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In the field of unmanned aerial vehicle control, the pursuit of robustness and optimality in 

the presence of uncertainties and disturbances remains a paramount challenge, particularly 

for small-scale helicopters. This study addresses the robust optimal control of longitudinal 

and lateral flight dynamics using the mixed sensitivity H∞ norm approach. The focus lies 

on achieving a control system that not only stabilizes but also excels in performance under 

various flight conditions, including hovering and translational maneuvers. The adopted 

methodology commences with the derivation of a mathematical model reflecting the 

system dynamics, characterized by six degrees of freedom and nonlinearities with inherent 

unstable coupling dynamics. Subsequent linearization of this model employs a Taylor 

approximation near an operational point, effectively transforming the complex nonlinear 

system into a more tractable linear form. To incorporate real-world applicability, this 

model is augmented with representations of uncertainties and external disturbances, 

acknowledging the unpredictable nature of aerial environments. The crux of this research 

lies in the implementation of the mixed sensitivity design method for H∞ feedback control. 

This approach is meticulously applied to the longitudinal and lateral motion subsystems, 

with a critical emphasis on maintaining system robustness in the face of the 

aforementioned uncertainties and disturbances. The evaluation of the controller's efficacy 

is based on qualitative performance metrics, such as response speed and overshoot 

characteristics. Simulation results demonstrate that the designed controller adeptly 

manages the intricate multi-input multi-output system, maintaining commendable control 

performance even under deterministic disturbances and noise. These findings contribute 

significantly to the unmanned aerial vehicle field, offering a robust control solution for 

small-scale helicopters that navigate complex environments. The methodology and results 

presented here hold promise for broader applications in unmanned aerial systems, where 

stability and adaptability in uncertain conditions are crucial. 
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1. INTRODUCTION

Recent advancements in drone technology have garnered 

significant attention in both civil and military sectors, owing 

to their multifaceted applications in security, agriculture, and 

emergency response. Among various drone types, unmanned 

small-scale helicopters have emerged as a subject of 

considerable interest. These helicopters are distinguished by 

their complex aerodynamic model, characterized by nonlinear 

dynamics and a six-degree-of-freedom actuation system. This 

introduction reviews pertinent research in the fields of 

modeling and control of these systems, highlighting key 

contributions and identifying gaps in the current state of 

knowledge. 

The mathematical modeling of small-scale helicopter 

dynamics has been a focal point of research. Gavrilets et al. [1] 

presented a seminal work on the dynamic modeling of 

miniature helicopters, specifically a model developed for 

NAZA's 'Minimum-Complexity Helicopter Simulation Math 

Model'. This model's linearization, utilizing Taylor expansion 

approximation at various equilibrium points, was further 

elaborated by Yechout et al. [2]. Concurrently, advancements 

in control techniques for these helicopters have been 

noteworthy. Wang et al. [3] designed a robust controller 

improving roll and pitch attitude control across varying flight 

amplitudes. Comparative studies of robust control techniques, 

such as ADRC and DOBC, for disturbance estimation in 

small-scale helicopters have been investigated by Yu et al. [4]. 

Moreover, integrated approaches for identification and 

control of these systems were explored by Ma et al. [5], while 

Choudhary [6] focused on the H∞ optimal feedback control of 

a twin rotor MIMO system, demonstrating effective cross-

coupling management. However, the evaluation of weight 

functions for controller robustness in Choudhary's study 

warrants further investigation, particularly in disturbance 

rejection and noise measurement. This study aims to extend 

these tests, simulating various disturbance and noise scenarios 

to enhance controller robustness and stability. 
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Other notable contributions include the work of Khalesi et 

al. [7], who explored the dynamics and control of roll and pitch 

in unmanned marine vehicles (UMVs), although their results 

indicated discrepancies in tracking the vertical Euler angle. 

Sahin and Kasnakoğlu [8] concentrated on linearizing UMVs 

around equilibrium points and stabilizing them through local 

controllers. Yan et al. [9] developed an adaptive robust fault-

tolerant control for attitude tracking in helicopters, effectively 

managing actuator faults and external disturbances. 

In the research led by Duan et al. [10], a quaternion-based 

adaptive dynamic surface control method is proposed, 

specifically designed for the attitude tracking of small-scale 

unmanned helicopters, addressing external disturbances and 

uncertain dynamics. Said et al. [11] explored the robustness of 

a H∞ controller based on the mixed sensitivity approach, 

focusing on trajectory tracking of a multivariable quad-rotor 

drone amidst disturbances, and benchmarking it against a PID 

controller. Papalambrou et al. [12] concentrated on the 

selection of optimal weighting functions for robust control, 

quantifying uncertainties and disturbances in line with the 

robustness conditions set by Doyle and Stein [13]. This study 

aims to extend these methodologies, particularly in refining 

the choice of weighting functions to enhance controller 

performance under variable conditions. 

This study addresses a gap in the current literature, which 

predominantly focuses on the hovering maneuver of small-

scale helicopters, a simplification that does not fully 

encapsulate the complexities of their operational dynamics. 

This research expands the scope to include both hovering and 

forward translation flights, taking into account output 

disturbances, noise, and parameter uncertainties. The central 

contribution of this work is the development of an optimal 

robust controller, specifically engineered to ensure precise 

tracking performance under these varied conditions. This 

controller is designed to integrate the full state vector, enabling 

comprehensive tracking of all state variables within the state 

space. 

The structure of the paper is methodically organized into 

five distinct sections. The first section delves into the 

mathematical modeling of the UMV, laying the foundational 

framework for the study. The second section is dedicated to 

describing the H∞ optimal feedback control algorithm, a 

critical component of the research. Following this, the third 

section applies the H∞ optimal feedback controller to the 

helicopter, demonstrating its practical implementation. The 

fourth section presents the results and engages in a detailed 

discussion of the findings. Finally, the paper concludes with a 

summary of the research, its implications, and potential 

avenues for future study. 

 

 

2. SYSTEM MODELING AND CONTROL PROBLEM 

DEFINITION 

 

2.1 System modeling of small-scale unmanned helicopter 

(SSUH) 

 

The SSUH represents an advanced flying machine, capable 

of autonomous or semi-autonomous operations. It is 

increasingly utilized in both military and civilian contexts for 

tasks such as supervision and reconnaissance, offering safe 

and efficient mission execution. The SSUH is characterized as 

a multi-input/multi-output (MIMO) system with six degrees of 

freedom, exhibiting significant nonlinearity and coupling 

effects. 

To accurately model the SSUH, it is essential to formulate 

both translation and rotation equations, treating the helicopter 

as a rigid body. The system's dynamics are defined by time-

varying velocity components (u, v, w) and angular velocities 

(p, q, r), driven by applied forces (X, Y, Z) and moments (L, 

M, N), as depicted in Fig. 1. These axes undergo changes in 

response to the forces and moments acting on the helicopter. 

For the development of a dynamic model, two reference 

frames are indispensable: the Earth frame E[GE, XE, YE, ZE], 
which serves as a stationary reference, and the body frame 

B[GB, XB, YBZB], centered at the helicopter's gravity center G. 

The equations are constructed by considering an arbitrary 

material point O in these frames, including the inertial frame 

(I). 

In the course of the helicopter's motion, all variables are 

expressed in the body frame (B).  
The computation of the absolute acceleration of a material 

point O involves summing the acceleration of Orelative to GB 

and its acceleration relative to the fixed Earth frame 

E[GE, XE, YE, ZE]. This modeling process starts by examining 

the position vector of point O  relative to  GB , thereby 

establishing a comprehensive and precise model of the 

helicopter's dynamics. 

 

 
 

Figure 1. Coordinates of helicopter 

 

In the phase of motion analysis, it is crucial to understand 

the transformation of vectors or points between different 

reference frames, as highlighted by Ding et al. [14]. This study 

utilizes Euler angles (Eq. (1)), as illustrated in Figure 1, to 

facilitate these transformations between the Earth and body 

frames. 

 

𝑅 = 

[

C𝜃C𝜓 C𝜓S 𝜙 S 𝜃− C𝜙S 𝜓 S 𝜙 S 𝜓+ C𝜙C𝜓S 𝜃
C𝜃S 𝜓 C𝜙C𝜓 + S 𝜙 S 𝜃 S 𝜓 C𝜙S 𝜃 S 𝜓− C𝜓S 𝜙
−S 𝜃 C𝜃S 𝜙 C𝜙C𝜃

] 
(1) 

 

where, C𝜃 = cos(𝜃) , S𝜃 = sin (𝜃) 
Considering the system's six degrees of freedom, several 

simplifying assumptions are made to model the helicopter 

dynamics effectively: 

•Solid Body Approximation: The helicopter is treated as a 

rigid, solid body.  

•Neglect of Aerodynamic Forces: Aerodynamic forces, 

which can be complex and difficult to model accurately, are 

neglected in this analysis.  

•Small Angle Approximations: The model employs small 

angle approximations, which assume that the Euler angles are 

sufficiently small so that their higher-order terms can be 

ignored. 
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These assumptions are reasonable and common in the study 

of small-scale helicopters. Due to the reduced dimensions of 

these helicopters, such simplifications allow for a sufficiently 

accurate description of their dynamics. Particularly, the rigid 

body assumption is a standard practice in this research area. 

Moreover, the impact of airflow induced by the main rotor on 

the helicopter's fuselage is considered negligible compared to 

the forces produced by the main and tail rotors, further 

supporting the validity of these assumptions. 

 
2.1.1 SSUH mechanics and kinematics equations 

To construct the nonlinear model of the SSUH, it is essential 

to formulate the equations for forces, moments, and 

kinematics in accordance with Newton's second law, as 

outlined by Venkatesan [15]. These equations form the basis 

for understanding the helicopter's dynamics. 

•Force equations 

 

{
 
 

 
 �̇� = 𝑅𝑉 − 𝑄𝑊 − 𝑔 𝑠𝑖𝑛 𝜃 +

𝑋𝑢
𝑚
            

�̇� = 𝑃𝑊 − 𝑅𝑈 + 𝑔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 +
𝑌𝑣
𝑚
  

�̇� = 𝑄𝑈 − 𝑃𝑉 + 𝑔 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 +
𝑍𝑤
𝑚

 (2) 

 
•Moment equations 

 

{
  
 

  
 �̇� =

𝑃𝑅(𝐼𝑍𝑍 − 𝐼𝑋𝑋)

𝐼𝑌𝑌
+
𝑀

𝐼𝑌𝑌
−
(𝑃2 − 𝑅2)

𝐼𝑌𝑌
𝐼𝑋𝑍   

�̇� = −
𝑄𝑅(𝐼𝑍𝑍 − 𝐼𝑌𝑌)

𝐼𝑋𝑋
+
(�̇� − 𝑃𝑄)

𝐼𝑋𝑋
𝐼𝑋𝑍 +

𝐿

𝐼𝑋𝑋

�̇� = −
𝑃𝑄(𝐼𝑌𝑌 − 𝐼𝑋𝑋)

𝐼𝑍𝑍
−
(𝑄𝑅 − �̇�)

𝐼𝑍𝑍
𝐼𝑋𝑍 +

𝑁

𝐼𝑍𝑍

 (3) 

 
In order to streamline the study of the helicopter's 

characteristics, a simplified mathematical model is adopted. 

The helicopter's hovering position, where all linear and 

angular velocities are zero, is chosen as the equilibrium point. 

Around this point, the nonlinear model of the helicopter is 

linearized using the Taylor approximation technique, a method 

detailed by the studies [16, 17].  

Each motion variable – including forces, moments, and 

Euler angles – is redefined as the sum of a steady-state value 

and a disturbance value. 

 

{
𝑉 = 𝑉0 + 𝑣
𝑈 = 𝑈0 + 𝑢

 {
Θ = Θ0 + 𝜃
Φ = Φ0 + 𝜙

 

{
Ρ = Ρ0 + 𝑝
Q = Q0 + 𝑞

 {
𝑊 = 𝑊0 + 𝑤
𝑅 = 𝑅0 + 𝑟

 
(4) 

 
Ultimately, the linear model of the SSUH is derived, 

succinctly encapsulated in the following equation. 

 

{
 
 

 
 �̇� = −𝑊0𝑞 − 𝑔𝜃 cosΘ0 + 𝑉0𝑟 +

𝑋𝐺𝑀
𝑚

�̇� = −𝑔𝜃 sinΦ1 sinΘ1 +𝑊0𝑝 + 𝑔𝜙 cosΦ1 cosΘ1 +𝑈0𝑟 +
𝑌𝐺𝑀
𝑚

�̇� = 𝑈0𝑞 − 𝑔𝜃 cosΦ0 sinΘ0 − 𝑉0𝑝 − 𝑔𝜙 sinΦ0 cosΘ0 +
𝑍𝐺𝑀
𝑚

 (5) 

 
where [𝑢, 𝑣, 𝑤] represents the velocity vector. 

 

{
  
 

  
 �̇� =

𝐼𝑍𝑍𝐿 + 𝐼𝑍𝑍𝑁

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2

�̇� =
𝑀𝐺𝑀

𝐼𝑌𝑌
              

�̇� =
𝐼𝑋𝑍𝐿 + 𝐼𝑋𝑋𝑁

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2

 (6) 

 

where, [𝑝, 𝑞, 𝑟] is the vector of angular velocities. 

 

{
�̇� = 𝑞 cosΦ0 − 𝑟 sinΦ0                                  

�̇� = 𝑞 sinΦ0 tan Θ0 + 𝑟 cos Θ0 tanΘ0 + 𝑝
 (7) 

 

In practical applications, helicopters typically employ a 

control rotor to enhance physical control. The equations 

representing the control rotor, as noted in the studies [18-21], 

are given below: 

 

{
 

 �̇�𝐶 +
𝛾Ω𝜁

16
𝐵𝐶 =

𝛾Ω𝜁

16
(
𝜃0,𝐶𝑅
𝛾Ω𝜁𝑅

𝑢 −
𝑝

Ω
− 𝛿𝑐) − 𝑞       

�̇�𝑠 +
𝛾Ω𝜁

16
𝐵𝑠 = −

𝛾Ω𝜁

16
(−

𝜃0,𝐶𝑅
𝛾Ω𝜁𝑅

𝑣 +
𝑞

Ω
− 𝛿𝑎) + 𝑝

 (8) 

 

To complete the model, it is necessary to integrate the 

contributions of the control rotor into the equations for forces 

and moments. 

 

2.1.2 SSUH state space model 

The state variables of the helicopter, which describe its 

motion, are encapsulated in the state space representation. This 

representation is defined by the following equations: 

 

{
�̇̅� = 𝐴𝑝�̅� + 𝐵𝑝�̅�

�̅� = 𝐶𝑝�̅� + 𝐷𝑝�̅�
 (9) 

 

where, x̅ is the stat vector, u̅ is the input vector and y̅ is the 

output vector, which are defined as follows: 

 

�̅� = [𝑢 𝑤 𝑞 𝜃 𝑣 𝑝 𝜙 𝑟 𝐵𝑐𝐵𝑠]
𝑇

�̅� = [𝛿𝑒𝛿𝑐𝛿𝑎𝛿𝑝]
𝑇
                     

�̅� = [𝑢 𝑤 𝑞 𝜃 𝑣 𝑝 𝜙 𝑟 𝐵𝑐𝐵𝑠]
𝑇

 (10) 

 

The singular value plot of the helicopter system (the 

nominal system) is depicted in Figure 2. It highlights a 

significant disparity between the maximum and minimum 

singular values, indicating strong coupling between the 

system’s inputs and outputs. Additionally, a peak in the 

maximum singular values suggests the potential for 

oscillations. 

The model's uncertainty is primarily based on variations in 

the helicopter's mass. To facilitate robust control application, 

the uncertainty parameter δ  is defined within a range from -1 

to 1.  

If δ = 0 , Eq. (9) represents the nominal system model; 

otherwise if δ ≠ 0, the helicopter state model is extended to 

include two uncertainty matrices, as shown in Eq. (11). These 

structural uncertainties are represented in the matrices Âp and 

B̂p. 

 

{
�̇̅� = (𝐴𝑝 + 𝛿�̂�𝑝)�̅� + (𝐵𝑝 + 𝛿�̂�𝑝)�̅�

�̅� = 𝐶𝑝�̅� + 𝐷𝑝�̅�                                  
 (11) 
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The singular values of the global system with incertitude are 

shown in Figure 3. 

To simplify the analysis, the system P is divided into two 

interconnected subsystems. The first subsystem encompasses 

the longitudinal and lateral motion, while the second addresses 

the coupled dynamics of heading and heave, as per Budiyono 

et al. [22]. The lateral-longitudinal uncertainties are described 

using Eq. (12): 
 

�̇̅�𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 = 𝐴𝑙𝑙�̅�𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 + 𝐵𝑙𝑙�̅�𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 (12) 

where, 

 

{
�̅�𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 = [𝑢 𝑞 𝜃 𝑣 𝑝 𝜙 𝐵𝑐𝐵𝑠]

𝑇

�̅�𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 = [𝛿𝑎𝛿𝑐]
𝑇                      

 (13) 

The uncertainties for the heading-heave subsystem are 

presented in Eq. (14): 

 

�̇̅�𝑦𝑎𝑤−ℎ𝑒𝑎𝑣 = 𝐴𝑦ℎ�̅�𝑦𝑎𝑤−ℎ𝑒𝑎𝑣 + 𝐵𝑦ℎ�̅�𝑦𝑎𝑤−ℎ𝑒𝑎𝑣  (14) 

 

where, 

 

{
�̅�𝑦𝑎𝑤−ℎ𝑒𝑎𝑣 = [𝑤 𝑟]𝑇 = [0 0]𝑇

�̅�𝑦𝑎𝑤−ℎ𝑒𝑎𝑣 = [𝛿𝑝𝛿𝑒]
𝑇               

 (15) 

 

This study focuses primarily on the first subsystem 

(longitudinal-lateral subsystem).  

The singular values of this subsystem are illustrated in 

Figure 4. 

 

 
 

Figure 2. Principal gains of the nominal system M1 

 

 
 

Figure 3. Principal gains of the incertitude system P 

 

 
 

Figure 4. Principal gains of the incertitude lateral longitudinal system P1 
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2.2 Control problem definition 

 

The task of robustly controlling a helicopter, particularly in 

ensuring its performance and stability during flight amidst 

environmental disturbances and model uncertainties, is 

challenging. This complexity arises from the system's non-

linear nature, its instability across certain flight ranges, and the 

high degree of dynamic coupling. 

The primary aim of this study is to design an optimal robust 

feedback controller. This controller is intended to manage both 

the hovering and translational flights of a SSUH. A key aspect 

of this design is the consideration of system parameter 

uncertainties, particularly in mass, as well as environmental 

disturbances and noise. 

To achieve this objective, the study is underpinned by the 

following assumptions: 

•The incertitude effects is presented by introducing a 

variation factor (δ) on the helicopter mass. 

•The disturbances are included in the system outputs as step 

signal. 

•The noises are presented as low pass filter. 

 

 

3. ROBUST CONTROLLER DESIGN 

 

3.1 Mixed sensitivity 𝑯∞ controller theory 

 

The mixed sensitivity problem, a specific aspect of the 

standard 𝐻∞ problem, focuses on formulating a control law to 

manage the outputs of a system under a variety of disturbances. 

These disturbances include parametric uncertainties (such as 

variations in the mass of the SSUH, in this context), modeling 

errors, neglected fast dynamics, and exogenous signals from 

external environments, like wind. It is therefore imperative to 

consider the system model, the uncertainties model, and the 

performance model for synthesizing the 𝐻∞  controller. This 

approach, as elucidated by Kwakernaak [23], aims to develop 

a robust controller K(s) that ensures both closed-loop stability 

and the necessary performance criteria as delineated by 

Sanjeewa and Parnichkun [24]. The controller is designed to 

fulfill: 

 

‖Tzw(jω)‖∞ = ‖[
W1S
W2T

]‖
∞

< 1 

 

where, 𝑊1  and 𝑊2  refer to performance specifications and 

stability, respectively. 

In terms of closed-loop system control, multiple criteria 

need to be satisfied. These include attenuating and rejecting 

disturbances, limiting the energy input into the system, and 

ensuring robustness. Robustness, in this context, refers to the 

system’s stability in the presence of parametric uncertainties, 

a crucial aspect of system reliability as highlighted in literature 

[25]. 

 

3.2 Mixed sensitivity 𝐇∞ control design 

 

The system, as defined in Eq. (12), is structured in a 

standard configuration illustrated in Figure 5. This 

configuration consists of three primary components: the plant 

M1lat−long
, representing the nominal system for lateral-

longitudinal motion (depicting the dynamic behavior of the 

helicopter with a constant mass), the uncertainty block  ∆ , and 

the controller block K. 

 
 

Figure 5. Structure of 𝐻∞ 

 

The uncertainty model combines both M1lat−long
 and ∆ into 

a single block. Its closed-loop transfer matrix from u1 to v, is 

characterized by an upper linear fractional transformation 

(LFT) as: 

 

P1 = Fu (𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
, ∆) (16) 

 

The new plant P1  and K  have two inputs (w, u)  and two 

outputs (z, y), wherein w is the external input encompassing 

control signals, disturbances, and noise, and the input u, which 

is the control signal; z denotes the errors output, typically 

comprising the regulator output and tracking errors, while y 

denotes the measured signal used as the controller input. 

 

The augmented system  P1  is given by the following 

equations: 

 

[
𝑧(𝑠)

𝑦(𝑠)
] = 𝑃1(𝑆) [

𝑤(𝑠)

𝑢(𝑠)
] 

= [
𝑃1𝑧𝑤(𝑠) 𝑃1𝑧𝑢(𝑠)

𝑃1𝑦𝑤(𝑠) 𝑃1𝑦𝑢(𝑠)
] [
𝑤(𝑠)
𝑢(𝑠)

] 
(17) 

 

𝑢 = 𝐾𝑦 (18) 

 

The system output z is given as: 

 

𝑧 = (𝑃1𝑧𝑤 + 𝑃1𝑧𝑢𝐾 (𝐼 − 𝑃1𝑦𝑢𝐾)
−1

𝑃1𝑦𝑤)𝑤 

with 𝑤 = (

𝑟1
𝑑
𝑛
) 

(19) 

 

From Figure 5, the augmented plant is given by the 

following equations: 
 

[
𝑍1
𝑍2
𝑒
] = [

𝑒𝑠
𝑒𝑡
] = [

𝑊1 −𝑊1𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

0 𝑊2

𝐼 −𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

] [
𝑤
𝑢
] (20) 

 

𝑧 = (
𝑍1
𝑍2
) = (

𝑒𝑠
𝑒𝑡
) (21) 

 

where, Z1,Z2 represent the regulated outputs, specifically the 

weighted tracking error and the weighted system output. 

The state space realization is detailed as follows: 
 

𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
= [

𝐴1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 𝐵1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
𝐶1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔 𝐷1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

] (22) 
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𝑊1 = [
𝐴𝑠 𝐵𝑠
𝐶𝑠 𝐷𝑠

], 𝑊2 = [
𝐴𝑡 𝐵𝑡
𝐶𝑡 𝐷𝑡

] (23) 

 

Then the state space realization for the augmented system 

P1 is given by: 

 

lat-long lat-long

lat-long lat-long 

lat-long lat-long 

lat-long lat-long

1 1

1 1

1

1 1

1 1

0

0 0 0

0 0 0

0

0 0 0

0 0

s s s s

t t

s s s s

t t

A B C B B D

A B

A B
P

C D C D D D

C D

C I D

− − 
 
 
 
 =
 − −
 
 
 

− −  

 (24) 

 

The goal of 𝐻∞ is to find a controller gain K that stabilizes 

P1 and minimizes the 𝐻∞ norm of the transfer function from w 

to z, as discussed by Choudhary [26]. 
 

𝑚𝑖𝑛𝐾𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑠𝑖𝑛𝑔 ‖
𝑊1(𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

𝐾)−1

𝑊2𝐾(𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
𝐾)−1

‖

∞

 (25) 

 

The next step involves determining the controller K 

parameters, ensuring that the 𝐻∞  norm is less than a 

predefined upper bound γ. 

 

𝑚𝑖𝑛𝐾𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑠𝑖𝑛𝑔 ‖
𝑊1(𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

𝐾)−1

𝑊2𝐾(𝐼 +𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
𝐾)−1

‖

∞

< 𝛾 (26) 

 

The mixed sensitivity problem, selected for this H∞control 

design, is twofold. The first type involves the sensitivity 

function (S) and its complementary (T)problem. The second 

type addresses the sensitivity function (S)and output control 

sensitivity function (R). 
 

{
 
 

 
 𝑆(𝑠) = [𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔

(𝑠)𝐾(𝑠)]
−1

                                  

𝑅(𝑠) = [𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
(𝑠)𝐾(𝑠)]

−1

𝐾(𝑠)                        

𝑇(𝑠) = [𝐼 + 𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
(𝑠)𝐾(𝑠)]

−1

𝑀1𝑙𝑎𝑡−𝑙𝑜𝑛𝑔
(𝑠)𝐾(𝑠)

 (27) 

 

In this study, the design of the mixed sensitivity controller 

utilizes the second type, as depicted in Figure 6. 

 

 
 

Figure 6. Structure of mixed sensitivity controller H∞ 

 

To achieve optimal performance, such as disturbance 

rejection and accurate tracking, it's essential to maintain low 

output sensitivity. This requirement is encapsulated in Eq. (28), 

which stipulates a condition to keep the output sensitivity 

within acceptable limits. 

 

𝜎(𝑆(𝑗𝜔)) ≪ 1 (28) 

 

The filter function is defined as 𝑊1 =
1

𝑆𝑚𝑎𝑥(𝑗𝜔)
 accordingly, 

and the conditions for satisfactory performance are met by 

setting an upper limit on the maximum singular value of the 

sensitivity function. This condition is further detailed in 

studies [27-29]: 

 

𝜎(𝑆(𝑗𝑤)) < 𝜎(𝑊1
−1(𝑗𝑤) (29) 

 

For the designed controller to ensure both stability and 

robustness, another filter, W2, is introduced. This filter aims to 

reject sensor noises and minimize control energy at higher 

frequencies. This aspect is addressed in Eq. (30), which 

emphasizes the need to reduce control sensitivity as much as 

possible. 

 

𝜎(𝐾(𝑗𝑤)𝑆(𝑗𝑤)) (30) 

 

The controller's filter function is then formulated as per Eq. 

(31): 

 

𝑊2 =
1

𝐾𝑚𝑎𝑥(𝑗𝜔)𝑆𝑚𝑎𝑥(𝑗𝜔)
 (31) 

 

To satisfy these conditions, an upper bound is specified for 

the maximum singular value of K(s)S(s). This approach is 

critical for rejecting sensor noise and ensuring the robust 

stability of the system. The specific function to follow for 

these objectives can be articulated as follows: 

 

𝜎(𝐾𝑚𝑎𝑥(𝑗𝑤)𝑆(𝑗𝑤)) < 𝜎(𝑊2
−1(𝑗𝜔)) (32) 

 

3.3 Selection of weighting functions 

 

Choosing the appropriate weighting functions is a crucial 

and complex aspect of robust controller design. To effectively 

select these functions, it is imperative to satisfy the conditions 

outlined in Eq. (29) - Eq. (32). Additionally, these functions 

must be stable and not exhibit a non-minimum phase system 

behavior. 

In the context of the mixed sensitivity problem, significant 

attention is given to the selection of the weights W1 and W2, 

which correspond to performance and stability specifications, 

respectively. The weight W1, associated with the sensitivity 

function S(s), is utilized to mitigate disturbance effects and 

ensure desired performance (in terms of speed and accuracy) 

at low frequencies [12]. Conversely, the weight W2 , 

associated with the complementary sensitivity function T(s), 
focuses on ensuring robustness (stability in the presence of 

parametric uncertainties) and attenuating sensor noise at high 

frequencies [12], and this can exert an effect on tracking the 

output z on the input w . This approach results in a controller 

that not only guarantees closed-loop stability but also 

attenuates resonance peaks in the maximum singular value of 

the sensitivity function, as elaborated by S(s), according to the 

study [27]. Therefore, addressing the duality of stability and 

performance, the mixed sensitivity approach is chosen for 

solving the 𝐻∞ control problem, as suggested by Zhou et al. 

[28]. 

To meet the control objectives, the weighting models W1 

and W2 can be selected as follows: 

934



 

𝑊1 =
𝑠/𝑀 + 𝑤0
𝑠 + 𝑤0𝐴

 (33) 

 

𝑊2 =
𝑠 + 𝑤0/𝑀

𝐴𝑠 + 𝑤0
 (34) 

 

The parameters of the weighting functions are: 

- 𝑤0 : The desired closed-loop bandwidth to ensure the 

desired response time. 

- A : The desired attenuation of disturbances within the 

bandwidth. 

- M: Maximum bound imposed on S and T. 

 

4. SIMULATION AND RESULTS 
 

This section showcases the outcomes derived from 

implementing the mixed sensitivity optimal H∞ controller on 

the SSUH. The results are indicative of the controller's 

efficacy and robustness under various operational conditions. 

A key aspect of the controller's performance is its adherence 

to the condition specified in Eq. (29). This condition mandates 

that the upper bound on the maximum singular value of the 

sensitivity S(s)  must be less than the upper bound of the 

maximum singular value of W1
−1 . This requirement is 

demonstrably met, as illustrated in Figure 7. 

 

 
 

Figure 7. Value singular S< value singular W1
−1 

 

 
 

Figure 8. Value singular KS< value singular W2
−1 

 

 
 

Figure 9. Singular value of the controller 
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Similarly, the condition laid out in Eq. (32), which limits the 

upper bound on the maximum singular value of the output 

sensitivity K(s)S(s) to be less than the upper bound of the 

maximum singular value of w2
−1 , is also fulfilled. This 

compliance is evident in Figure 8. 

Analyzing Figures 7 and 8, it is observed that the robustness 

conditions for both stability and performance are satisfied. The 

main transfer gains and the output sensitivity 𝐾𝑆(𝑠) do not 

compromise the stability and robustness 
1

W2
 of the system. The 

singular values 𝑆(𝑠) of sensitivity are maintained below the 

robustness threshold for performance 
1

W1
. This indicates that 

the controller is capable of effectively rejecting disturbances 

and ensuring the desired performance characteristics. 

The controller K, characterized by 8 inputs and 2 outputs, 

aligns with the specifications outlined in Eqs. (17)-(26) in 

state-space form. Notably, the controller possesses stable poles, 

which is a critical factor for its reliable operation. The singular 

values of the controller are depicted in Figure 9, providing a 

visual representation of its stability and performance 

characteristics under varying conditions. 

According to the controller's frequency response, notable 

improvements are observed in its performance metrics. The 

cut-off pulse frequency (wc0=60.7817 rad/sec) (40.47db) and 

the gain amplitude at high frequencies have increased, 

resulting in an expanded bandwidth in these frequencies. This 

enhancement leads to a faster response time and a decrease in 

steady-state error. Additionally, the controller exhibits a 

positive phase shift (phi =190.02rad), which contributes to an 

increased phase margin, thereby improving the overall system 

stability. These characteristics are reminiscent of a lead 

compensator. 

The simulation section encompasses two distinct cases: 

hovering flight and translation flight. 

In the hovering flight simulation, the aircraft's desired 

attitude is set by reference signals ranging from 0.5 rad to 0.7 

rad. The output disturbance and measurement noise are 

modeled using deterministic step signals with amplitudes 

varying from 0.1 rad to 0.3 rad. Additionally, the noise signal 

is passed through a low-pass filter to attenuate high-frequency 

components. 

For the translation flight simulation, the helicopter is tested 

under conditions of high-speed flight, with longitudinal and 

lateral speeds varying from 10 m/s to 20 m/s, and desired 

angles from 0 rad to 0.5 rad. To assess the robustness of the 

controller against external disturbances and measurement 

noise, deterministic step disturbances ranging from 2 m/s to 5 

m/s are introduced, along with deterministic filtered noise. The 

simulations demonstrate the controller's efficacy in attenuating 

these disturbances, aligning with the theoretical expectations. 

In the context of applying the 𝐻∞  method to controller 

design, it is advisable to employ weighting functions that 

fulfill control requirements while maintaining the lowest 

possible order. This is crucial because higher-order weighting 

functions can inadvertently increase the controller’s order, 

which might be counterproductive for achieving effective 

control. Therefore, balancing the control requirements with the 

simplicity of the weighting functions is key to designing an 

efficient and robust controller. 
 

4.1 Hover 
 

In the Hover condition, the helicopter is characterized by 

zero angular rates and zero velocities, leading to a specific 

representation for lateral-longitudinal motion: 
 

{
 
 

 
 
𝑥1 = [𝑢 𝑞 𝜃 𝑣 𝑝 𝜙 𝐵𝑐𝐵𝑠]

𝑇

𝜃𝑟𝑒𝑓 = 0.6,0.5,0.7 𝑟𝑎𝑑     

𝜙𝑟𝑒𝑓 = 0.6,0.5,0.7 rad     

�̅� = [𝛿𝑐𝛿𝑎]
𝑇

𝑦1 = [𝑢 𝑞 𝜃 𝑣 𝑝 𝜙 𝐵𝑐𝐵𝑠]
𝑇

 (35) 

 

The system's tracking responses, as depicted in Figures 10-

13, demonstrate that the proposed controls effectively adhere 

to the Hover flight conditions, even in the presence of 

parametric uncertainties, noise, and disturbances. 

Figure 10 highlights the controller's competent performance 

in maintaining hovering flight, notwithstanding the impact of 

noise and disturbances (modeled as step values). In Figure 11, 

it is observed that the angular velocity is initially influenced 

by the introduction of noise and disturbances. However, the 

response swiftly corrects itself, tending towards zero, 

indicating effective disturbance rejection and system 

stabilization. 

Figure 12 suggests that minor adjustments in translation 

velocities are necessary during Hover flight to ensure stability, 

underscoring the controller's adaptability. 

Figures 13(a) and (b) focus on the responses of the flapping 

angles BS and BC. These figures reveal that both angles remain 

close to zero, affirming the system's stability during hovering 

flight, even when subjected to external disturbances. 

 

 
(a) Roll response 
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(b) pitch response 

 

Figure 10. Responses of the attitudes 

 

 
(a) Angular velocity 𝑞 = 0 response 

 
(b) Angular velocity 𝑝 = 0 response 

 

Figure 11. Responses of the angular velocities 

 

 
(a) Linear velocity u ≈ 0 response 
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(b)linear velocity v ≈ 0 response 

 

Figure 12. Responses of the linear velocities 

 

 
(a) Flapping angle 𝐵𝑆 response 

 
(b) Flapping angle 𝐵𝐶  response 

 

Figure 13. Response of the flapping angles 

 

 
(a) Incertitude1 response 
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(b) Incertitude2 response 

 

Figure 14. Response of incertitude for Hover 

 

Finally, Figure 14 illustrates the impact of uncertainties on 

the system's responses, clearly showing that the introduction 

of disturbances and noise directly affects the response 

amplitude. 

The step response of the controller, as shown in Figure 14, 

effectively minimizes the error between the desired outputs 

and inputs. 

Figure 15 illustrates the helicopter's performance during 

hovering. It reaches the set point with minimal overshoot and 

settles effectively, corroborating the summarized results in 

Table 1. This demonstrates the controller's ability to maintain 

stability and control during hovering maneuvers, even in the 

presence of external disturbances or operational variations. 

 

 
 

Figure 15. Unity step input tracking for 𝐻∞ optimal controller for Hover 

 

Table 1. Transient performance of the USSH for step input 

 

Parameters Response 
H∞ Controller Hover Flight H∞ Controller Translation Flight 

Theta Phi u v Theta Phi p q 

Rise time (s) l.75s 1.75s 0.39s 0.49s 1.71s 1.85s 2.01s 1.83s 

Overshoot (%) 14% 14% 27% 17% 14% 14% 14% 14% 

Peak - time (s) 4s 4s 0.99s 1.23s 4s 4s 4s 4s 

 

4.2 Forward translation 

 

{
 
 
 
 
 

 
 
 
 
 
𝑥1 = [𝑢 𝑞 𝜃 𝑣 𝑝 𝜙 𝐵𝑐𝐵𝑠]

𝑇

𝜃𝑟𝑒𝑓 = 0.6,0.5,0.7 𝑟𝑎𝑑     

𝜙𝑟𝑒𝑓 = 0.6,0.3,0.7rad      

𝑝𝑟𝑒𝑓 = 0.6,0.3,0.7rad      

𝑞𝑟𝑒𝑓 = 0.6,0.3,0.7rad      

𝑢𝑟𝑒𝑓 = 10,20,10
m

s
           

𝑣𝑟𝑒𝑓 = 10,20,10
m

s
             

�̅� = [𝛿𝑐𝛿𝑎]
𝑇                        

𝑦1 = [𝑢 𝑞 𝜃 𝑣 𝑝 𝜙 𝐵𝑐𝐵𝑠]
𝑇

 (36) 

 

Figure 16 illustrates the linear velocity response for varying 

values of (u, v). This response indicates successful tracking, 

even amidst disturbances and noise, highlighting the 

controller's ability to maintain desired trajectories under 

challenging conditions. 

Figure 17 focuses on the angular velocity response. Notably, 

some oscillations are observed when the set point changes. 

However, the system quickly stabilizes, effectively following 

the set point despite these initial fluctuations. This quick 

stabilization demonstrates the controller's ability to handle 

dynamic changes in flight conditions. 

Figure 18 presents the response of the roll and pitch angles. 

These angles closely follow the set points with only minor 

variations, which are attributed to the injection of noise and 

disturbances. This minimal deviation underlines the 

controller's precision in maintaining the desired attitude of the 

helicopter. 

Figure 19 shows the responses of the flapping angles 𝐵𝑆 and 

𝐵𝐶  during forward translational flight. Remarkably, both 

angles remain near zero, even when faced with external 

disturbances. This consistent behavior is a strong indicator of 

the system's stability during translational maneuvers. 

Figure 20 is the impact of uncertainties on the system's 
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responses and it is clear that the insertion of disturbances and 

the noise have a direct effect on its amplitude. 

From these observations, it can be concluded that the 

controller not only ensures effective forward flight but also 

maintains stability in the face of uncertainties, noise, and 

disturbances. These results validate the robustness and 

reliability of the controller in managing both Hover and 

translational flight modes under a variety of operational 

conditions. 

 

 
(a) Linear velocity u response 

 
(b) Linear velocity v response 

 

Figure 16. Responses of the linear velocities 

 

 
(a) Angular velocity 𝑞 response 

 
(b) Angular velocity 𝑝 response 

 

Figure 17. Responses of the angular velocities 
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(a) Roll response 

 
(b) pitch response 

 

Figure 18. Responses of the attitudes 

 

 
(a) Flapping angle 𝐵𝑠 response 

 
(b) Flapping angle 𝐵𝐶  response 

 

Figure 19. Response of the flapping angles 
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(a) Incertitude1 response 

 
(b) Incertitude2 response 

 

Figure 20. Response of incertitude for translation flight 

 

 
 

Figure 21. Unity step input tracking for 𝐻∞ optimal controller for translation 

 

The performance of the SSUH under the guidance of the 

optimal controller is quantitatively assessed through key 

metrics such as rise time, overshoot, and peak time. These 

metrics provide insight into the controller's efficiency and 

response characteristics during different flight maneuvers. 

In Figure 21, the helicopter's forward translation is observed. 

The helicopter reaches the set point with an acceptable level 

of overshoot in linear velocity u and v. Notably, a lower 

overshoot is achieved with smaller step changes in the 

reference signals.  

 

 

5. CONCLUSIONS 

 

The objective of this research was to develop a robust 

optimal feedback controller to stabilize a SSUH and ensure 

precise trajectory tracking amid uncertainties and disturbances. 

The following key steps were undertaken: 

1. The mathematical modeling of the SSUH was executed 

using Newton's approach, as opposed to the Euler-Lagrange 

method. The nonlinear system was linearized using Taylor 

approximation around an equilibrium point, identified as the 

hovering flight condition. 

2. The nominal lateral-longitudinal linear model of the 

SSUH was derived, predicated on the assumption of a constant 

mass. This assumption excludes variations due to fuel 

consumption or payload offloading. Should this assumption be 

revised, the nominal linear model would need to incorporate 

parametric uncertainties resulting from mass variations. The 

present study did not consider shifts in the center of gravity or 

changes in the inertia tensor, focusing exclusively on mass-

related parametric uncertainties. 

3. Filter selection was meticulously conducted to ensure 

both the robustness and stability of the mixed-sensitivity H∞ 

controller. 

Simulation results demonstrated that the optimal robust 

control system provided satisfactory trajectory tracking for 

both Hover and forward flight modes. The robustness of the 

control system, in terms of stability and performance under 

disturbances and noise, was emphatically validated. A 
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robustness analysis highlighted the inherent trade-off between 

sensitivity and complementary sensitivity. It is noted that 

while much of the existing literature focuses on the hovering 

maneuver, this study extends the scope to include both 

hovering and forward translation flights, addressing input 

disturbances, noise, and parameter uncertainties. The resulting 

controller is not only optimal and robust but also guarantees 

precise tracking performance. 

Future research could explore the integration of μ-analysis 

control, promising enhanced robustness, stability, and 

performance in the presence of structured uncertainties. A 

comparative study with the current controller could elucidate 

the efficacy of the μ-analysis approach. Additionally, reducing 

the controller's order and analyzing the consequent effects on 

the SSUH's behavior presents a worthwhile avenue for further 

investigation. 
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NOMENCLATURE 

Xu Partial differential equation with respect to 

u (Xu =
∂X

∂u
).

W2(s) Control sensitivity weight. 

W1(s) Sensitivity weight. 

F(s) Shor tha for the interconnection 

Fl(M1lat−long
(s), K(s)). 

P1(s) The uncertainty plant connected to the 

uncertainty ∆  with the structure  ∆ , which is 

equal to the connect Fu (M1lat−long
, ∆).

K(s) The controller. 

SSUH Small-Scale Unmanned Helicopter. 

M1lat−long
Nominal plant lateral longitudinal motion. 

Greek symbols 

𝑢, 𝑣, 𝑤  Velocity components in x, y  and z  body axes 

system. 

𝑝, 𝑞, 𝑟 Angular roll, pitch and yaw rates. 

𝜙, 𝜃, ѱ Roll, pitch and yaw angles. 

𝛿𝑎 Lateral cyclic pitch. 

𝛿𝑐 Longitudinal cyclic pitch. 

𝛿𝑒 Main rotor collective pitch. 

𝛿𝑝 Tail rotor collective pitch. 

𝛿 The uncertainty variable, δ ∈ [−1,1]. 
𝛽𝑐 Control rotor longitudinal tilt angle. 

𝛽𝑠 Control rotor lateral tilt angle. 
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