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Job-shop production often faces many uncertainties arising from the interaction between 
various resources. The schedule must be robust enough to ensure smooth production under the 
uncertain environment. In this paper, the multi-objective job-shop scheduling problem (JSP) 
is optimized based on the tradeoff between time, cost and robustness. Firstly, a multi-objective 
optimization model was constructed, and the tradeoffs between three objectives, namely, time, 
cost and robustness, were discussed in details. After that, a genetic algorithm (GA) coupling 
non-dominated ranking was designed to solve the multi-objective JSP. Finally, the proposed 
model was verified using an example of JSP and the objective tradeoffs were validated through 
sensitivity analysis. The research findings shed important new light on multi-objective JSP 
under various constraints. 
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1. INTRODUCTION

Many manufacturing enterprises have a limited amount of
resources. During production, these resources continue to 
fluctuate and interact with each other, bottlenecking the 
effective output of job-shops, the basic units of production 
activities. To solve the bottleneck, it is necessary to optimize 
the production process through rational planning of time and 
resources, that is, solve the job-shop scheduling problem (JSP) 
[1-2]. 

Job-shop scheduling should fully rationalize job sequencing 
based on urgency and allocate resources to minimize waste. 
The resulting schedule must be executed strictly by job-shops. 
The JSP is a very complex combinatorial optimization 
problem [3], because various production factors need to be 
considered, namely, the arrival time, processing time and load 
of resources. 

In reality, the production process is often disturbed by 
uncertainties like rework and machine failure. These uncertain 
factors must be taken into account in job-shop scheduling. 
Under the given resources and duration limit, the time, cost 
and robustness of the schedule are deeply correlated and 
highly interactive. All the three indices should be optimized 
simultaneously in job-shop scheduling, in the case that the 
optimization of a single index may undermine that of the other 
indices.  

This paper explores the multi-objective JSP based on the 
tradeoff between time, cost and robustness in uncertain 
environment. Under the constraints of renewable resources, 
the start time of each process was determined, and the schedule 
was prepared to achieve the optimal time, cost and robustness. 

2. LITERATURE REVIEW

In the early 1950s, Johnson et al. [6] set up an objective
function for two-machine scheduling, inspiring a wave of 
research on the JSP. Considering the complexity of job-shop 

scheduling, many simple rules have been developed through 
mathematical and physical methods (e.g. integer 
programming, branch definition and dynamic programming in 
operational research) for theoretical derivation of the optimal 
schedules. Helal et al. [7] proved that, in most cases, the JSP 
is a non-deterministic polynomial-time (NP) hard problem. In 
other words, the optimal solution cannot be obtained by 
polynomial time method, even if the problem is on a small 
scale. To overcome the NP-hardness, several advanced 
algorithms have been applied, either separately or in hybrid 
form, to largescale JSPs, including neural network, genetic 
algorithm (GA), simulated annealing (SA) and chaos 
algorithm. For example, Wang et al. [8] established an 
adaptive rescheduling method for flexible job-shop based on 
the advanced GA. Yan et al. [9] designed a GA to create the 
job-shop scheduling model and algorithm for complex job-
shop scheduling. 

Since job-shop scheduling is fundamentally multi-
objective, the tradeoff between multiple objectives has 
attracted a growing attention [10]. For example, 
Demeulemeester et al. [11] studied the discrete time/cost 
tradeoff problem in deterministic environments and solved it 
by an exact algorithm. Wiesemann et al. [12] described the 
relationship between time and cost by nonlinear function, and 
examined the continuous time/cost tradeoff problem. Erenguc 
et al. [13] explored the resource-constrained time/cost tradeoff 
problem under multi-mode conditions, adopted the branch-
and-bound algorithm to solve the problem, and verified the 
method with an example. Based on decomposition strategy, 
Deirmenci [14] et al. employed precise algorithm to minimize 
the completion time in discrete-time/cost tradeoff of largescale 
JSPs. 

Recent years saw a rising research interests in multi-
objective tradeoff under uncertain environment. For instance, 
Lei et al. [15] studied the tradeoff between time and robustness 
under resource constraint. Mazidi et al. [16] constructed a 
time/cost tradeoff model under stochastic environment and 
solved it with hybrid intelligent optimization algorithm. Hao 
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et al. [17] created a robust scheduling mechanism, constructed 
an optimization model for the minimal time and maximal 
robustness, and solved the model with heuristic algorithm. 
With the aid of the GA, Qi et al. [18] optimized the production 
robustness under uncertain time, and effectively overcame the 
random differences caused by uncertain time. Gomes et al. 
[19] transformed the fuzzy multi-objective resource 
constrained scheduling problem into a single-objective 
combinatorial optimization problem, and obtained a set of 
effective solutions by genetic local search algorithm. Chen et 
al. [20] constructed a mathematic model to prepare the 
benchmark schedule in a specific production environment, and 
measured scheduling stability through the weighting of the 
deviation between expected and actual schedules. 

 
 
3. MODEL CONSTRUCTION 
 
3.1 Problem definition 

 
The production task in job-shop can be expressed as an 

activity-on-node network 𝐺𝐺 = (𝑉𝑉,𝐴𝐴  ) [21], where 𝑉𝑉 =
{0,1,2, … ,𝑛𝑛,𝑛𝑛 + 1} is the set of nodes (jobs) and 𝐴𝐴 is the set 
of directed arcs (logical relations between the jobs). Each job 
starts immediately after the completion of the previous job. 
Two virtual jobs 0 and 𝑛𝑛 + 1 were added to represent the start 
and end of the production task. The two jobs have a time length 
of zero and occupy no resource.  

Let 𝐵𝐵 be the number of renewable resources and D be the 
maximum duration of the production task. For resource k, the 
availability per unit time is denoted as 𝐵𝐵𝑘𝑘, and the occupancy 
cost per unit time as 𝑐𝑐𝑘𝑘. For job i, the start time is denoted as 
𝑠𝑠𝑖𝑖, the processing duration as 𝑑𝑑𝑖𝑖, the demand for resource k as 
𝑟𝑟𝑖𝑖𝑘𝑘, and the delay cost per unit time as 𝑤𝑤𝑖𝑖 .  

The start time of job i was taken as the decision variable of 
the JSP. After all, the first step to prepare a feasible schedule 
is to determine the start time of each job under such constraints 
as the job sequence. In actual job-shop scheduling, a buffer 
time is usually arranged between jobs to minimize the impact 
of uncertainties on the production process, making the 
schedule more robust against interference. The addition of 
buffer time enhances the flexibility of the start time of jobs.  

In this paper, the concept of free time difference (FTD) is 
introduced to measure the buffer time. This concept refers to 
the interval for the start time of the current job under the 
resource constraint, which does not affect the earliest start time 
of the subsequent jobs. The FTD of job i (∆𝑖𝑖) can be defined 
as: 

 
∆𝑖𝑖= min

𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
(𝑠𝑠𝑖𝑖 − 𝑑𝑑𝑖𝑖) − 𝑠𝑠𝑖𝑖 ,     𝑖𝑖 = 0,1, … ,𝑛𝑛 

 
where 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑖𝑖 is the set of subsequent jobs for job i. For job i, 
the subsequent jobs will not be affected, as long as the delay 
caused by uncertainties falls within the FTD. If the delay 
surpasses the FTD, the subsequent jobs will be delayed, 
incurring a delay cost. 

As mentioned before, the FTD helps to enhance schedule 
robustness. But the enhancement per unit of FTD varies from 
job to job. To measure the variation, the cumulative instability 
weight (CIW) was adopted to determine the weight of each job. 
The CIW of job i (CIWi) can be defined as: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑤𝑤𝑖𝑖 + � 𝑤𝑤𝑗𝑗
𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

,    𝑖𝑖 = 0,1, … ,𝑛𝑛 

 
The greater the CIWi, the higher the production loss induced 

by the delay of job i.  
For the three objectives of the JSP, the completion time of 

the production task was expressed by the start time of the 
virtual job 𝑛𝑛 + 1 , and defined as 𝑇𝑇 = 𝑠𝑠𝑛𝑛+1 ; the schedule 
robustness was represented as the weighted total FTD of all 
jobs, and defined as 𝑅𝑅 = ∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 × ∆𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ; the production 
cost was described as all renewable resources occupied by jobs, 
and defined as 𝐶𝐶 = ∑ ∑ 𝑐𝑐𝑘𝑘 × (𝑑𝑑𝑖𝑖 + ∆𝑖𝑖) × 𝑟𝑟𝑖𝑖𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1 . 

Considering the interaction between the T, R and C, this 
paper makes tradeoffs between the three objectives, and 
attempts to minimize T and C and maximize R simultaneously 
under the given conditions. 

 
3.2 Model optimization 

 
In the light of our JSP, the multi-objective optimization 

model was constructed as: 
 

min𝑇𝑇 = 𝑠𝑠𝑛𝑛+1                                   (1) 
 

max𝑅𝑅 = ∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 × ∆𝑖𝑖)𝑛𝑛
𝑖𝑖=1                         (2) 

 
min𝐶𝐶 = ∑ ∑ 𝑐𝑐𝑘𝑘 × (𝑑𝑑𝑖𝑖 + ∆𝑖𝑖) × 𝑟𝑟𝑖𝑖𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1             (3) 

 
s. t. ∑ 𝑟𝑟𝑖𝑖𝑘𝑘 ≤ 𝑅𝑅𝑘𝑘𝑖𝑖∈𝑉𝑉𝑡𝑡 , 𝑡𝑡 = 1,2, … ,𝐷𝐷, 𝑘𝑘 = 1,2, … ,𝐾𝐾     (4) 

 
𝑠𝑠𝑖𝑖 + 𝑑𝑑𝑖𝑖 ≤ 𝑠𝑠𝑗𝑗 , 𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛           (5) 

 
∆𝑖𝑖= min

𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
(𝑠𝑠𝑖𝑖 − 𝑑𝑑𝑖𝑖) − 𝑠𝑠𝑖𝑖 ,     𝑖𝑖 = 0,1, … ,𝑛𝑛         (6) 

 
where 𝑉𝑉𝑡𝑡 is the set of jobs being processed at time t. 

Equations (1)~(3) are the three objectives of our JSP and 
Equations (4) and (5) are the two constraints of the problem. 
Specifically, Equation (1) represents the minimization of the 
production duration, i.e. the start time 𝑠𝑠𝑛𝑛+1 of the virtual job 
𝑛𝑛 + 1 ; Equation (2) means the maximization of schedule 
robustness, i.e. the total FTD weight of all jobs; Equation (3) 
indicates the minimization of production cost, i.e. all 
renewable resources occupied by jobs; Equation (4) requires 
that the amount of occupied resources should not exceed the 
amount of available resources; Equation (5) specifies that a job 
must be processed immediately after the completion of the 
previous job. In addition, Equation (6) provides the way to 
compute the FTD based on the start time of jobs.  

According to the establish model, a schedule for the 
production task can be prepared after determining the start 
time 𝑠𝑠𝑖𝑖 of each job. Each schedule has a fixed time, robustness 
and cost. The values of these three objectives can be adjusted 
by changing the decision variable, i.e. the start time. The three 
objectives can be optimized simultaneously through repeated 
comparison and weighing between different schedules. 

 
3.3 Objective tradeoffs 
 

Our multi-objective optimization model was divided into 
three parts for in-depth discussion. The three parts are the 
time-constrained tradeoff between robustness and cost, the 
robustness-constrained tradeoff between time and cost, and the 
cost-constrained tradeoff between time and robustness.  
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(1) Time-constrained robustness/cost tradeoff 
The sub-model of the time-constrained robustness/cost 

tradeoff can be obtained, after transforming the time objective 
function of our model into a constraint: 

 
s. t.           𝑠𝑠𝑛𝑛+1 ≤ 𝐷𝐷∗                                    (7) 

 
where 𝐷𝐷∗ is the given maximum duration of the production 
task. 

Since the time function has been transformed into a 
constraint, the sub-model has two objective functions, 
respectively for cost and robustness. It can be seen from the 
two functions that both robustness and cost contain the FTD 
∆𝑖𝑖, which depends on the start time 𝑠𝑠𝑖𝑖. The FTD of each job 
can be adjusted by changing the start time and the task duration.   

Without changing the cost value in Equation (3), the 
robustness was maximized to find the optimal combination of 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  and ∆𝑖𝑖 . In other words, the schedule robustness was 
increased by assigning the FTD first to the jobs with high 
CIWs. 

The optimization of robustness and cost is a tradeoff. In a 
certain range, the two variables are positively correlated with 
each other. Both variables will be optimized at the equilibrium 
point of the two objective values. 

(2) Robustness-constrained time/cost tradeoff 
The sub-model of the robustness-constrained time/cost 

tradeoff can be obtained, after transforming the robustness 
objective function of our model into a constraint: 

 
s. t.            ∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 × ∆𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ≥ 𝑅𝑅∗                         (8) 
 

where 𝑅𝑅∗ is the lower bound of schedule robustness. 
Since the robustness function has been transformed into a 

constraint, the sub-model has two objective functions, 
respectively for time and cost. The time/cost tradeoff is to 
minimize the time and cost at the same time. 

The time T has a positive correlation with FTD ∆𝑖𝑖 . The 
longer the T, the greater the FTD ∆𝑖𝑖, the higher the resource 
occupancy. A high resource occupancy means a high cost. The 
inverse is also true. Hence, time and cost are positively 
correlated with each other. The sub-problem is to optimize 
both under the specified constraints. 

(3) Cost-constrained time/robustness tradeoff 
The sub-model of cost-constrained time/robustness tradeoff 

can be obtained, after transforming the cost objective function 
of our model into a constraint: 

 
s. t.     ∑ ∑ 𝑐𝑐𝑘𝑘 × (𝑑𝑑𝑖𝑖 + ∆𝑖𝑖) × 𝑟𝑟𝑖𝑖𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶∗             (9) 

 
where 𝐶𝐶∗ is upper bound of production cost. 

This sub-model attempts to minimize the time and 
maximize the robustness under the cost constraint. Without 
changing the time in Equation (1), the robustness was adjusted 
to find the optimal combination of 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 and ∆𝑖𝑖 . Both time and 
robustness can be optimized at the equilibrium point of the two 
objective values. 
 
 
4. ALGORITHM DESIGN 
 

The multi-objective tradeoff optimization in this paper is an 
NP-hard problem. This chapter puts forward an intelligent 
optimization algorithm to solve the problem. As shown in 
Figure 1, two optimization strategies were designed for 

problem solving, namely, the elite selection strategy for 
genetic replication and the tradeoff strategy for the three 
objectives. The two strategies were combined with the GA to 
improve the convergence speed and operation efficiency. 
 

 
 

Figure 1. The flow chart of the proposed algorithm 
 

4.1 Fitness calculation and solution comparison 
 
Two of the key difficulties in GA solution of multi-objective 

problems are computing individual fitness and comparing 
feasible solutions. Here, the individual fitness is calculated by 
non-dominated ranking (Table 1), and two randomly selected 
chromosomes are compared in the following steps: 

Step 1: For two individuals s1 and s2, their feasible solutions 
were compared in terms of time, robustness and cost. The 
individual with shorter time, higher robustness and lower cost 
was the better one and ranked in front.  

Step 2: The two individuals have no dominance relationship 
if their relative significance could not be judged by the three 
factors. In this case, the two individuals were further compared 
by congestion degree. For each individual, the congestion 
degree of an objective value refers to the closeness of the value 
to the ranking of the individual. The congestion degrees of the 
three objectives were added up and normalized as the overall 
congestion degree of the individual. The higher the result, the 
more significant the individual. 

 
Table 1. An example of non-dominated ranking 

 
Objective function value S1 S2 S3 S4 S5 

Time 20 22 23 18 25 
Robust value 300 280 340 310 380 

Cost 6000 6500 5800 6200 5600 
 
The above two steps were explained with several 

individuals. The three objective values of two individuals s1 
and s2 were firstly compared. Obviously, individual s1 had a 
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shorter time, a higher robustness and a lower cost than 
individual s2, and was thus ranked higher than the latter. 

Next, individuals s1 and s3 were contrasted in terms of the 
three objective values. Compared with individual s3, 
individual s1 had a short time, but a small robustness and a high 
cost. It is impossible to directly determine which individual is 
superior, indicating that the two individuals have no 
dominance relationship. Then, the overall congestion degrees 
of them were computed by Step 2. The results show that 
individual s1 had a larger overall congestion degree than 
individual s3, and was thus ranked ahead of the latter. 

 
4.2 Elite selection 

 
The elite selection strategy is implemented in the following 

steps: 
Step 1: The three objective values of each individual in the 

current population were calculated in turn. Then, the 
dominance relationship, overall congestion degree and relative 
significance of each individual were determined. Finally, all 
individuals were sorted by the non-dominated ranking method. 

Step 2: The top-ranking individuals in the population were 
considered elites, and were directly retained in the next 
generation. 

The retention of the selected elites ensures that the GA will 
gradually converge to the optimal solution, with the increase 
in the number of genetic iterations. 
 
 
5. SIMULATION VERIFICATION  

 
Three different plans (V1, V2 and V3) were designed to 

verify the effect of the proposed algorithm, which is based on 

elite selection and objective tradeoff. V1 is the GA coupling 
non-dominated ranking, V2 is the GA based on objective 
tradeoff, and V3 is the GA integrating objective tradeoff and 
elite selection. The same termination conditions were set for 
all three plans. The parameters of the calculation example are 
listed in Table 2 below. 
 

Table 2. Parameter setting 
 

Parameter Value 
The non-virtual activity number of the 

example N 
10,20,30,40 

The number of examples generated 
under a non-virtual active number 

10 

Number of starting and terminating 
activities of examples 

Random selection 
from 2, 3 and 4 

Maximum number of successive 
activities 

4 

The duration of the activity 𝑑𝑑𝑖𝑖 [1,10] 
Resource requirements for activities 𝑟𝑟𝑖𝑖𝑘𝑘 [1,10] 

Project deadline D D=𝑝𝑝𝐷𝐷 × 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
Resource types K 2 

Availability of resources 𝑅𝑅𝑘𝑘 1.0,1.2,1.4 
Resource cost 𝑐𝑐𝑘𝑘 [1,10] 

Activity weight 𝑤𝑤𝑖𝑖 [1,10] 
 
Three indices were defined to evaluate the algorithm 

performance and compare the three plans: the average 
computing time AT, the average convergence AC, and the 
average solution distribution AD. The three plans of our 
algorithm were simulated at the maximum duration of the 
production task 𝑝𝑝𝐷𝐷=1.8. The simulation results are recorded in 
Table 3 below. 

 
Table 3. Simulation results 

 
N V1 V2 V3 

AT AC AD AT AC AD AT AC AD 
10 13.12 0.39 0.56 13.22 0.38 0.58 13.18 0.32 0.16 
20 22.78 0.46 0.68 22.83 0.44 0.69 21.45 0.34 0.22 
30 38.54 0.41 0.66 38.21 0.37 0.68 35.63 0.38 0.26 
40 42.31 0.32 0.77 42.11 0.33 0.76 41.15 0.45 0.21 

 
Table 4. Sensitivity to maximum duration 

 
N 1.6 1.8 2.0 

ADmin ACmin ARmax ADmin ACmin ARmax ADmin ACmin ARmax 

10 35.21 4321.7 839.3 35.27 4312.8 825.4 35.26 4356.8 826.4 
20 53.63 9341.3 2766.5 53.83 9325.7 2735.4 54.02 9421.5 2861.3 
30 77.82 17235.3 6342.1 77.71 17123.2 6258.9 76.82 17123.5 6421.5 
40 71.21 12362.4 4457.3 71.71 12562.3 4463.5 72.56 13214.5 4572.1 

 
As shown in Table 3, V2 and V3 had smaller AC and greater 

AD than V1 in most cases, indicating that objective tradeoff 
and elite selection can greatly improve the convergence and 
solution distribution.  

Next, V2 was simulated under three new maximum 
durations (𝑝𝑝𝐷𝐷=1.6, 1.8 and 2.0). The sensitivity of V2 to the 
maximum duration was analyzed based on the simulation 
results. 

As shown in Table 4, there was no significant difference for 
ADmin, ACmin and ARmax under the three maximum durations. 
This means the three optimization objectives are all insensitive 
to the maximum duration. 
 

6. CONCLUSIONS 
 
This paper optimizes the multi-objective JSP through the 

tradeoff of time, cost and robustness under uncertain 
environment. Firstly, the research problem was clarified and 
the related variables were defined. Then, a multi-objective 
tradeoff optimization model was constructed, aiming to 
minimize the time and cost and to maximize the time. After 
that, the model was decomposed into three dual-objective sub-
models for in-depth discussion, revealing the tradeoff relations 
between the three objectives. Finally, a GA coupling non-
dominated ranking was designed to solve the established 
model. 
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