
Deep Learning-Driven Regulation of Vehicle Speed Limits in Response to Weather 

Conditions 

Emir Mustafa Efe1* , Veysel Gökhan Böcekçi2

1 Institute of Pure and Applied Sciences, Faculty of Technology, Marmara University, İstanbul 34722, Turkey 
2 Technology Faculty, Marmara University, İstanbul 34854, Turkey 

Corresponding Author Email: emirefe@marun.edu.tr

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.400601 ABSTRACT 

Received: 24 April 2023 

Revised: 7 October 2023 

Accepted: 1 November 2023 

Available online: 30 December 2023 

This study aims to establish an automated system for regulating vehicle speed limits 

contingent on weather conditions, leveraging deep learning and computer vision 

methodologies. The advent of advanced vehicle technologies has contributed to escalated 

traffic density and accident rates. Consequently, there is a growing consensus in accident 

prevention research literature advocating for the proliferation of electronic monitoring 

systems. These systems proffer cost-effectiveness by diminishing dependence on field 

personnel and vehicles. However, existing systems largely establish speed limits based on 

the roadway and vehicle type, neglecting the impact of weather conditions. The 

methodology proposed herein employs deep learning models for weather condition 

detection and image processing techniques for vehicle speed estimation from video data. 

The Kalman filter is utilized for tracking and speed verification. The constructed system 

comprises three different cameras, each possessing an individual model. These models 

exhibit accuracy rates of 99.51%, 99.85%, and 99.60% in weather classification, 

respectively. Vehicle detection accuracy ranges from 76.46% to 94.67%, with a mean speed 

estimation error rate of 2.54%. By dynamically modulating speed limits grounded on real-

time weather and traffic conditions, this system augments road safety. Furthermore, it 

provides valuable data on traffic density by recording the quantity of vehicles traversing the 

relevant highway. 
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1. INTRODUCTION

1.1 Problem definition 

In this study, it is aimed to automatically perform the speed 

control according to the weather conditions, which is done 

manually in a few European countries, and it is tried to be 

suitable for the purpose of the control together with the 

detection of violations. With electronic monitoring systems, it 

is aimed to support 24/7 inspection by using less personnel. 

Thanks to the computer program using image processing 

methods and deep learning methods, it is aimed to demonstrate 

that electronic inspections can be made with camera images 

that can be accessed remotely, without the need for high-tech 

and costly cameras. In addition, valuable data have been 

created to be used in different studies with the number and 

density of vehicles. 

With the technological developments in electronic systems, 

speed limit application is widely used in electronic control 

systems for vehicles on highways, such as license plate 

recognition, speed limit control, incorrect lane change control, 

phone use control while driving, etc. With the increase in the 

availability and functionality of these systems, drivers try to 

ensure safer travel by complying with the rules in a conscious 

and controlled manner.  

However, there are problems in the design and use of these 

electronic systems. While high-tech cameras are sufficient in 

some regions for speed limit enforcement, in some regions 

additional speed sensor devices are used due to old technology, 

lack of infrastructure, faulty planning, etc. The existence of 

these devices both increases the cost and reduces workforce 

efficiency as it requires maintenance.  

Another issue is that in many European countries, speed 

limits on highways are determined based on the vehicle type 

and the highway used. When determining speed limits, 

weather conditions, which are as important a parameter as the 

vehicle type and the highway used, are not taken into account. 

In this case, driving at a speed appropriate to seasonal 

conditions depends on the driver's discretion and the presence 

of field supervisory personnel.  

Over speed is the speed at which the speed limit exceeded. 

While speeding is the cause of the majority of fatal accidents, 

it is also an important factor determines the severity of the 

accidents. As can be seen in Figure 1 [1], the risk of accident 

increases as the changes in average speed increase. 

Nevertheless, drivers tend to over speed while driving. 

According to the research conducted in European countries 

within the scope of the Safe Road Trains for the Environment 

project [2], 82% of drivers know that excessive speed is an 

important accident factor, yet more than 70% of them state that 
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they exceed the speed limit. With speed limits not set in a 

weather-adaptive manner, the risk of accidents will depend on 

the discretion of drivers found to be over speeding at 70%.  

In France a variable speed limit is applied according to the 

weather conditions. In case of rain and snow or in heavy traffic 

conditions, the speed limit on highways is reduced from 130 

km/h to 110 km/h, and from 90 km/h to 80 km/h on city roads. 

In case of fog the speed limit is reduced to 50 km/h. As shown 

in Figure 2 [2], this method takes place manually and remains 

within the regional scope.  

 

 
 

Figure 1. Speed-accident risk graph 

 

 
 

Figure 2. Manually changed speed limit in heavy traffic in 

France 

 

In addition, there are NZLIMITS in New Zealand, 

USLIMITS in America, QLIMITS, NLIMITS, VLIMITS etc. 

[2] different applications from other countries. In these 

applications, appropriate speed limits for highway safety are 

determined according to different factors such as road 

characteristics, accident history, number of uses and activities. 

 

1.2 Background  

 

1.2.1 Convolutional Neural Network (CNN) 

The CNN method emerged with the development of the 

concept of artificial intelligence, which was questioned by the 

Imitation Game [3] test designed by Alan Turing in 1950. The 

journey of developing deep learning methods commenced in 

1943 with McCulloch and Pitts' study [4], which unveiled a 

logical model of brain functions inspired by the human 

nervous system. Additionally, in 2012 Krizhevsky and 

Sutskever's study presented during the ImageNet Large Scale 

Visual Recognition Challenge [5], marked a significant 

milestone in advancing deep learning to a foundational level.  

A Sequential Convolutional Neural Network (CNN) is a 

deep learning architecture characterized by its sequential 

arrangement of layers. In a Sequential CNN, layers are stacked 

one after another in a linear fashion, forming a unidirectional 

flow of data from input to output. Typically, the architecture 

starts with an input layer and proceeds with a series of 

convolutional layers for feature extraction, interspersed with 

pooling layers for spatial downsampling. Following the 

convolutional and pooling layers, one or more fully connected 

layers may be added for classification or regression tasks. The 

simplicity and ease of implementation of Sequential CNNs, 

make them a popular choice for image-based applications. In 

Figure 3, the Sequential CNN layer architecture used in this 

study is given as a visual diagram. 

The mathematical expression of the convolution operation 

[6] is as shown in Eq. (1). 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖 ∗ 𝑗) 

= ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚 + 𝑛)

𝑛𝑚

 (1) 

 

In the equation, S represents the convolution operation 

output, I represents the input, K kernel and * denotes the 

convolution operation.  

Convolutional Layer. The convolution layer used to 

determine the properties of the input is the step in which the 

filters performing the convolution operations are scanned 

horizontally and vertically in the input. For example, when the 

image in Figure 4, which consists of 1s and 0s as input, is 

scanned with the CNN filter given, the output feature map to 

be obtained is as shown in Figure 5 [7]. Here, while the filter 

is moved starting from the upper left corner of the sample 

image, the values between the two matrices are multiplied and 

the results are summed. The collected results are stored in the 

feature map. This process is repeated for the elements in each 

row and column in the visual. Figure 5 shows the final 

processing of the sample CNN filter in the image. The value 4, 

which is the (3,3) element of the feature map, is obtained as a 

result of the following Eq. (2). 
 

(1 × 1) + (1 × 0) + (1 × 1) +  (1 × 0) + (1 × 1)
+  (0 × 0)  +  (1 × 1)  +  (0 × 0)  
+  (0 × 1)  =  4 

(2) 

 

 
 

Figure 3. CNN layer architecture 
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Figure 4. Input and CNN filter 

 

 
 

Figure 5. Filtering and result 

 

Rectified Linear Unit Layer (ReLU). This layer, which 

comes after the convolution layers, is the layer where neuron 

outputs are rectified to become ready for other layers. 

Negative values in the data coming after the convolution layer 

are set to zero and are not used during learning. For this reason, 

the ReLU activation function is often preferred in multilayer 

neural networks. Thanks to the operations performed in this 

layer, deep learning accelerates even more. Figure 6 [6] 

contains example for commonly used activation functions. 

The mathematical expression of the ReLU function is given in 

Eq. (3). 

 

𝑔(𝑥) = max (0, 𝑥) =
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (3) 

 

 
 

Figure 6. ReLU activation function 

 

Pooling Layer. Pooling layer is the layer where calculations 

are made in the network architecture. The success of the model 

created in this layer is calculated and the dimensionality is 

desired to be reduced. In this way, the required power and 

features that are determined but will not be used are filtered. 

There are two different pooling methods: maximum and 

average pooling. Maximum and average pooling transactions 

are shown below in Figure 7 [8]. 

 

 
 

Figure 7. Max and average pooling 

Fully-Connected Layer. In this layer, the input image, which 

passes through the convolution layer and the jointing layer 

several times and is in the form of a matrix, is converted into 

a flat vector suitable for the classification layer. Figure 8 [6] 

shows the process of preparing the neurons emerging after the 

convolution operations for the classification layer as a single 

and flat vector in the full connection layer. 

 

 

 

Figure 8. Fully-connected layer 

 

Classification Layer. This layer comes after the fully-

connected layer and converts the data coming from the 

neurons into logical values equal to the number of objects to 

be classified. For example, 1024 neurons entering this layer 

are output as a 1024×3 weight matrix for 3 different objects. 

The most commonly used classifier in this layer is softmax. 

Softmax produces values between 0-1 for each object to be 

predicted, the object with the value closest to 1 is predicted as 

the output of the model. Figure 9 shows an example output for 

the classification process. 

 

 
 

Figure 9. Classification 

 

Softmax. It is generally used in the last layer of neural 

networks, where the probability distribution of n different 

events is calculated. Its most important advantage is that it can 

handle multiple classes. Its mathematical expression can be 

seen in Eq. (4) [6]. 
 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

 (4) 

 

In this study, deep learning is performed with a database 

consisting of camera images using the CNN algorithm. The 

most important reason for choosing CNN as the deep learning 

algorithm method is that the database preprocessing of the 

CNN algorithm is much less than other methods and the 

learning processes are much faster. The weather forecast was 

taken as the result of the Softmax algorithm as the deep 

learning output. The model output will be used in weather 

detection and model queries have been carried out at certain 

periods. After the weather condition was determined 

according to the model output, the image processing 

parameters to be used in the application were updated and the 

speed limit was determined. Vehicle speed control has been 

implemented according to appropriate parameters and speed 

limit. 
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1.2.2 Morphological transformations 

Morphological transformation is an analysis method based 

on nonlinear operations related to the shape and geometry of 

features in an image. It is generally used to clean the 

areas/objects that are desired to be separated in binary images 

from objects outside the region of interest. During these 

processes, the configuration element is hovered over the input 

image. Various mathematical operations are performed 

according to the pixel value of the image and the value of the 

configuration element. There are examples of structuring 

elements in Figure 10 [9]. 

 

 
 

Figure 10. Structuring element examples 

 

Erosion. Erosion is used to shrink and erode objects in the 

image. Comparison is made by moving the structuring element 

pixel by pixel over the image. If the center value of the 

configuration element corresponds to the value 1 in the visual, 

and if the visual has a value of 0 under the other 1 values of 

the configuration element, the visual pixels under the other 1 

values of the configuration element are converted to 0. Erosion 

is used to remove unwanted noise because it reduces peaks and 

increases the width of 0-pixel regions in the image. Figure 11 

[9] shows the image obtained when the erosion process is 

applied on the first image. 

 

 

 

Figure 11. Erosion 

 

Dilation. Dilation is used to enlarge and expand objects in 

the image. The structuring element is moved pixel by pixel 

over the image. When the configuration element coincides 

with a pixel with a value of 1 in the central image, the visual 

pixel values below the other values are changed to 1. 

Expansion expands the width of 1-pixel regions in the image, 

so it can remove negative noise but can also increase unwanted 

noise. Figure 12 [9] shows the image (b) obtained when the 

dilation process is applied on the first image (a). 

 

 

 

Figure 12. Dilation 

 

Opening. First Erosion and then Dilation is performed on 

the original image.  While the structuring element moves pixel 

by pixel in the image, it eliminates less valuable pixels in the 

image and ensures that other regions remain the same. Thus, 

fine lines, spots and unwanted noise in the image are 

eliminated. In the 3 images in Figure 13 [9] respectively; 

original image, 5×5 Opened image, 9×9 Opened image. 

 

 

 

Figure 13. Opening 

 

Closing. First Dilation and then Erosion is performed on the 

original image. The aim of the closing process is to eliminate 

the gaps by filling them. While the configuration element is 

moved pixel by pixel in the image, if a 1-valued pixel of the 

image coincides with the element center, it ensures that the 

low-value pixels below the other values of the element are 

converted to 1. In the image in Figure 14 [9], it can be seen 

that the recesses and gaps in the object are closed as a result of 

the Closing process. 

 

 

 

Figure 14. Closing 

 

1.2.3 Distance calculation 

Euchlidean distance is a calculation of between two points. 

Euclidean distance between points in n-dimensional Euclidean 

space [10] is given in Eq. (5). 

 

𝑑𝑒𝑢𝑐 

= √(𝑝1 − 𝑞1)2 + (𝑝2 −  𝑞2)2+. . +(𝑝𝑛 −  𝑞𝑛)2 
(5) 

 

where, p and q represent the points in the x and y plane of the 

coordinates for which the Euclidean distance calculation is 

made. 

 

 
 

Figure 15. Traffic lines used in France 

 

We used lane markings and on-road measurements to 

automatically calculate the actual distance from the camera 

image. For this purpose, the T'1 marking method specified in 

the study [11] and shown in Figure 15 was taken as basis for 

Camera #4. In addition, as given in Figure 16, according to the 

guide published by the General Directorate of Highways 

(KGM) for the cameras in Istanbul [12], the system was 

calibrated so that the lane lines and intervals on the road in the 

relevant camera were 3 meters each. 
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Figure 16. Traffic line characteristics in Turkey 

 

1.2.4 Kalman filter 

The Kalman filter [13] was published by R. E. Kalman in 

1960 with the aim of extracting useful signal from noisy 

measurement values. R. E. Kalman used this approach to 

predict states based on linear dynamical systems in state space 

format. More generally, the Kalman filter is an algorithm that 

can predict the next state of a model based on data from the 

previous state. The biggest reason why this algorithm is called 

a filter is that it can separate the actual value in the 

measurements and the noise by optimizing it according to the 

predictions it makes. 

In systems using sensors such as radar, laser and sonar, the 

Kalman filter is usually only concerned with the position of 

the target. In general terms, the 𝑍𝑘  measurement vector, 𝐻 

(measurement matrix) and 𝑅  (covariance matrix) values for 

tracking the moving object are expressed as in Eq. (6), Eq. (7) 

and Eq. (8) below [14]. Here, the 𝐵𝑥 value is a variant of the 

position measurement errors and the 𝑣𝑘 value is the 

measurement noise. 

 

𝑍𝑘 =  𝐻𝑥𝑡𝑘
+ 𝑣𝑘 (6) 

 

𝐻 = (1 0) (7) 

 

𝑅 = (𝐵𝑥) (8) 

 

1.3 Related works 

 

Similar studies carried out before are discussed as follows: 

In the study by Chowdhury et al. [15], vehicle detection 

study was carried out with image processing methods. In the 

study, vehicle detection achieved a 95.08% success rate for the 

daytime period and 94.10% for the nighttime period.  

In the study by Biswas et al. [16], CNN architecture was 

used for vehicle detection and counting. An average of 96.55% 

success rate was achieved in the counts made at certain time 

periods for more than one database. As stated in this study, 

vehicle counting could not be performed during heavy rain and 

snowy weather conditions, and it was also reported that the 

vehicles that changed lanes were counted more than once, 

since the vehicle count was made according to the vehicles 

passing in the lane.  

In the study conducted by Hsieh et al. [17], the counting 

efficiency was tried to be increased with shadow filtering and 

linearity by using image-processing methods during vehicle 

counting. As a result of the study, it was seen that the vehicle 

counting success rate was between 92.8% and 94.8% for 

different cameras.  

In the study conducted by Gupte et al. [18], vehicle detection, 

tracking and classification were performed using image 

processing methods. As a result of this study, vehicles were 

detected and tracked with a success rate of 90% in 20 minutes, 

15 fps video images and classified as successful with a success 

rate of 70%.  

In the study conducted by Van Pham and Lee [19], vehicle 

counting was performed using image-processing methods. As 

a result of the study, the vehicles in a 20-minute image were 

detected and counted as 98% successful.  

In the study conducted by Bhaskar and Yong [20], vehicle 

counting was performed using image-processing methods. As 

a result of the study, as a result of the counting made in three 

different videos, a successful count of 91.26% was achieved.  

In the study conducted by Yaghoobi Ershadi et al. [21], 

vehicle detection in different densities, weather conditions, 

road type, light intensity and spaces was achieved with 

approximately 94.02% success.  

In the study conducted by Tayara et al. [22], the vehicle 

counting study from satellite images was carried out with a 

model prepared using FCRN with a 90.51% success rate.  

In the study by Wicaksono et al. [23], vehicle detection was 

performed using image processing methods and 

morphological transformations, and approximate vehicle 

speed estimation was performed. The speed estimation success 

rate was 87.01%, but it was determined that the system created 

in this study increased the error rate at high speeds.  

In the study by Chu et al. [24], temperature, humidity and 

weather forecasts were made using SVM architecture. At the 

end of the study, it was seen that the weather forecast was 

correct with an average of 76.6%. However, among the 5 

weather conditions used in the study, it was observed that the 

performance was below the general average of 76.6% for rainy 

and cloudy weather conditions.  

In the study by Zhang et al. [25], weather classification was 

applied using Multi-Core Learning (MKL) with a database 

consisting of 4000 images. The overall average success rate 

was 71.39%. In this model, 32% of rainy images were 

incorrectly classified as snowy.  

In the study carried out by Roser and Moosmann [26], 

forecasts were made for clear, light rainy and heavy rainy 

weather conditions with the designed SVM model and the 

success rate was obtained as 85.19%.  

Vehicle detection algorithms were created in the study by 

Luo et al. [27]. As a result of the application, a 92.25% success 

rate was achieved for vehicle detection.  

In the study conducted by Chen et al. [28], as a result of the 

model created using the Faster R-CNN algorithm, vehicle 

detection for various types of vehicles was performed with an 

average success rate of 75.7%. 

 

 

2. METHODOLOGY 

 

In this study, all deep learning and image processing 

operations created run on the CPU on a computer with an 

Intel® Core™ i7-9750H 2.60GHz CPU [29] processor and 

16.0 GB RAM. An interface shown in Figure 17 has been 

designed to access the cameras and input the operating 

parameters and settings. While designing this interface, the 

python software language v3.9.6 [30] and pygt5 library [31] 

are used. Other auxiliary libraries are cv2 v4.6.0 [32], numpy 

v1.23.4 [33], pandas v1.5.1 [34], pafy v0.5.5 [35] and 

tensorflow v2.10.0 [36]. Work flow for this study can be found 

in Figure 18. 
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2.1 Dataset 

 

With the software application named SelfDb, which was 

specially prepared for this study that takes the access links to 

the specified cameras as input, the camera images with the 

preferred intervals and parameters were saved in the relevant 

directory. For this study, a maximum of 10 screenshots were 

recorded every hour at 5-minute intervals for 24 hours and for 

6 months, covering four different weather conditions which 

snow, rain, fog and normal. Screenshots were 1280×720 

resolution and color images. Figure 19 shows the screenshot 

of the SelfDb application working. 

With the SelfDb application, which takes the access links to 

the specified cameras as input, as given in Table 1, camera 

images are saved in the relevant directory in accordance with 

the preferred periods and parameters. Among the cameras 

identified, there are freeway cameras located in the city of 

France / Lyon [37], many central and highway cameras in the 

city of Türkiye / Istanbul [38]. These cameras, which are 

accessed online from many countries and cities, do not 

technically require any features, but the image quality, fixed 

camera structure and access stability make these cameras one 

step ahead in choosing them. In Figure 20 there are screenshots 

taken from the traffic density map provided by İBBUYM [38]. 

There are sample images that can be used for normal, rainy, 

snowy and foggy weather conditions. 

 

 
 

Figure 17. User interface 

 

 
 

Figure 18. Application work flow 

 

 
 

Figure 19. SelfDb application 

 

 
 

Figure 20. Istanbul-various weather conditions 
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Table 1. Camera list 

 
Camera Resolution fps Location URL 

Camera #4 1280×720 60 Lyon www.youtube.com/watch?v=z545k7Tcb5o 

Camera #12 1920×1080 30 İstanbul uym.ibb.gov.tr/yharita6/ 

Camera #13 1920×1080 30 İstanbul uym.ibb.gov.tr/yharita6/ 

 

Table 2. Datasets and demographic structures 

 
CNN Model Class Format Original Resolutions Pcs Process Image Resolutions Accuracy 

Camera #4.model 

snow (kar) .jpg 1280×720 38 150×150 

99.51% 
normal .jpg 1280×720 1645 150×150 

fog (sis) .jpg 1280×720 468 150×150 

rain (yagmur) .jpg 1280×720 1241 150×150 

Camera #12.model 

snow (kar) .jpg 1280×720 756 150×150 

99.85% 
normal .jpg 1280×720 4185 150×150 

fog (sis) .jpg 1280×720 35 150×150 

rain (yagmur) .jpg 1280×720 1800 150×150 

Camera #13.model 

snow (kar) .jpg 1280×720 1846 150×150 

99.60% 
normal .jpg 1280×720 3500 150×150 

fog (sis) .jpg 1280×720 66 150×150 

rain (yagmur) .jpg 1280×720 2000 150×150 

 

2.2 CNN models development 

 

In this study, deep learning was carried out with a database 

of camera images using the CNN algorithm. The most 

important reason for choosing CNN as a deep learning 

algorithm method is that the database preprocessing of the 

Sequential CNN algorithm is much less and the learning 

processes are much faster than other methods. The model 

output will be used to determine the weather, and the model 

query has been carried out at certain periods. After 

determining the weather conditions according to the model 

output, the image processing parameters to be used in the 

application were updated and the speed limit was determined. 

Vehicle speed control was applied according to appropriate 

parameters and speed limit.  

The first thing to do when creating a model was to specify 

the classes to be used. Then, all images under the relevant 

training directory were read with the OpenCV library and 

reduced to 150x150 format. 70% of these images were used in 

training and 30% were used in model evaluation. Then, the 

training data obtained categorically were provided as data in 

the deep learning algorithm, and training was carried out with 

an architecture consisting of 2 convolution layers for 100 

epochs and the model saved in the desired directory. 

The models created with the databases consisting of images 

of four different weather conditions obtained with the SelfDb 

application and the demographic structures of the databases 

are indicated in Table 2. The visuals, examples of which are 

shown in Figure 20, are examples of the visuals used when 

creating the Camera #13.model model.  

30% of the dataset were used to evaluate the performance 

of the models created. The performance values obtained using 

these data vary between 99.51% and 99.85%. Figure 21, 

Figure 23 and Figure 25 show the heatmaps of each model 

respectively, while Figure 22, Figure 24 and Figure 26 show 

the ROC curves of each model respectively. 
 

Camera #4.model 
 

 
 

Figure 21. Camera #4.model prediction values heatmap 

 

 
 

Figure 22. Camera #4.model ROC curve 
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In Table 3, the success rates and values obtained for Camera 

#4 model outputs are given. 

 

Table 3. Camera #4.model results 

 
 Snow(kar) Normal Fog(sis) Rain(Yagmur) 

FP 0 0 2 3 

FN 2 0 1 2 

TP 10 500 146 357 

TN 1006 518 869 656 

TPR 0.83333333 1 0.99319728 0.99442897 

TNR 1 1 0.99770379 0.99544765 

PPV 1 1 0.98648649 0.99166667 

NPV 0.99801587 1 0.99885057 0.99696049 

FPR 0 0 0.00229621 0.00455235 

FNR 0.16666667 0 0.00680272 0.00557103 

FDR 0 0 0.01351351 0.00833333 

ACC 0.99803536 1 0.99705305 0.99508841 

 

F1score values for Camera #4.model are specified in Table 4. 

Since the designed model is a multi-class model, the F1weighted 

value obtained from the averages of the F1 scores of each class 

is used as the weighted model score. 

 

 

 

Table 4. Camera #4.model results 

 
 Score 

F1micro 0.9950884086444007 

F1macro 0.9729918286611905 

F1weighted 0.9950075173932358 

 

Camera #12.model 

 

 
 

Figure 23. Camera #12.model prediction values heatmap 

 
 

 

 

Figure 24. Camera #12.model ROC curve 

 

In Table 5, the success rates and values obtained for Camera 

#12 model outputs are given. 
 

Table 5. Camera #12.model results 
 

 Snow(kar) Normal Fog(sis) Rain(Yagmur) 

FP 0 3 0 0 

FN 0 0 0 3 

TP 222 1281 6 521 

TN 1811 749 2027 1509 

TPR 1 1 1 0.99427481 

TNR 1 0.99601064 1 1 

PPV 1 0.99766355 1 1 

NPV 1 1 1 0.99801587 

FPR 0 0.00398936 0 0 

FNR 0 0 0 0.00572519 

FDR 0 0.00233645 0 0 

ACC 1 0.99852435 1 0.99852435 
 

Table 6. Camera #12.model results 
 

 Score 

F1micro 0.9985243482538121 

F1macro 0.998989898989899 

F1weighted 0.9985230930476484 

F1score values for Camera #12 model are specified in Table 

6. Since the designed model is a multi-class model, the 

F1weighted value obtained from the averages of the F1 scores of 

each class is used as the weighted model score. 

 

Camera #13.model 

 

 
 

Figure 25. Camera #13.model Prediction Values Heatmap 
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Figure 26. Camera #13.model ROC curve 

 

Table 7. Camera #13.model results 

 
 Snow(kar) Normal Fog(sis) Rain(Yagmur) 

FP 4 2 0 3 

FN 0 5 1 3 

TP 552 1042 17 604 

TN 1668 1175 2206 1614 

TPR 1 0.99522445 0.94444444 0.99505766 

TNR 0.99760766 0.99830076 1 0.99814471 

PPV 0.99280576 0.99808429 1 0.99505766 

NPV 1 0.99576271 0.9995469 0.99814471 

FPR 0.00239234 0.00169924 0 0.00185529 

FNR 0 0.00477555 0.05555556 0.00494234 

FDR 0.00719424 0.00191571 0 0.00494234 

ACC 0.99820144 0.99685252 0.99955036 0.99730216 

 

The performance rates and values obtained for Camera #13 

model outputs are given in Table 7. 

F1score values for Camera #13.model are specified in Table 

8. Since the designed model is a multi-class model, the 

F1weighted value obtained from the averages of the F1 scores of 

each class is used as the weighted model score.  

 

Table 8. Camera #13.model results 

 
 Score 

F1micro 0.9959532374100719 

F1macro 0.9898821108039307 

F1weighted 0.995947802599603 

 

The hyperparameters used in the training of the models are 

displayed in Table 9. 

 

Table 9. Hyperparameters of models 

 
Total Parameter Size 5,328,132 

Input Size 150×150×3 

Optimizer adam 

Loss Function categorical_crossentropy 

Epsilon 1e-07 

Epoch 100 

 

2.3 Image processing 

 

Background Subtraction. Background subtraction is the 

most commonly used method for detecting moving objects in 

a fixed camera image is background subtraction. This process 

takes the difference between the snapshot and the background 

model. In cases where the difference obtained is more than a 

predetermined threshold value, objects of the desired size and 

small pixel groups are separated. The background subtraction 

process is also explained visually in Figure 27 [39]. 

 

 
 

Figure 27. Background subtraction 

 

Background subtraction takes place within the cropped ROI 

area. The background subtraction process and its parameters 

change dynamically according to the weather model output of 

the relevant camera. OpenCV modules 

createBackgroundSubtractorMOG2 [39] and 

bgsegm.createBackgroundSubtractorMOG [40] are used for 

background subtraction. Morphological transformations were 

performed on the black and white image obtained as a result 

of image processing methods and the detection of moving 

vehicles in the images was carried out.  

In Figure 28 and Figure 29 respectively, there are 

background extraction, morphological opening/closing 

operations outputs, and moving object images determined with 

their borders after these operations using OpenCV [41] in the 

designed application. 
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Figure 28. Threshold and morphological closure process 
 

 
 

Figure 29. Detected moving object 

 

The camera image selected from the camera list was read 

frame by frame according to the fps value in the broadcast 

source to detect moving object. Each frame was converted to 

1280×720, and then the ROI was cropped according to the ROI 

boundaries in the config file. The cropped region was added to 

the main image so that the ROI can be seen in the main image. 

Figure 30 shows the images obtained.  

 

  
 

Figure 30. ROI area and ROI boundaries in main image 

 

2.4 Speed calculation 

 

To calculate speed, the distance is calculated using the 

Euclidean distance. In the designed system as shown as in 

Figure 31, the Euclidean distance calculation is performed 

automatically for the region of interest (ROI) input line 

coordinates and ROI output line coordinates read from the 

config file for the 2D plane. The approximate distance 

equation is given in Eq. (9). 

 

 
 

Figure 31. ROI area selection 

 

𝑑aprx =  𝑑𝑒𝑢𝑐 ∗ 𝑙 (𝑘𝑚) (9) 

 

The calculated 𝑑𝑒𝑢𝑐 distance is multiplied by the coefficient 

𝑙 to obtain the approximate 𝑑aprx distance value in km. 

In the camera accessed online from France, the lane lines 

and measurements on the road were used when calculating the 

distance automatically. For this, the T1 marking method 

specified in the study [11] was taken as a basis. Here the lane 

line is 1.5 meters, the lane spacing is 5 meters. For cameras in 

Istanbul, the system has been calibrated so that the lane line 

and spacing on the road are 3 meters as according to the guide 

published by the General Directorate of Highways (KGM) 

[12].  

The difference between the exit time and the entry time and 

the time spent by the vehicle within the ROI limits can be 

calculated as given in Eq. (10). Here, 𝑡𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒  represents the 

moment when the vehicle exits the region of interest, and 

𝑡𝐸𝑛𝑡𝑒𝑟𝑇𝑖𝑚𝑒  represents the moment when the vehicle enters the 

region of interest. 

 

𝑡𝑅𝑂𝐼 =  𝑡𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒 − 𝑡𝐸𝑛𝑡𝑒𝑟𝑇𝑖𝑚𝑒  (𝑠𝑛) (10) 

 

Speed estimates for each vehicle numbered with different 

numbers are calculated using 𝑑aprx  and 𝑡𝑅𝑂𝐼  values as given 

in Eq. (11) [10]. The 𝑘 value is the speed calibration constant 

that varies with the camera. 

 

𝑣aprx =
𝑑aprx 

𝑡𝑅𝑂𝐼

∗ 3.6 ∗ 𝑘 (𝑘𝑚/ℎ) (11) 

 

2.5 Vehicle detection and tracking 

 

Vehicle tracking was carried out by enumerating and 

tracking pixel areas larger than the threshold value to be 

obtained by background extraction from the fixed camera 

image. Vehicle detection and tracking process is as follows: 

If the necessary parameters are provided and the camera is 

selected, a new video screen opens after the process button is 

pressed. In Figure 32, the screenshot of the process is given.  

 

 
 

Figure 32. Vehicle detected and numbered in ROI area 

 

Entry and exit times to the ROI area for each vehicle number 

are recorded in real time. Figure 33 shows the visuals of the 

vehicles entering and exiting the ROI area. 

 

 
 

Figure 33. Multiple vehicle detection 
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Speed estimates for each vehicle numbered with different 

numbers are calculated using 𝑑aprx and 𝑡ROI  values as given in 

Eq. (11) [10]. The k value is the speed calibration constant that 

varies with the camera. In case the calculated 𝑣aprx value 

exceeds the speed limit that periodically (e.g., every 15 

minutes) updated according to weather predictions, the image 

of the moment the vehicle exits the ROI is recorded, including 

the 𝑣aprx  value and the vehicle ID. In Figure 34 below, there 

is an example of csv databases formed as a result of the 

operation. 

 

 
 

Figure 34. Vehicle enter-exit/speed database example 

 

 

3. RESULTS 

 

In the application of the speed limit that changes according 

to the weather, the image taken from any online camera is 

subjected to two synchronized processes. The CNN weather 

model is created from the images containing various seasonal 

conditions obtained from the relevant camera, which is the 

first process. The success rates of the models created and used 

in the system are between 99.51% and 99.85%. According to 

these models, weather forecasts are made at certain periods by 

using the snapshots taken from the relevant camera. After 

estimation, hard coded speed limit and image processing 

parameters are changed automatically.  

The second process includes image processing and speed 

measurements. For this process, firstly, the approximate 

distance for the camera from the area of interest is calculated. 

Afterwards, moving vehicle and speed detections are 

performed using image processing methods. In the system 

designed, the success rates in vehicle detection, counting and 

calculation of speed were between 76.46% and 94.67%.  

As a result of the process, a csv file is created containing the 

entry and exit times of each vehicle and the calculated speed 

values. In case of exceeding the specified speed limits, the 

snapshot of the relevant vehicle is saved in the specified 

directory. With this process, vehicle count and vehicle density 

information can be obtained at certain periods. Figure 35 

below shows, as an example, images of vehicles exceeding the 

speed limit in different weather conditions. 

As can be seen in Table 10, the system shows satisfactory 

performance in vehicle detection. For example, 2256 vehicles 

were counted at approximately 0.9 vehicles per second during 

one of the busiest hours of the day in Istanbul with Camera 

#13. Although the system detected every vehicle in this 

observation, it showed at least 76.46% success, even with 

errors caused by incorrectly increasing the vehicle number 

during the passage of some (long and wide) vehicles or due to 

lags in the live camera image. As seen in Figure 36, when wide 

and long vehicles pass through the ROI area, these vehicles 

can cover the entire area of interest. In this case, the entry and 

exit time values of the center of the detected object were used 

when calculating the speed values. 

In order to demonstrate the accuracy of the speed estimation, 

5 transition were made with the test car on the Camera #13 

with normal weather condition and actual speed value was 

compared with the speed value calculated. As a result of these 

comparisons, the error rate in speed calculation was found to 

be 2.54%. The parameters of these transitions and the velocity 

calculation were verified by estimating with the Kalman filter 

[13]. 
 

  

  
 

Figure 35. Outputs for different weather conditions 
 

   
 

Figure 36. Long vehicle detection 
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Table 10. Results 

 

Camera Weather 
Predicted 

Weather 

Process 

Time 

Total Vehicle 

Count 

False Vehicle 

Count 

Vehicle Detection 

Accuracy 

Average 

Accuracy 

Camera #4 Normal Normal 21:05 – 21:47 558 93 %83.33 

%83.18 

Camera #4 Normal Normal 20:10 – 21:03 1000 94 %90.60 

Camera #4 Normal Normal 21:36 – 22:00 113 19 %83.19 

Camera #4 Normal Normal 15:28 – 16:57 1333 181 %86.42 

Camera #4 Rainy Rainy 21:05 – 21.10 66 15 %77.27 

Camera #4 Rainy Rainy 07:10 – 07:15 207 45 %78.26 

Camera #12 Normal Normal 19:43 – 19:58 450 24 %94.67 

%89.55 Camera #12 Rainy Rainy 12:08 – 12.29 581 35 %93.98 

Camera #12 Rainy Rainy 11:52 – 11.58 165 33 %80.00 

Camera #13 Normal Normal 12.02 – 12:44 2256 531 %76.46 

%80.68 

Camera #13 Normal Normal 20:21 – 20:27 254 38 %85.04 

Camera #13 Normal Normal 13:10 – 13:16 298 63 %78.86 

Camera #13 Normal Normal 13:36 – 13:44 400 74 %81.50 

Camera #13 Rainy Rainy 13:13 – 13:23 196 41 %79.08 

Camera #13 Rainy Rainy 13:23 – 13:29 243 41 %83.13 

 

3.1 Vehicle speed estimation verification 

 

In the designed system, the unit distance difference between 

the vehicle center points in the previous frame is calculated for 

each frame. The same calculation was performed for the 

Kalman filter's center point estimates of the detected vehicle 

in the next frame in order to verify the velocity estimation. 

Velocities were calculated for each frame by the ratio of the 

distance between the obtained two frames to the time 

differences between the two frames. The Kalman filter starts 

its estimations from the point (0,0) and continues its 

estimations according to the vehicle center point in the next 

frame. After the first few frames, the Kalman filter appeared 

to make predictions close to the center point. 

After the planning, a constant 60 km/h transition was made 

on the road where Camera #13 live broadcast and weather 

prediction has made by model. The live video during this 

transition was recorded without changing the fps value and 

was used as the video source of the process in the designed 

application. In this context, speed calculation calibration is 

provided for the relevant camera. After this calibration, 

transitions were made again from the relevant cameras and 

speed estimation was made in the live environment. It has been 

determined that these estimates are close to the real values and 

suitable for calibration. In Figure 37, it is seen that the speed 

value obtained as a result of the process during the transition 

with the test vehicle is 60.68 km/h.  

 

 
 

Figure 37. Speed estimation result with test car (zoomed) 

 

In Figure 38, there is the average velocity value obtained 

from the Kalman filter estimates at the time of transition with 

the test car. While the speed value calculated as a result of the 

process was 60.68 km/h, the average Kalman speed for the 

same vehicle was 61.74 km/h. 

 

 

 

 
 

Figure 38. Kalman average speed of test car 

2332



Table 11. Relative work comparison 

 
Work Vehicle Detection & Speed Estimation Weather Detection & Classification 

Chowdhury et al. [15] 95.08 - 94.1 - 

Biswas et al. [16] 96.55 - 

Hsieh  et al. [17] 92.8 - 94.8 - 

Gupte et al. [18] 90 - 

Van Pham and Lee [19] 98* - 

Bhaskar and Yong [20] 91.26 - 

Yaghoobi Ershadi et al. [21] 94.02 - 

Tayara et al. [22] 90.51 - 

Wicaksono and Setiyono [23] 87.01 - 

Chu et al. [24] - 76.6 

Roser and Moosmann [26] - 85.19 

Zhang et al. [25] - 71.39 

Luo et al. [27] - 92.25 

Chen et al. [28] - 75.7 

Our Work 76.46 - 94.67 99.51 – 99.85* 

Best performances are in bold and marked “*” 

Table 11 shows the results from previous studies and their 

comparison with our study. As can be seen, our study can 

make weather prediction more successfully than other studies 

because it creates a deep learning model with images taken 

from the camera to be predicted. Since we used image 

processing methods instead of machine learning for vehicle 

detection and we perform image processing methods via CPU 

instead of GPU, our success rate in vehicle detection is slightly 

lower than other studies. 

 

3.2 Effects of different weather conditions on results 

 

As seen in Table 10, it has been determined that rainy, 

snowy and foggy weather conditions adversely affect the 

image processing steps used in vehicle counting and speed 

calculation. As seen in Figure 39, vehicle and accurate speed 

detection becomes difficult under heavy rain. 

 

 
 

Figure 39. Incorrect vehicle and speed detection under heavy 

rain (zoomed) 

 

3.3 Effects of camera image features on results 

 

 
  

Figure 40. Vehicle detection with low image quality 

 

During the development period, problems such as access 

problems, physical stabilization of the camera, image quality 

and closing the viewing angle during rain were encountered. 

Figure 40 shows that the system designed from any camera 

with very poor image quality can work for vehicle detection 

and counting, but the relevant camera images do not have the 

necessary screen quality for weather detection. 

 

3.4 Effects of image processing parameters on results 

 

If the morphological transformation and background 

subtraction parameters are not adjusted properly, the 

surrounding lights cause reflections on the asphalt road, 

especially in the evening hours. In this case, our image 

processing algorithm can detect the relevant light movements 

as cars. In order to prevent this situation, appropriate 

parameters must be entered for each camera. 

In Figure 41, the motorcycle and its silhouette on the rainy 

ground are not perceived as a vehicle since their volume is 

small, but are perceived as a part of the other vehicle in the 

image processing parameter. In this case, the speed calculation 

of the relevant vehicle will be incorrect. To prevent this, the 

second value of the structuring element used in the 

morphological opening process was increased for rainy 

weather conditions of the relevant camera. 

 

 
 

Figure 41. Incorrect image processing parameters result-1 

 

 
 

Figure 42. Incorrect image processing parameters result-2 

(zoomed) 
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As seen in Figure 42, if the morphological transformation 

and background subtraction parameters are not set 

appropriately, the surrounding lights cause reflections on the 

asphalt road, especially in the evening hours. In this case, our 

image processing algorithm can detect the relevant light 

movements as vehicles. To prevent this situation, appropriate 

parameters must be entered for each camera. 

Figure 43 shows an example of the situation that occurs as 

a result of improper selection of morphological transformation 

parameters during the passage of large vehicles. By increasing 

the initial value of the structuring element used during the 

morphological closure process, this situation was prevented 

and a more accurate speed calculation could be obtained after 

the midpoint of the detected integrated region moved out of 

the red border line. 

 

 
 

Figure 43. Incorrect image processing parameters result-3 

 

Figure 44 shows an example of the error encountered in the 

number of vehicles and therefore the vehicle speed calculation 

as a result of numbering the vehicles passing close to each 

other with the same number, if the minimum value variable 

used in the tracking algorithm is not entered in accordance 

with the camera angle and large vehicle passages. This 

situation was prevented by entering a specific minimum 

tracking value for each camera. 

 

 
 

Figure 44. Incorrect image processing parameters result-4 

 

 

4. CONCLUSION 

 

Public authorities, especially European countries, have 

developed a will to prevent traffic accidents, possible injuries 

and deaths by going beyond speed detection and similar 

traditional approaches in regulating and controlling traffic. 

There are reports with detailed solutions and targets on this 

subject. One of the main points highlighted in these reports is 

to develop systems to dynamically manage traffic with the 

support of technology. 

In this study, it has been shown that electronic monitoring 

systems can be developed in accordance with the weather. It 

has been demonstrated that this process can be done without 

additional cost with deep learning models created from images 

taken from any camera that can be accessed from the internet. 

With this study, electronic monitoring deterrence will be 

increased in reducing the risk of accidents. Therefore, this 

study shows that weather oriented vehicle speed control can 

reduce accidents and deaths caused from these accidents. 

Vehicle detection, unique numbering of vehicles and 

estimation of vehicle speed were also performed with this 

application by using image processing methods. In case of 

exceeding the speed limit, the snapshots of the relevant 

vehicles were saved in the specified directory. From the 

application outputs, the speed estimations that are unique for 

each vehicle have been verified by two different methods. As 

the first method, the Kalman filter was used and the average 

Kalman velocity was compared with the determined velocity 

estimation. For the second method, transitions from the 

existing camera at constant speeds were carried out with the 

test vehicle. The application rate estimates of these transitions 

are compared with the fixed transition rates.   

The fact that the success rates of the weather models, which 

are the most important part of the system, are in the range of 

99.51-99.85%, is the most important basis for the purpose of 

this study. On the other side, since vehicle and vehicle speed 

determinations made using snapshot image processing 

methods over the CPU depend on parameters such as weather, 

camera angle, camera accessibility, light intensity and angle, 

it has been seen that vehicle detection and vehicle speed 

detection success rate is in the range of 76.46-94.67%. 

Also with this study can provide the number of vehicles and 

daily traffic density data can be used in future studies or in 

transportation plans about the road where the relevant camera 

will be located. Traffic flow planning, traffic signs and 

markers planning, road maintenance/repair and development 

etc. can be planned in the light of these data. 

In order to show that the targeted system can be designed 

without creating additional costs, vehicle detection and speed 

calculation were performed using image processing methods 

over the CPU. Thus, it is natural that the success rates obtained 

in weather detection cannot be achieved in vehicle detection 

and vehicle speed detection. The momentary frame jumps 

experienced during the study were the biggest problem in 

determining the number of vehicles and the speed of the 

detected vehicle. However, if high-speed GPU containing 

computers and object detection models are used for vehicle 

detection, it is predicted that high success rates can be 

achieved in vehicle detection and vehicle speed detection and 

the difficulties encountered in section 3.4 can be eliminated.  

As a continuation of this study, it is planned to design a new 

application developed by using object detection models for 

vehicle and vehicle speed detection. 
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