕𝑥

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
  (1) 

 

in which: 

 

ℑ(𝑇) = (𝑇(𝑥, 𝑡))
2
 (2) 

 

According to HPM, we can construct a Homotopy 

𝜈(r;𝜁): 𝛺 × [0,1] → ℜ and the domain Ω satisfies: 

 

𝐻(r;𝜁) = (1 − 𝜁)𝐹(𝜈) + 𝑝ℓ(𝜈) = 0 (3) 

 

The term F(ν) is known as FO with known solution T0, 

which can be obtained easily, clearly, we have: 

 

𝐻(v;0) = 𝐹(𝜈) (4) 

 

𝐻(v;1) = ℓ(𝜈) (5) 

 

Applying the Homotopy axioms, and let us construct the 

zero order deformation as follows: 

 

(1 − 𝜁)ℓ[𝜛(𝑟, 𝑡, 𝜁) − 𝑇0(𝑟, 𝑡)] = 𝜁ℏ𝐻(𝑟, 𝑡)𝑁(𝑟, 𝑡, 𝜁) (6) 

 

In Eq. (2): 

ζ: Parameter ∈[0, 1] 

ℓ: Linearoperator 

ℏ: Auxiliary parameter 

T0(r, t): Initial solution 

T(x, t): Exact or approximate required solution 

𝜛(𝑟, 𝑡, 𝜁): Unknown auxiliary function 

The linear operator has the following properties: 
 

𝜛(𝑟, 𝑡, 0) = 𝑇0(𝑟, 𝑡) (7) 
 

𝜛(𝑟, 𝑡, 1) = 𝑇(𝑟, 𝑡) (8) 
 

The next step is to expand 𝜛(𝑟, 𝑡, 𝜁)  in its Taylor’s 

expansion as follows: 
 

𝜛(𝑟, 𝑡, 𝜁) = 𝑇0(𝑟, 𝑡) + ∑ 𝑇𝑗(𝑟, 𝑡)𝜁
𝑚𝑗→∞

𝑗=1   (9) 

 

In Eq. (9): 
 

𝑇𝑗(𝑟, 𝑡) =
1

𝑗!

𝜕𝑗𝜛(𝑟,𝑡,𝜁)

𝜕𝜁𝑚
|
𝜁=0

  (10) 

 

Substituting from Eq. (10) into Eq. (9), the later becomes: 
 

𝜛(𝑟, 𝑡, 𝜁) = 𝑇0(𝑟, 𝑡) + ∑ (
1

𝑗!

𝜕𝑗𝜛(𝑟,𝑡,𝜁)

𝜕𝜁𝑚
|
𝜁=0

) 𝜁𝑚
𝑗→∞

𝑗=1   (11) 

 

The series in Eq. (11), is convergent at ζ=1. 

Eq. (11) at ζ=1 takes the following form: 
 

𝑇(𝑟, 𝑡) = 𝑇0(𝑟, 𝑡) + ∑ 𝑇𝑗(𝑟, 𝑡)
𝑗→∞

𝑗=1   (12) 

 

Eq. (12), should be one of the solutions of N(r, t)=0 

The next step is to find j-derivatives for Eq. (6), i.e., we need 

to find the following derivatives: 
 

𝜕

𝜕𝜁
{(1 − 𝜁)ℓ[𝜛(𝑟, 𝑡, 𝜁) − 𝑇0(𝑟, 𝑡)]} =

𝜕

𝜕𝜁
{𝜁ℏ𝐻(𝑟, 𝑡)𝑁(𝑟, 𝑡, 𝜁)}  

(13) 

 
𝜕2

𝜕𝜁2
{(1 − 𝜁)ℓ[𝜛(𝑟, 𝑡, 𝜁) − 𝑇0(𝑟, 𝑡)]} =

𝜕2

𝜕𝜁2
{𝜁ℏ𝐻(𝑟, 𝑡)𝑁(𝑟, 𝑡, 𝜁)}  

(14) 

 
𝜕3

𝜕𝜁3
{(1 − 𝜁)ℓ[𝜛(𝑟, 𝑡, 𝜁) − 𝑇0(𝑟, 𝑡)]} =

𝜕3

𝜕𝜁3
{𝜁ℏ𝐻(𝑟, 𝑡)𝑁(𝑟, 𝑡, 𝜁)}  

 
𝜕𝑗

𝜕𝜁𝑗
{(1 − 𝜁)ℓ[𝜛(𝑟, 𝑡, 𝜁) − 𝑇0(𝑟, 𝑡)]} =

𝜕𝑗

𝜕𝜁𝑗
{𝜁ℏ𝐻(𝑟, 𝑡)𝑁(𝑟, 𝑡, 𝜁)}  

(15) 

 

Next, each equation from (13) to (15) is then divided by ζ!, 

then last put all at ζ=0, after mathematical manipulations and 

simplifications, one can get the jth -order deformation 

equation: 
 

𝐿{𝑇𝑗(𝑟, 𝑡) − 𝜍𝑗𝑇j-1(𝑟, 𝑡)} = (16) 
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1

(𝑗−1)!
{ℏ𝐻(𝑟, 𝑡)

𝜕𝑗−1𝜛(𝑟,𝑡,𝜁)

𝜕𝜁𝑗−1
}
𝜁=0

  

 

Eq. (16) is in linear form and according to the Homotopy 

procedure, then it could be transformed to system of linear 

equations. The latter system will be solved using any iterative 

method. In the next section, some numerical examples with 

illustrative procedure will be solved. 
 

 

2. SOLUTION STRATEGY 
 

The main criteria of the solution strategy is that how can we 

control the convergence behavior is the determination the 

optimal value for the control parameter ℏ and the later can be 

determined according to the following procedure: 

Step (1): Evaluate 
𝝏𝑻(𝒙,𝒕)

𝝏𝒙
}
𝒙=𝟏,𝒕=𝟏

 

Step (2): Evaluate 
𝝏𝟐𝑻(𝒙,𝒕)

𝝏𝒕𝟐
}
𝒙=𝟏,𝒕=𝟏

 

Step (3): Plot the above two derivatives, and the rejoin 

between the two curves leads to the interval of convergence 

for the control parameter 

Step (4): Take the average value for the control parameter 
 

2.1 Flow chart for solution procedure 
 

In this part, we will write in detail the explanation of the 

method in the form of a flow chart in Figure 1. 

 

 
 

Figure 1. Flow chart for solution procedure 
 

2.2 Numerical results 
 

To test the proposed method, two different examples are 

solved, non-linear, 2nd order partial differential equation, 

followed by a third one is non-Linear, 2nd order, 1-D Wave 

Equation as shown in Figures 2-4. 

 

Test problem (1) 

Solve the following non-linear, 2nd order partial differential 

equation, given by: 
 

𝜕2𝑇(𝑥,𝑡)

𝜕𝑡2
=

𝜕

𝜕𝑥
(

1

𝑇(𝑥,𝑡)
(
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
))  (17) 

 

Eq. (17) will be subjected to the following conditions: 
 

𝑇0(𝑥, 𝑡) = 𝑇(𝑥, 𝑡 = 0) = (1 + 𝑥)−2 
𝜕𝑇(𝑥,𝑡=0)

𝜕𝑡
= 0  

(18) 

 

The jth -order deformation equation corresponding to Eq. 

(17), takes the following form: 

 

𝐿{𝑇𝑗(𝑟, 𝑡) − 𝜍𝑗𝑇j-1(𝑟, 𝑡)} =
1

(𝑗−1)!
{ℏ𝐻(𝑟, 𝑡)

𝜕𝑗−1𝜛(𝑟,𝑡,𝜁)

𝜕𝜁𝑗−1
}
𝜁=0

  
(19) 

 

According to the concept of the jth-order deformation 

equation, the conditions given in Eq. (18), takes the following 

form: 

 

𝑇𝑗(𝑥, 0) = 0 
𝜕𝑇𝑗(𝑥,0)

𝜕𝑡
= 0  

(20) 

 

Therefore, one can get the following: 

 

𝑇1(𝑥, 𝑡) = ℏ𝑡2(1 + 𝑥)−2 
𝑇2(𝑥, 𝑡) = −ℏ(1 + ℏ)𝑡2(1 + 𝑥)−2 
𝑇3(𝑥, 𝑡) = −ℏ(1 + ℏ)2𝑡2(1 + 𝑥)−2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝑇𝑛(𝑥, 𝑡) = −ℏ(1 + ℏ)𝑡n-1(1 + 𝑥)−2 

(21) 

 

Therefore, the series solution takes the following form: 

 

𝑇(𝑥, 𝑡) = (1 + 𝑥)−2 (1 − ℏ𝑡n-1 ∑(1 + ℏ)𝑛−1
∞

𝑛=1

), 

|1 + ℏ| < 1  

(22) 

 

 
 

Figure 2. Results graph due to the present method 

 

Test problem (2) 

Solve the following non-linear, 2nd order partial differential 
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equation, given by: 

 
𝜕2𝑇(𝑥,𝑡)

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝑇-2(𝑥, 𝑡)

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
)  (23) 

 

Eq. (29) will be subjected to the following conditions: 

 

𝑇0(𝑥, 𝑡) = 𝑥 
𝜕𝑇(𝑥,0)

𝜕𝑡
= −𝑥  

(24) 

 

The jth -order deformation equation, takes the following 

form: 

 

𝐿{𝑇𝑗(𝑟, 𝑡) − 𝜍𝑗𝑇j-1(𝑟, 𝑡)} =
1

(𝑗−1)!
{ℏ𝐻(𝑟, 𝑡)

𝜕𝑗−1𝜛(𝑟,𝑡,𝜁)

𝜕𝜁𝑗−1
}
𝜁=0

  
(25) 

 

According to the concept of the jth-order deformation 

equation, the conditions given in Eq. (18), takes the following 

form: 

 

𝑇𝑗(𝑥, 0) = 0 
𝜕𝑇𝑗(𝑥,0)

𝜕𝑡
= 0  

(26) 

 

Let us choose the initial starts as follows: 

 

𝑻𝟎(𝒙, 𝒕) = 𝒙(𝟏 − 𝒕) 
 

Therefore; one can get the following: 

 

𝑇1(𝑥, 𝑡) = 0.1 × ℏ × 𝑡2[−10 + 10t − 5t2 + 𝑡3] × 𝑥 
𝑇2(𝑥, 𝑡) = 0.1 × ℏ × 𝑡2[−10 + 10t − 5t2 + 𝑡3] × 𝑥 

-120-1ℏ2 × 𝑡2[−120 + 120t + 96t3 − 84t4 + 36𝑡5

− 9𝑡6 + 𝑡7] 

(27) 

 

Therefore, the series solution for 10 terms as an 

approximation takes the following form: 

 

𝑇(𝑥, 𝑡) = 𝑥(1 − 𝑡) + (∑ 𝑇𝑛(𝑥, 𝑡)
10
𝑛=1 )  (28) 

 

 
 

Figure 3. Abs. Error between present and analytical at time 

0.15 

 

 
 

Figure 4. Abs. Error between present and analytical at time 

0.15 

 

Table 1. Computations due to the present method 

 
X t=0.15 t=0.30 t=0.45 t=0.60 t=0.75 t=0.9 t=1.00 

0.00 1.02255 1.09 1.2025 1.36 1.5625 1.81 2 

0.25 0.6544 0.6976 0.7696 0.8704 1.0000 1.1584 1.28 

0.50 0.4544 0.4844 0.9344 1.1378 1.3611 1.6044 1.7778 

0.75 0.4318 0.5518 0.6865 0.8359 1.0000 1.1788 1.3061 

1.0 0.3306 0.4225 0.5256 0.6400 0.7656 0.9025 1.0000 

 

Table 2. Abs. error corresponding to ℏ=-1.111 
 

 
Previous 

Results 

Present 

Results 

Previous 

Results 

Present 

Results 

Previous 

Results 

Present 

Results 

Previous 

Results 

Present 

Results 

X t = 0.5 t = 1.0 t = 1.5 t = 2.0 

-3 4.95136×10-10 4.94033×10-10 2.31086×10-6 2.31066×10-6 1.87496×10-3 1.87282×10-3 5.78147×10-5 5.78001×10-5 

-2 3.30098×10-10 3.29998×10-10 1.54057×10-6 1.53937×10-6 1.24997×10-3 1.25001×10-3 3.85432×10-5 3.85002×10-5 

-1 1.65049×10-10 1.65112×10-10 7.70287×10-7 7.69222×10-7 6.24986×10-3 6.24732×10-3 1.92716×10-5 1.92602×10-5 

+1 1.65049×10-10 1.65112×10-10 7.70287×10-7 7.69222×10-7 6.24986×10-3 6.24732×10-3 1.92716×10-5 1.92602×10-5 

+2 3.30098×10-10 3.29998×10-10 1.54057×10-6 1.53937×10-6 1.24997×10-3 1.25001×10-3 3.85432×10-5 3.85002×10-5 

+3 4.95136×10-10 4.94033×10-10 2.31086×10-6 2.31066×10-6 1.87496×10-3 1.87282×10-3 5.78147×10-5 5.78001×10-5 

+4 6.60195×10-10 6.60084×10-10 3.08115×10-6 3.08005×10-6 2.49995×10-3 2.50001×10-3 7.70863×10-5 7.70001×10-5 

 

 

Alanytical Results

0

0.5

1

1.5

1 2 3 4 5

Comparison between present and 

analytical results at time =0.15

0-0.5 0.5-1 1-1.5

Analytical Results

0

0.5

1

1.5

1 2 3 4 5

Comparison between present and 

analytical results at time =0.60

0-0.5 0.5-1 1-1.5
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Table 3. Minimum error 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 9×10-6 9×10-6 9×10-6 9×10-6 9×10-6 9×10-6 9×10-6 

0.2 1.4×10-4 1.5×10-4 1.49×10-4 1.49×10-4 1.5×10-4 1.4×10-4 1.49×10-4 

0.3 2×10-3 2.7×10-3 2.69×10-3 2.7×10-3 2.7×10-3 2.69×10-3 2.7×10-3 

0.4 4.7×10-3 6.8×10-3 6.77×10-3 6.8×10-3 6.77×10-3 6.77×10-3 6.8×10-3 

0.5 1.7×10-2 2.6×10-2 2.58×10-2 1.7×10-2 2.6×10-2 1.7×10-2 2.58×10-2 

0.6 2.9×10-2 4.6×10-2 4.55×10-2 2.9×10-2 4.6×10-2 4.6×10-2 4.55×10-2 

0.7 4.6×10-2 7.5×10-2 7.47×10-2 7.5×10-2 7.47×10-2 7.5×10-2 4.6×10-2 

Test problem (3) 

Non-Linear, 2nd order, 1-D Wave Equation 

Consider 1-D, wave equation with the following boundary 

and initial conditions: 

𝜕2𝑇(𝑥,𝑡)

𝜕𝑡2
− 𝑥2

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
= 𝑥 𝑒𝑥𝑝(𝑡) − (

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
)
2

+ 𝑒𝑥𝑝(2𝑡)

Subject to 

𝑇(𝑥, 0) = 𝑥 

{
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
}
𝑡=0

= 𝑥 

𝑇(0, 𝑡) = 0 

The exact solution T(x, t)=x exp(t) 

Tables 1-3 show the minimum error between the results due 

to the present method and the exact solution at different points 

of spatial variable x (Horizontal first raw) and different times 

(Vertical left column).

2.3 Importance of the problem in practice and the new of 

the proposed method 

The paper introduces new hybrid technique to solve wide 

range of practical problems that can be found in different fields 

of science, engineering, and industry. 

The main difference appear in the present method is that the 

simplicity in sequence and how to control the control 

parameter by knowing its interval then we can move in very 

small one so as we encounter better convergence as shown in 

Figures 5-6. 

Figure 5. The exact solution 

Figure 6. The approximate solution 

3. DISCUSSION

This study undertook the resolution of two distinct 

examples utilizing the method proposed herein, and 

subsequently juxtaposed the results with pre-existing 

analytical and approximate solutions for comparison. The 

methodology for each example began with the determination 

of the convergence zone for the control parameter. 

Subsequently, a unique value within this zone was selected, 

which facilitated the derivation of the corresponding solution. 

Upon review of the results, it can be observed that the present 

solutions align well with previous findings, showcasing 

minimal absolute errors. 

The significant correspondence between the present and 

prior results underscores the efficacy of the proposed method. 

However, a more comprehensive study involving a broader 

range of examples could further validate the robustness and 

general applicability of the introduced technique. Future work 

could also delve into the applicability of this method to other 

types of differential equations, potentially expanding its scope 

beyond wave-like problems. 

4. CONCLUSION

The novel approach proposed in this study hinges on the 

representation of the solution as an infinite series sum. This 

method prioritizes rapid convergence to the accurate solution, 

facilitated by the use of a control parameter. The process 

involves a two-step approach: first, the zone of the parameter 

is selected; then, a single value within this zone is chosen to 

ensure convergence is achieved with a sufficiently large 

number of terms in the series. 
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The current research offers a promising technique to tackle 

wave-like problems without resorting to discretization, 

linearization, or restrictive assumptions. The results 

demonstrate the potential of this method as a versatile tool for 

a variety of wave-like problems. Nevertheless, the method's 

full potential can only be realized through further 

investigations and applications in wider contexts. Future 

research could focus on refining the method and extending its 

utility to other types of Partial Integral Equations, thereby 

contributing to the broader mathematical toolbox for solving 

complex physical problems. 

The proposed technique's effectiveness, coupled with its 

simplicity and flexibility, makes it a promising addition to the 

field of applied mathematics. Further studies and applications 

are warranted to fully explore and exploit the method's 

potential and to address any limitations or challenges that may 

arise in its practical implementation. 
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NOMENCLATURE 

 

HPM Homotopy Perturbation Method 

WPDE Wave Partial Differential Equation 

PIE Pure Integral Equation 

V-H IE Volterra-Hammerstein Integral Equations 

SVIE Systems of Volterra Integral Equations 

SI-DE System of Integro-Differential Equation 

SPDE Systems of Partial Differential Equations 

VIE Volterra Integral Equations 

NIE Nonlinear Integral Equations 

SLFIE System of Linear Fredholm Integral Equations 

FO Functional Operator 
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