
Deep Learning-Driven Regulation of Vehicle Speed Limits in Response to Weather

Conditions

Emir Mustafa Efe1* , Veysel Gökhan Böcekçi2

1 Institute of Pure and Applied Sciences, Faculty of Technology, Marmara University, İstanbul 34722, Turkey
2 Technology Faculty, Marmara University, İstanbul 34854, Turkey

Corresponding Author Email: emirefe@marun.edu.tr

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.400601 ABSTRACT

Received: 24 April 2023

Revised: 7 October 2023

Accepted: 1 November 2023

Available online: 30 December 2023

This study aims to establish an automated system for regulating vehicle speed limits

contingent on weather conditions, leveraging deep learning and computer vision

methodologies. The advent of advanced vehicle technologies has contributed to escalated

traffic density and accident rates. Consequently, there is a growing consensus in accident

prevention research literature advocating for the proliferation of electronic monitoring

systems. These systems proffer cost-effectiveness by diminishing dependence on field

personnel and vehicles. However, existing systems largely establish speed limits based on

the roadway and vehicle type, neglecting the impact of weather conditions. The

methodology proposed herein employs deep learning models for weather condition

detection and image processing techniques for vehicle speed estimation from video data.

The Kalman filter is utilized for tracking and speed verification. The constructed system

comprises three different cameras, each possessing an individual model. These models

exhibit accuracy rates of 99.51%, 99.85%, and 99.60% in weather classification,

respectively. Vehicle detection accuracy ranges from 76.46% to 94.67%, with a mean speed

estimation error rate of 2.54%. By dynamically modulating speed limits grounded on real-

time weather and traffic conditions, this system augments road safety. Furthermore, it

provides valuable data on traffic density by recording the quantity of vehicles traversing the

relevant highway.

Keywords:

deep learning, Kalman filter, morphological

transformations, speed estimation, video

processing

1. INTRODUCTION

1.1 Problem definition

In this study, it is aimed to automatically perform the speed

control according to the weather conditions, which is done

manually in a few European countries, and it is tried to be

suitable for the purpose of the control together with the

detection of violations. With electronic monitoring systems, it

is aimed to support 24/7 inspection by using less personnel.

Thanks to the computer program using image processing

methods and deep learning methods, it is aimed to demonstrate

that electronic inspections can be made with camera images

that can be accessed remotely, without the need for high-tech

and costly cameras. In addition, valuable data have been

created to be used in different studies with the number and

density of vehicles.

With the technological developments in electronic systems,

speed limit application is widely used in electronic control

systems for vehicles on highways, such as license plate

recognition, speed limit control, incorrect lane change control,

phone use control while driving, etc. With the increase in the

availability and functionality of these systems, drivers try to

ensure safer travel by complying with the rules in a conscious

and controlled manner.

However, there are problems in the design and use of these

electronic systems. While high-tech cameras are sufficient in

some regions for speed limit enforcement, in some regions

additional speed sensor devices are used due to old technology,

lack of infrastructure, faulty planning, etc. The existence of

these devices both increases the cost and reduces workforce

efficiency as it requires maintenance.

Another issue is that in many European countries, speed

limits on highways are determined based on the vehicle type

and the highway used. When determining speed limits,

weather conditions, which are as important a parameter as the

vehicle type and the highway used, are not taken into account.

In this case, driving at a speed appropriate to seasonal

conditions depends on the driver's discretion and the presence

of field supervisory personnel.

Over speed is the speed at which the speed limit exceeded.

While speeding is the cause of the majority of fatal accidents,

it is also an important factor determines the severity of the

accidents. As can be seen in Figure 1 [1], the risk of accident

increases as the changes in average speed increase.

Nevertheless, drivers tend to over speed while driving.

According to the research conducted in European countries

within the scope of the Safe Road Trains for the Environment

project [2], 82% of drivers know that excessive speed is an

important accident factor, yet more than 70% of them state that

Traitement du Signal
Vol. 40, No. 6, December, 2023, pp. 2321-2336

Journal homepage: http://iieta.org/journals/ts

2321

https://orcid.org/0000-0003-3186-0479
https://orcid.org/0000-0003-4559-7173
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400601&domain=pdf

they exceed the speed limit. With speed limits not set in a

weather-adaptive manner, the risk of accidents will depend on

the discretion of drivers found to be over speeding at 70%.

In France a variable speed limit is applied according to the

weather conditions. In case of rain and snow or in heavy traffic

conditions, the speed limit on highways is reduced from 130

km/h to 110 km/h, and from 90 km/h to 80 km/h on city roads.

In case of fog the speed limit is reduced to 50 km/h. As shown

in Figure 2 [2], this method takes place manually and remains

within the regional scope.

Figure 1. Speed-accident risk graph

Figure 2. Manually changed speed limit in heavy traffic in

France

In addition, there are NZLIMITS in New Zealand,

USLIMITS in America, QLIMITS, NLIMITS, VLIMITS etc.

[2] different applications from other countries. In these

applications, appropriate speed limits for highway safety are

determined according to different factors such as road

characteristics, accident history, number of uses and activities.

1.2 Background

1.2.1 Convolutional Neural Network (CNN)

The CNN method emerged with the development of the

concept of artificial intelligence, which was questioned by the

Imitation Game [3] test designed by Alan Turing in 1950. The

journey of developing deep learning methods commenced in

1943 with McCulloch and Pitts' study [4], which unveiled a

logical model of brain functions inspired by the human

nervous system. Additionally, in 2012 Krizhevsky and

Sutskever's study presented during the ImageNet Large Scale

Visual Recognition Challenge [5], marked a significant

milestone in advancing deep learning to a foundational level.

A Sequential Convolutional Neural Network (CNN) is a

deep learning architecture characterized by its sequential

arrangement of layers. In a Sequential CNN, layers are stacked

one after another in a linear fashion, forming a unidirectional

flow of data from input to output. Typically, the architecture

starts with an input layer and proceeds with a series of

convolutional layers for feature extraction, interspersed with

pooling layers for spatial downsampling. Following the

convolutional and pooling layers, one or more fully connected

layers may be added for classification or regression tasks. The

simplicity and ease of implementation of Sequential CNNs,

make them a popular choice for image-based applications. In

Figure 3, the Sequential CNN layer architecture used in this

study is given as a visual diagram.

The mathematical expression of the convolution operation

[6] is as shown in Eq. (1).

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖 ∗ 𝑗)

= ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚 + 𝑛)

𝑛𝑚

 (1)

In the equation, S represents the convolution operation

output, I represents the input, K kernel and * denotes the

convolution operation.

Convolutional Layer. The convolution layer used to

determine the properties of the input is the step in which the

filters performing the convolution operations are scanned

horizontally and vertically in the input. For example, when the

image in Figure 4, which consists of 1s and 0s as input, is

scanned with the CNN filter given, the output feature map to

be obtained is as shown in Figure 5 [7]. Here, while the filter

is moved starting from the upper left corner of the sample

image, the values between the two matrices are multiplied and

the results are summed. The collected results are stored in the

feature map. This process is repeated for the elements in each

row and column in the visual. Figure 5 shows the final

processing of the sample CNN filter in the image. The value 4,

which is the (3,3) element of the feature map, is obtained as a

result of the following Eq. (2).

(1 × 1) + (1 × 0) + (1 × 1) + (1 × 0) + (1 × 1)
+ (0 × 0) + (1 × 1) + (0 × 0)
+ (0 × 1) = 4

(2)

Figure 3. CNN layer architecture

2322

Figure 4. Input and CNN filter

Figure 5. Filtering and result

Rectified Linear Unit Layer (ReLU). This layer, which

comes after the convolution layers, is the layer where neuron

outputs are rectified to become ready for other layers.

Negative values in the data coming after the convolution layer

are set to zero and are not used during learning. For this reason,

the ReLU activation function is often preferred in multilayer

neural networks. Thanks to the operations performed in this

layer, deep learning accelerates even more. Figure 6 [6]

contains example for commonly used activation functions.

The mathematical expression of the ReLU function is given in

Eq. (3).

𝑔(𝑥) = max (0, 𝑥) =
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (3)

Figure 6. ReLU activation function

Pooling Layer. Pooling layer is the layer where calculations

are made in the network architecture. The success of the model

created in this layer is calculated and the dimensionality is

desired to be reduced. In this way, the required power and

features that are determined but will not be used are filtered.

There are two different pooling methods: maximum and

average pooling. Maximum and average pooling transactions

are shown below in Figure 7 [8].

Figure 7. Max and average pooling

Fully-Connected Layer. In this layer, the input image, which

passes through the convolution layer and the jointing layer

several times and is in the form of a matrix, is converted into

a flat vector suitable for the classification layer. Figure 8 [6]

shows the process of preparing the neurons emerging after the

convolution operations for the classification layer as a single

and flat vector in the full connection layer.

Figure 8. Fully-connected layer

Classification Layer. This layer comes after the fully-

connected layer and converts the data coming from the

neurons into logical values equal to the number of objects to

be classified. For example, 1024 neurons entering this layer

are output as a 1024×3 weight matrix for 3 different objects.

The most commonly used classifier in this layer is softmax.

Softmax produces values between 0-1 for each object to be

predicted, the object with the value closest to 1 is predicted as

the output of the model. Figure 9 shows an example output for

the classification process.

Figure 9. Classification

Softmax. It is generally used in the last layer of neural

networks, where the probability distribution of n different

events is calculated. Its most important advantage is that it can

handle multiple classes. Its mathematical expression can be

seen in Eq. (4) [6].

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

 (4)

In this study, deep learning is performed with a database

consisting of camera images using the CNN algorithm. The

most important reason for choosing CNN as the deep learning

algorithm method is that the database preprocessing of the

CNN algorithm is much less than other methods and the

learning processes are much faster. The weather forecast was

taken as the result of the Softmax algorithm as the deep

learning output. The model output will be used in weather

detection and model queries have been carried out at certain

periods. After the weather condition was determined

according to the model output, the image processing

parameters to be used in the application were updated and the

speed limit was determined. Vehicle speed control has been

implemented according to appropriate parameters and speed

limit.

2323

1.2.2 Morphological transformations

Morphological transformation is an analysis method based

on nonlinear operations related to the shape and geometry of

features in an image. It is generally used to clean the

areas/objects that are desired to be separated in binary images

from objects outside the region of interest. During these

processes, the configuration element is hovered over the input

image. Various mathematical operations are performed

according to the pixel value of the image and the value of the

configuration element. There are examples of structuring

elements in Figure 10 [9].

Figure 10. Structuring element examples

Erosion. Erosion is used to shrink and erode objects in the

image. Comparison is made by moving the structuring element

pixel by pixel over the image. If the center value of the

configuration element corresponds to the value 1 in the visual,

and if the visual has a value of 0 under the other 1 values of

the configuration element, the visual pixels under the other 1

values of the configuration element are converted to 0. Erosion

is used to remove unwanted noise because it reduces peaks and

increases the width of 0-pixel regions in the image. Figure 11

[9] shows the image obtained when the erosion process is

applied on the first image.

Figure 11. Erosion

Dilation. Dilation is used to enlarge and expand objects in

the image. The structuring element is moved pixel by pixel

over the image. When the configuration element coincides

with a pixel with a value of 1 in the central image, the visual

pixel values below the other values are changed to 1.

Expansion expands the width of 1-pixel regions in the image,

so it can remove negative noise but can also increase unwanted

noise. Figure 12 [9] shows the image (b) obtained when the

dilation process is applied on the first image (a).

Figure 12. Dilation

Opening. First Erosion and then Dilation is performed on

the original image. While the structuring element moves pixel

by pixel in the image, it eliminates less valuable pixels in the

image and ensures that other regions remain the same. Thus,

fine lines, spots and unwanted noise in the image are

eliminated. In the 3 images in Figure 13 [9] respectively;

original image, 5×5 Opened image, 9×9 Opened image.

Figure 13. Opening

Closing. First Dilation and then Erosion is performed on the

original image. The aim of the closing process is to eliminate

the gaps by filling them. While the configuration element is

moved pixel by pixel in the image, if a 1-valued pixel of the

image coincides with the element center, it ensures that the

low-value pixels below the other values of the element are

converted to 1. In the image in Figure 14 [9], it can be seen

that the recesses and gaps in the object are closed as a result of

the Closing process.

Figure 14. Closing

1.2.3 Distance calculation

Euchlidean distance is a calculation of between two points.

Euclidean distance between points in n-dimensional Euclidean

space [10] is given in Eq. (5).

𝑑𝑒𝑢𝑐

= √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2+. . +(𝑝𝑛 − 𝑞𝑛)2
(5)

where, p and q represent the points in the x and y plane of the

coordinates for which the Euclidean distance calculation is

made.

Figure 15. Traffic lines used in France

We used lane markings and on-road measurements to

automatically calculate the actual distance from the camera

image. For this purpose, the T'1 marking method specified in

the study [11] and shown in Figure 15 was taken as basis for

Camera #4. In addition, as given in Figure 16, according to the

guide published by the General Directorate of Highways

(KGM) for the cameras in Istanbul [12], the system was

calibrated so that the lane lines and intervals on the road in the

relevant camera were 3 meters each.

2324

Figure 16. Traffic line characteristics in Turkey

1.2.4 Kalman filter

The Kalman filter [13] was published by R. E. Kalman in

1960 with the aim of extracting useful signal from noisy

measurement values. R. E. Kalman used this approach to

predict states based on linear dynamical systems in state space

format. More generally, the Kalman filter is an algorithm that

can predict the next state of a model based on data from the

previous state. The biggest reason why this algorithm is called

a filter is that it can separate the actual value in the

measurements and the noise by optimizing it according to the

predictions it makes.

In systems using sensors such as radar, laser and sonar, the

Kalman filter is usually only concerned with the position of

the target. In general terms, the 𝑍𝑘 measurement vector, 𝐻

(measurement matrix) and 𝑅 (covariance matrix) values for

tracking the moving object are expressed as in Eq. (6), Eq. (7)

and Eq. (8) below [14]. Here, the 𝐵𝑥 value is a variant of the

position measurement errors and the 𝑣𝑘 value is the

measurement noise.

𝑍𝑘 = 𝐻𝑥𝑡𝑘
+ 𝑣𝑘 (6)

𝐻 = (1 0) (7)

𝑅 = (𝐵𝑥) (8)

1.3 Related works

Similar studies carried out before are discussed as follows:

In the study by Chowdhury et al. [15], vehicle detection

study was carried out with image processing methods. In the

study, vehicle detection achieved a 95.08% success rate for the

daytime period and 94.10% for the nighttime period.

In the study by Biswas et al. [16], CNN architecture was

used for vehicle detection and counting. An average of 96.55%

success rate was achieved in the counts made at certain time

periods for more than one database. As stated in this study,

vehicle counting could not be performed during heavy rain and

snowy weather conditions, and it was also reported that the

vehicles that changed lanes were counted more than once,

since the vehicle count was made according to the vehicles

passing in the lane.

In the study conducted by Hsieh et al. [17], the counting

efficiency was tried to be increased with shadow filtering and

linearity by using image-processing methods during vehicle

counting. As a result of the study, it was seen that the vehicle

counting success rate was between 92.8% and 94.8% for

different cameras.

In the study conducted by Gupte et al. [18], vehicle detection,

tracking and classification were performed using image

processing methods. As a result of this study, vehicles were

detected and tracked with a success rate of 90% in 20 minutes,

15 fps video images and classified as successful with a success

rate of 70%.

In the study conducted by Van Pham and Lee [19], vehicle

counting was performed using image-processing methods. As

a result of the study, the vehicles in a 20-minute image were

detected and counted as 98% successful.

In the study conducted by Bhaskar and Yong [20], vehicle

counting was performed using image-processing methods. As

a result of the study, as a result of the counting made in three

different videos, a successful count of 91.26% was achieved.

In the study conducted by Yaghoobi Ershadi et al. [21],

vehicle detection in different densities, weather conditions,

road type, light intensity and spaces was achieved with

approximately 94.02% success.

In the study conducted by Tayara et al. [22], the vehicle

counting study from satellite images was carried out with a

model prepared using FCRN with a 90.51% success rate.

In the study by Wicaksono et al. [23], vehicle detection was

performed using image processing methods and

morphological transformations, and approximate vehicle

speed estimation was performed. The speed estimation success

rate was 87.01%, but it was determined that the system created

in this study increased the error rate at high speeds.

In the study by Chu et al. [24], temperature, humidity and

weather forecasts were made using SVM architecture. At the

end of the study, it was seen that the weather forecast was

correct with an average of 76.6%. However, among the 5

weather conditions used in the study, it was observed that the

performance was below the general average of 76.6% for rainy

and cloudy weather conditions.

In the study by Zhang et al. [25], weather classification was

applied using Multi-Core Learning (MKL) with a database

consisting of 4000 images. The overall average success rate

was 71.39%. In this model, 32% of rainy images were

incorrectly classified as snowy.

In the study carried out by Roser and Moosmann [26],

forecasts were made for clear, light rainy and heavy rainy

weather conditions with the designed SVM model and the

success rate was obtained as 85.19%.

Vehicle detection algorithms were created in the study by

Luo et al. [27]. As a result of the application, a 92.25% success

rate was achieved for vehicle detection.

In the study conducted by Chen et al. [28], as a result of the

model created using the Faster R-CNN algorithm, vehicle

detection for various types of vehicles was performed with an

average success rate of 75.7%.

2. METHODOLOGY

In this study, all deep learning and image processing

operations created run on the CPU on a computer with an

Intel® Core™ i7-9750H 2.60GHz CPU [29] processor and

16.0 GB RAM. An interface shown in Figure 17 has been

designed to access the cameras and input the operating

parameters and settings. While designing this interface, the

python software language v3.9.6 [30] and pygt5 library [31]

are used. Other auxiliary libraries are cv2 v4.6.0 [32], numpy

v1.23.4 [33], pandas v1.5.1 [34], pafy v0.5.5 [35] and

tensorflow v2.10.0 [36]. Work flow for this study can be found

in Figure 18.

2325

2.1 Dataset

With the software application named SelfDb, which was

specially prepared for this study that takes the access links to

the specified cameras as input, the camera images with the

preferred intervals and parameters were saved in the relevant

directory. For this study, a maximum of 10 screenshots were

recorded every hour at 5-minute intervals for 24 hours and for

6 months, covering four different weather conditions which

snow, rain, fog and normal. Screenshots were 1280×720

resolution and color images. Figure 19 shows the screenshot

of the SelfDb application working.

With the SelfDb application, which takes the access links to

the specified cameras as input, as given in Table 1, camera

images are saved in the relevant directory in accordance with

the preferred periods and parameters. Among the cameras

identified, there are freeway cameras located in the city of

France / Lyon [37], many central and highway cameras in the

city of Türkiye / Istanbul [38]. These cameras, which are

accessed online from many countries and cities, do not

technically require any features, but the image quality, fixed

camera structure and access stability make these cameras one

step ahead in choosing them. In Figure 20 there are screenshots

taken from the traffic density map provided by İBBUYM [38].

There are sample images that can be used for normal, rainy,

snowy and foggy weather conditions.

Figure 17. User interface

Figure 18. Application work flow

Figure 19. SelfDb application

Figure 20. Istanbul-various weather conditions

2326

Table 1. Camera list

Camera Resolution fps Location URL

Camera #4 1280×720 60 Lyon www.youtube.com/watch?v=z545k7Tcb5o

Camera #12 1920×1080 30 İstanbul uym.ibb.gov.tr/yharita6/

Camera #13 1920×1080 30 İstanbul uym.ibb.gov.tr/yharita6/

Table 2. Datasets and demographic structures

CNN Model Class Format Original Resolutions Pcs Process Image Resolutions Accuracy

Camera #4.model

snow (kar) .jpg 1280×720 38 150×150

99.51%
normal .jpg 1280×720 1645 150×150

fog (sis) .jpg 1280×720 468 150×150

rain (yagmur) .jpg 1280×720 1241 150×150

Camera #12.model

snow (kar) .jpg 1280×720 756 150×150

99.85%
normal .jpg 1280×720 4185 150×150

fog (sis) .jpg 1280×720 35 150×150

rain (yagmur) .jpg 1280×720 1800 150×150

Camera #13.model

snow (kar) .jpg 1280×720 1846 150×150

99.60%
normal .jpg 1280×720 3500 150×150

fog (sis) .jpg 1280×720 66 150×150

rain (yagmur) .jpg 1280×720 2000 150×150

2.2 CNN models development

In this study, deep learning was carried out with a database

of camera images using the CNN algorithm. The most

important reason for choosing CNN as a deep learning

algorithm method is that the database preprocessing of the

Sequential CNN algorithm is much less and the learning

processes are much faster than other methods. The model

output will be used to determine the weather, and the model

query has been carried out at certain periods. After

determining the weather conditions according to the model

output, the image processing parameters to be used in the

application were updated and the speed limit was determined.

Vehicle speed control was applied according to appropriate

parameters and speed limit.

The first thing to do when creating a model was to specify

the classes to be used. Then, all images under the relevant

training directory were read with the OpenCV library and

reduced to 150x150 format. 70% of these images were used in

training and 30% were used in model evaluation. Then, the

training data obtained categorically were provided as data in

the deep learning algorithm, and training was carried out with

an architecture consisting of 2 convolution layers for 100

epochs and the model saved in the desired directory.

The models created with the databases consisting of images

of four different weather conditions obtained with the SelfDb

application and the demographic structures of the databases

are indicated in Table 2. The visuals, examples of which are

shown in Figure 20, are examples of the visuals used when

creating the Camera #13.model model.

30% of the dataset were used to evaluate the performance

of the models created. The performance values obtained using

these data vary between 99.51% and 99.85%. Figure 21,

Figure 23 and Figure 25 show the heatmaps of each model

respectively, while Figure 22, Figure 24 and Figure 26 show

the ROC curves of each model respectively.

Camera #4.model

Figure 21. Camera #4.model prediction values heatmap

Figure 22. Camera #4.model ROC curve

2327

In Table 3, the success rates and values obtained for Camera

#4 model outputs are given.

Table 3. Camera #4.model results

 Snow(kar) Normal Fog(sis) Rain(Yagmur)

FP 0 0 2 3

FN 2 0 1 2

TP 10 500 146 357

TN 1006 518 869 656

TPR 0.83333333 1 0.99319728 0.99442897

TNR 1 1 0.99770379 0.99544765

PPV 1 1 0.98648649 0.99166667

NPV 0.99801587 1 0.99885057 0.99696049

FPR 0 0 0.00229621 0.00455235

FNR 0.16666667 0 0.00680272 0.00557103

FDR 0 0 0.01351351 0.00833333

ACC 0.99803536 1 0.99705305 0.99508841

F1score values for Camera #4.model are specified in Table 4.

Since the designed model is a multi-class model, the F1weighted

value obtained from the averages of the F1 scores of each class

is used as the weighted model score.

Table 4. Camera #4.model results

 Score

F1micro 0.9950884086444007

F1macro 0.9729918286611905

F1weighted 0.9950075173932358

Camera #12.model

Figure 23. Camera #12.model prediction values heatmap

Figure 24. Camera #12.model ROC curve

In Table 5, the success rates and values obtained for Camera

#12 model outputs are given.

Table 5. Camera #12.model results

 Snow(kar) Normal Fog(sis) Rain(Yagmur)

FP 0 3 0 0

FN 0 0 0 3

TP 222 1281 6 521

TN 1811 749 2027 1509

TPR 1 1 1 0.99427481

TNR 1 0.99601064 1 1

PPV 1 0.99766355 1 1

NPV 1 1 1 0.99801587

FPR 0 0.00398936 0 0

FNR 0 0 0 0.00572519

FDR 0 0.00233645 0 0

ACC 1 0.99852435 1 0.99852435

Table 6. Camera #12.model results

 Score

F1micro 0.9985243482538121

F1macro 0.998989898989899

F1weighted 0.9985230930476484

F1score values for Camera #12 model are specified in Table

6. Since the designed model is a multi-class model, the

F1weighted value obtained from the averages of the F1 scores of

each class is used as the weighted model score.

Camera #13.model

Figure 25. Camera #13.model Prediction Values Heatmap

2328

Figure 26. Camera #13.model ROC curve

Table 7. Camera #13.model results

 Snow(kar) Normal Fog(sis) Rain(Yagmur)

FP 4 2 0 3

FN 0 5 1 3

TP 552 1042 17 604

TN 1668 1175 2206 1614

TPR 1 0.99522445 0.94444444 0.99505766

TNR 0.99760766 0.99830076 1 0.99814471

PPV 0.99280576 0.99808429 1 0.99505766

NPV 1 0.99576271 0.9995469 0.99814471

FPR 0.00239234 0.00169924 0 0.00185529

FNR 0 0.00477555 0.05555556 0.00494234

FDR 0.00719424 0.00191571 0 0.00494234

ACC 0.99820144 0.99685252 0.99955036 0.99730216

The performance rates and values obtained for Camera #13

model outputs are given in Table 7.

F1score values for Camera #13.model are specified in Table

8. Since the designed model is a multi-class model, the

F1weighted value obtained from the averages of the F1 scores of

each class is used as the weighted model score.

Table 8. Camera #13.model results

 Score

F1micro 0.9959532374100719

F1macro 0.9898821108039307

F1weighted 0.995947802599603

The hyperparameters used in the training of the models are

displayed in Table 9.

Table 9. Hyperparameters of models

Total Parameter Size 5,328,132

Input Size 150×150×3

Optimizer adam

Loss Function categorical_crossentropy

Epsilon 1e-07

Epoch 100

2.3 Image processing

Background Subtraction. Background subtraction is the

most commonly used method for detecting moving objects in

a fixed camera image is background subtraction. This process

takes the difference between the snapshot and the background

model. In cases where the difference obtained is more than a

predetermined threshold value, objects of the desired size and

small pixel groups are separated. The background subtraction

process is also explained visually in Figure 27 [39].

Figure 27. Background subtraction

Background subtraction takes place within the cropped ROI

area. The background subtraction process and its parameters

change dynamically according to the weather model output of

the relevant camera. OpenCV modules

createBackgroundSubtractorMOG2 [39] and

bgsegm.createBackgroundSubtractorMOG [40] are used for

background subtraction. Morphological transformations were

performed on the black and white image obtained as a result

of image processing methods and the detection of moving

vehicles in the images was carried out.

In Figure 28 and Figure 29 respectively, there are

background extraction, morphological opening/closing

operations outputs, and moving object images determined with

their borders after these operations using OpenCV [41] in the

designed application.

2329

Figure 28. Threshold and morphological closure process

Figure 29. Detected moving object

The camera image selected from the camera list was read

frame by frame according to the fps value in the broadcast

source to detect moving object. Each frame was converted to

1280×720, and then the ROI was cropped according to the ROI

boundaries in the config file. The cropped region was added to

the main image so that the ROI can be seen in the main image.

Figure 30 shows the images obtained.

Figure 30. ROI area and ROI boundaries in main image

2.4 Speed calculation

To calculate speed, the distance is calculated using the

Euclidean distance. In the designed system as shown as in

Figure 31, the Euclidean distance calculation is performed

automatically for the region of interest (ROI) input line

coordinates and ROI output line coordinates read from the

config file for the 2D plane. The approximate distance

equation is given in Eq. (9).

Figure 31. ROI area selection

𝑑aprx = 𝑑𝑒𝑢𝑐 ∗ 𝑙 (𝑘𝑚) (9)

The calculated 𝑑𝑒𝑢𝑐 distance is multiplied by the coefficient

𝑙 to obtain the approximate 𝑑aprx distance value in km.

In the camera accessed online from France, the lane lines

and measurements on the road were used when calculating the

distance automatically. For this, the T1 marking method

specified in the study [11] was taken as a basis. Here the lane

line is 1.5 meters, the lane spacing is 5 meters. For cameras in

Istanbul, the system has been calibrated so that the lane line

and spacing on the road are 3 meters as according to the guide

published by the General Directorate of Highways (KGM)

[12].

The difference between the exit time and the entry time and

the time spent by the vehicle within the ROI limits can be

calculated as given in Eq. (10). Here, 𝑡𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒 represents the

moment when the vehicle exits the region of interest, and

𝑡𝐸𝑛𝑡𝑒𝑟𝑇𝑖𝑚𝑒 represents the moment when the vehicle enters the

region of interest.

𝑡𝑅𝑂𝐼 = 𝑡𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒 − 𝑡𝐸𝑛𝑡𝑒𝑟𝑇𝑖𝑚𝑒 (𝑠𝑛) (10)

Speed estimates for each vehicle numbered with different

numbers are calculated using 𝑑aprx and 𝑡𝑅𝑂𝐼 values as given

in Eq. (11) [10]. The 𝑘 value is the speed calibration constant

that varies with the camera.

𝑣aprx =
𝑑aprx

𝑡𝑅𝑂𝐼

∗ 3.6 ∗ 𝑘 (𝑘𝑚/ℎ) (11)

2.5 Vehicle detection and tracking

Vehicle tracking was carried out by enumerating and

tracking pixel areas larger than the threshold value to be

obtained by background extraction from the fixed camera

image. Vehicle detection and tracking process is as follows:

If the necessary parameters are provided and the camera is

selected, a new video screen opens after the process button is

pressed. In Figure 32, the screenshot of the process is given.

Figure 32. Vehicle detected and numbered in ROI area

Entry and exit times to the ROI area for each vehicle number

are recorded in real time. Figure 33 shows the visuals of the

vehicles entering and exiting the ROI area.

Figure 33. Multiple vehicle detection

2330

Speed estimates for each vehicle numbered with different

numbers are calculated using 𝑑aprx and 𝑡ROI values as given in

Eq. (11) [10]. The k value is the speed calibration constant that

varies with the camera. In case the calculated 𝑣aprx value

exceeds the speed limit that periodically (e.g., every 15

minutes) updated according to weather predictions, the image

of the moment the vehicle exits the ROI is recorded, including

the 𝑣aprx value and the vehicle ID. In Figure 34 below, there

is an example of csv databases formed as a result of the

operation.

Figure 34. Vehicle enter-exit/speed database example

3. RESULTS

In the application of the speed limit that changes according

to the weather, the image taken from any online camera is

subjected to two synchronized processes. The CNN weather

model is created from the images containing various seasonal

conditions obtained from the relevant camera, which is the

first process. The success rates of the models created and used

in the system are between 99.51% and 99.85%. According to

these models, weather forecasts are made at certain periods by

using the snapshots taken from the relevant camera. After

estimation, hard coded speed limit and image processing

parameters are changed automatically.

The second process includes image processing and speed

measurements. For this process, firstly, the approximate

distance for the camera from the area of interest is calculated.

Afterwards, moving vehicle and speed detections are

performed using image processing methods. In the system

designed, the success rates in vehicle detection, counting and

calculation of speed were between 76.46% and 94.67%.

As a result of the process, a csv file is created containing the

entry and exit times of each vehicle and the calculated speed

values. In case of exceeding the specified speed limits, the

snapshot of the relevant vehicle is saved in the specified

directory. With this process, vehicle count and vehicle density

information can be obtained at certain periods. Figure 35

below shows, as an example, images of vehicles exceeding the

speed limit in different weather conditions.

As can be seen in Table 10, the system shows satisfactory

performance in vehicle detection. For example, 2256 vehicles

were counted at approximately 0.9 vehicles per second during

one of the busiest hours of the day in Istanbul with Camera

#13. Although the system detected every vehicle in this

observation, it showed at least 76.46% success, even with

errors caused by incorrectly increasing the vehicle number

during the passage of some (long and wide) vehicles or due to

lags in the live camera image. As seen in Figure 36, when wide

and long vehicles pass through the ROI area, these vehicles

can cover the entire area of interest. In this case, the entry and

exit time values of the center of the detected object were used

when calculating the speed values.

In order to demonstrate the accuracy of the speed estimation,

5 transition were made with the test car on the Camera #13

with normal weather condition and actual speed value was

compared with the speed value calculated. As a result of these

comparisons, the error rate in speed calculation was found to

be 2.54%. The parameters of these transitions and the velocity

calculation were verified by estimating with the Kalman filter

[13].

Figure 35. Outputs for different weather conditions

Figure 36. Long vehicle detection

2331

Table 10. Results

Camera Weather
Predicted

Weather

Process

Time

Total Vehicle

Count

False Vehicle

Count

Vehicle Detection

Accuracy

Average

Accuracy

Camera #4 Normal Normal 21:05 – 21:47 558 93 %83.33

%83.18

Camera #4 Normal Normal 20:10 – 21:03 1000 94 %90.60

Camera #4 Normal Normal 21:36 – 22:00 113 19 %83.19

Camera #4 Normal Normal 15:28 – 16:57 1333 181 %86.42

Camera #4 Rainy Rainy 21:05 – 21.10 66 15 %77.27

Camera #4 Rainy Rainy 07:10 – 07:15 207 45 %78.26

Camera #12 Normal Normal 19:43 – 19:58 450 24 %94.67

%89.55 Camera #12 Rainy Rainy 12:08 – 12.29 581 35 %93.98

Camera #12 Rainy Rainy 11:52 – 11.58 165 33 %80.00

Camera #13 Normal Normal 12.02 – 12:44 2256 531 %76.46

%80.68

Camera #13 Normal Normal 20:21 – 20:27 254 38 %85.04

Camera #13 Normal Normal 13:10 – 13:16 298 63 %78.86

Camera #13 Normal Normal 13:36 – 13:44 400 74 %81.50

Camera #13 Rainy Rainy 13:13 – 13:23 196 41 %79.08

Camera #13 Rainy Rainy 13:23 – 13:29 243 41 %83.13

3.1 Vehicle speed estimation verification

In the designed system, the unit distance difference between

the vehicle center points in the previous frame is calculated for

each frame. The same calculation was performed for the

Kalman filter's center point estimates of the detected vehicle

in the next frame in order to verify the velocity estimation.

Velocities were calculated for each frame by the ratio of the

distance between the obtained two frames to the time

differences between the two frames. The Kalman filter starts

its estimations from the point (0,0) and continues its

estimations according to the vehicle center point in the next

frame. After the first few frames, the Kalman filter appeared

to make predictions close to the center point.

After the planning, a constant 60 km/h transition was made

on the road where Camera #13 live broadcast and weather

prediction has made by model. The live video during this

transition was recorded without changing the fps value and

was used as the video source of the process in the designed

application. In this context, speed calculation calibration is

provided for the relevant camera. After this calibration,

transitions were made again from the relevant cameras and

speed estimation was made in the live environment. It has been

determined that these estimates are close to the real values and

suitable for calibration. In Figure 37, it is seen that the speed

value obtained as a result of the process during the transition

with the test vehicle is 60.68 km/h.

Figure 37. Speed estimation result with test car (zoomed)

In Figure 38, there is the average velocity value obtained

from the Kalman filter estimates at the time of transition with

the test car. While the speed value calculated as a result of the

process was 60.68 km/h, the average Kalman speed for the

same vehicle was 61.74 km/h.

Figure 38. Kalman average speed of test car

2332

Table 11. Relative work comparison

Work Vehicle Detection & Speed Estimation Weather Detection & Classification

Chowdhury et al. [15] 95.08 - 94.1 -

Biswas et al. [16] 96.55 -

Hsieh et al. [17] 92.8 - 94.8 -

Gupte et al. [18] 90 -

Van Pham and Lee [19] 98* -

Bhaskar and Yong [20] 91.26 -

Yaghoobi Ershadi et al. [21] 94.02 -

Tayara et al. [22] 90.51 -

Wicaksono and Setiyono [23] 87.01 -

Chu et al. [24] - 76.6

Roser and Moosmann [26] - 85.19

Zhang et al. [25] - 71.39

Luo et al. [27] - 92.25

Chen et al. [28] - 75.7

Our Work 76.46 - 94.67 99.51 – 99.85*

Best performances are in bold and marked “*”

Table 11 shows the results from previous studies and their

comparison with our study. As can be seen, our study can

make weather prediction more successfully than other studies

because it creates a deep learning model with images taken

from the camera to be predicted. Since we used image

processing methods instead of machine learning for vehicle

detection and we perform image processing methods via CPU

instead of GPU, our success rate in vehicle detection is slightly

lower than other studies.

3.2 Effects of different weather conditions on results

As seen in Table 10, it has been determined that rainy,

snowy and foggy weather conditions adversely affect the

image processing steps used in vehicle counting and speed

calculation. As seen in Figure 39, vehicle and accurate speed

detection becomes difficult under heavy rain.

Figure 39. Incorrect vehicle and speed detection under heavy

rain (zoomed)

3.3 Effects of camera image features on results

Figure 40. Vehicle detection with low image quality

During the development period, problems such as access

problems, physical stabilization of the camera, image quality

and closing the viewing angle during rain were encountered.

Figure 40 shows that the system designed from any camera

with very poor image quality can work for vehicle detection

and counting, but the relevant camera images do not have the

necessary screen quality for weather detection.

3.4 Effects of image processing parameters on results

If the morphological transformation and background

subtraction parameters are not adjusted properly, the

surrounding lights cause reflections on the asphalt road,

especially in the evening hours. In this case, our image

processing algorithm can detect the relevant light movements

as cars. In order to prevent this situation, appropriate

parameters must be entered for each camera.

In Figure 41, the motorcycle and its silhouette on the rainy

ground are not perceived as a vehicle since their volume is

small, but are perceived as a part of the other vehicle in the

image processing parameter. In this case, the speed calculation

of the relevant vehicle will be incorrect. To prevent this, the

second value of the structuring element used in the

morphological opening process was increased for rainy

weather conditions of the relevant camera.

Figure 41. Incorrect image processing parameters result-1

Figure 42. Incorrect image processing parameters result-2

(zoomed)

2333

As seen in Figure 42, if the morphological transformation

and background subtraction parameters are not set

appropriately, the surrounding lights cause reflections on the

asphalt road, especially in the evening hours. In this case, our

image processing algorithm can detect the relevant light

movements as vehicles. To prevent this situation, appropriate

parameters must be entered for each camera.

Figure 43 shows an example of the situation that occurs as

a result of improper selection of morphological transformation

parameters during the passage of large vehicles. By increasing

the initial value of the structuring element used during the

morphological closure process, this situation was prevented

and a more accurate speed calculation could be obtained after

the midpoint of the detected integrated region moved out of

the red border line.

Figure 43. Incorrect image processing parameters result-3

Figure 44 shows an example of the error encountered in the

number of vehicles and therefore the vehicle speed calculation

as a result of numbering the vehicles passing close to each

other with the same number, if the minimum value variable

used in the tracking algorithm is not entered in accordance

with the camera angle and large vehicle passages. This

situation was prevented by entering a specific minimum

tracking value for each camera.

Figure 44. Incorrect image processing parameters result-4

4. CONCLUSION

Public authorities, especially European countries, have

developed a will to prevent traffic accidents, possible injuries

and deaths by going beyond speed detection and similar

traditional approaches in regulating and controlling traffic.

There are reports with detailed solutions and targets on this

subject. One of the main points highlighted in these reports is

to develop systems to dynamically manage traffic with the

support of technology.

In this study, it has been shown that electronic monitoring

systems can be developed in accordance with the weather. It

has been demonstrated that this process can be done without

additional cost with deep learning models created from images

taken from any camera that can be accessed from the internet.

With this study, electronic monitoring deterrence will be

increased in reducing the risk of accidents. Therefore, this

study shows that weather oriented vehicle speed control can

reduce accidents and deaths caused from these accidents.

Vehicle detection, unique numbering of vehicles and

estimation of vehicle speed were also performed with this

application by using image processing methods. In case of

exceeding the speed limit, the snapshots of the relevant

vehicles were saved in the specified directory. From the

application outputs, the speed estimations that are unique for

each vehicle have been verified by two different methods. As

the first method, the Kalman filter was used and the average

Kalman velocity was compared with the determined velocity

estimation. For the second method, transitions from the

existing camera at constant speeds were carried out with the

test vehicle. The application rate estimates of these transitions

are compared with the fixed transition rates.

The fact that the success rates of the weather models, which

are the most important part of the system, are in the range of

99.51-99.85%, is the most important basis for the purpose of

this study. On the other side, since vehicle and vehicle speed

determinations made using snapshot image processing

methods over the CPU depend on parameters such as weather,

camera angle, camera accessibility, light intensity and angle,

it has been seen that vehicle detection and vehicle speed

detection success rate is in the range of 76.46-94.67%.

Also with this study can provide the number of vehicles and

daily traffic density data can be used in future studies or in

transportation plans about the road where the relevant camera

will be located. Traffic flow planning, traffic signs and

markers planning, road maintenance/repair and development

etc. can be planned in the light of these data.

In order to show that the targeted system can be designed

without creating additional costs, vehicle detection and speed

calculation were performed using image processing methods

over the CPU. Thus, it is natural that the success rates obtained

in weather detection cannot be achieved in vehicle detection

and vehicle speed detection. The momentary frame jumps

experienced during the study were the biggest problem in

determining the number of vehicles and the speed of the

detected vehicle. However, if high-speed GPU containing

computers and object detection models are used for vehicle

detection, it is predicted that high success rates can be

achieved in vehicle detection and vehicle speed detection and

the difficulties encountered in section 3.4 can be eliminated.

As a continuation of this study, it is planned to design a new

application developed by using object detection models for

vehicle and vehicle speed detection.

REFERENCES

[1] Hız yönetimi Karar organları ve uygulayıcılar için

karayolu güvenliği el kitabı. Emniyet Genel Müdürlüğü

Trafik Araştırma Merkezi. http://www.trafik.gov.tr,

accessed on Oct. 04, 2023.

[2] OECD/ECMT Transport Research Centre, “SPEED

MANAGEMENT,” 2006, https://www.itf-

oecd.org/sites/default/files/docs/06speed.pdf, accessed

on Oct. 04, 2023.

[3] Turing, A.M. (2009). Computing machinery and

2334

intelligence. Springer Netherlands.

https://doi.org/10.1093/OSO/9780198250791.003.0017

[4] McCulloch, W.S., Pitts, W. (1943). A logical calculus of

the ideas immanent in nervous activity. The Bulletin of

Mathematical Biophysics, 5: 115-133.

https://doi.org/10.1007/BF02478259/METRICS

[5] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

ImageNet classification with deep convolutional neural

networks. Part of Advances in Neural Information

Processing Systems 25 (NIPS 2012).

[6] “CS 230 - Evrişimli Sinir Ağları El Kitabı.”

https://stanford.edu/~shervine/l/tr/teaching/cs-

230/cheatsheet-convolutional-neural-networks, accessed

on Oct. 04, 2023.

[7] “Introduction to Convolutional Neural Networks |

Rubik’s Code.”

https://rubikscode.net/2018/02/26/introduction-to-

convolutional-neural-networks/, accessed on Oct. 05,

2023.

[8] Yani, M., Budhi Irawan, S.S.M., Casi Setiningsih, S.M.

(2019). Application of transfer learning using

convolutional neural network method for early detection

of terry’s nail. In Journal of Physics: Conference Series,

1201(1): 012052. https://doi.org/10.1088/1742-

6596/1201/1/012052

[9] Perihanoğlu, G.M. (2015). Dijital Görüntü İşleme

Teknikleri Kullanılarak Görüntülerden Detay Çıkarımı.

http://hdl.handle.net/11527/13574.

[10] Chintalacheruvu, N., Muthukumar, V. (2012). Video

based vehicle detection and its application in intelligent

transportation systems. Journal of Transportation

Technologies, 2(04): 305.

https://doi.org/10.4236/JTTS.2012.24033

[11] Marc, R., Dominique, G., Evangeline, P. (2012).

Generator of road marking textures and associated

ground truth applied to the evaluation of road marking

detection. In 2012 15th International IEEE Conference

on Intelligent Transportation Systems, Anchorage, AK,

USA, pp. 933-938.

https://doi.org/10.1109/ITSC.2012.6338773

[12] Trafik Güvenliği Dairesi Başkanlığı Trafik Güvenliği

İşaretleme Şubesi Müdürlüğü, “Karayolu Trafik

İşaretleme Standartları-1”, 2020, Available:

https://www.kgm.gov.tr/SiteCollectionDocuments/KG

Mdocuments/Trafik/IsaretlerElKitabi/KarayoluTrafikIsa

retlemeStandartlari1.pdf, accessed on Oct. 04, 2023.

[13] Kalman, R.E. (1960). A new approach to linear filtering

and prediction problems. J. Fluids Eng. Trans. ASME,

82(1): 35-45. https://doi.org/10.1115/1.3662552

[14] Saho, K. (2017). Kalman filter for moving object

tracking: Performance analysis and filter design. Kalman

Filters-Theory for Advanced Applications, 233-252.

https://doi.org/10.5772/INTECHOPEN.71731

[15] Chowdhury, P.N., Ray, T.C., Uddin, J. (2018). A vehicle

detection technique for traffic management using image

processing. In 2018 International Conference on

Computer, Communication, Chemical, Material and

Electronic Engineering (IC4ME2), Rajshahi, Bangladesh,

pp. 1-4. https://doi.org/10.1109/IC4ME2.2018.8465599

[16] Biswas, D., Su, H., Wang, C., Blankenship, J.,

Stevanovic, A. (2017). An automatic car counting system

using OverFeat framework. Sensors, 17(7): 1535.

https://doi.org/10.3390/S17071535

[17] Hsieh, J.W., Yu, S.H., Chen, Y.S., Hu, W.F. (2006).

Automatic traffic surveillance system for vehicle

tracking and classification. IEEE Transactions on

Intelligent Transportation Systems, 7(2): 175-187.

https://doi.org/10.1109/TITS.2006.874722

[18] Gupte, S., Masoud, O., Martin, R.F.K.,

Papanikolopoulos, N.P. (2002). Detection and

classification of vehicles. IEEE Transactions on

Intelligent Transportation Systems, 3(1): 37-47.

https://doi.org/10.1109/6979.994794

[19] Van Pham, H., Lee, B.R. (2015). Front-view car

detection and counting with occlusion in dense traffic

flow. International Journal of Control, Automation and

Systems, 13: 1150-1160.

https://doi.org/10.1007/S12555-014-0229-7/METRICS

[20] Bhaskar, P.K., Yong, S.P. (2014). Image processing

based vehicle detection and tracking method. In 2014

International Conference on Computer and Information

Sciences (ICCOINS), Kuala Lumpur, Malaysia, pp. 1-5.

https://doi.org/10.1109/ICCOINS.2014.6868357

[21] Yaghoobi Ershadi, N., Menéndez, J.M., Jiménez, D.

(2018). Robust vehicle detection in different weather

conditions: Using MIPM. PloS One, 13(3): e0191355.

https://doi.org/10.1371/JOURNAL.PONE.0191355

[22] Tayara, H., Soo, K.G., Chong, K.T. (2017). Vehicle

detection and counting in high-resolution aerial images

using convolutional regression neural network. IEEE

Access, 6: 2220-2230.

https://doi.org/10.1109/ACCESS.2017.2782260

[23] Wicaksono, D.W., Setiyono, B. (2017). Speed estimation

on moving vehicle based on digital image processing.

(IJCSAM) International Journal of Computing Science

and Applied Mathematics, 3(1): 21-26.

https://doi.org/10.12962/J24775401.V3I1.2117

[24] Chu, W.T., Zheng, X.Y., Ding, D.S. (2017). Camera as

weather sensor: Estimating weather information from

single images. Journal of Visual Communication and

Image Representation, 46: 233-249.

https://doi.org/10.1016/J.JVCIR.2017.04.002

[25] Zhang, Z., Ma, H., Fu, H., Zhang, C. (2016). Scene-free

multi-class weather classification on single images.

Neurocomputing, 207: 365-373.

https://doi.org/10.1016/J.NEUCOM.2016.05.015

[26] Roser, M., Moosmann, F. (2008). Classification of

weather situations on single color images. In 2008 IEEE

Intelligent Vehicles Symposium, Eindhoven,

Netherlands, pp. 798-803.

https://doi.org/10.1109/IVS.2008.4621205

[27] Luo, X., Shen, R., Hu, J., Deng, J., Hu, L., Guan, Q.

(2017). A deep convolution neural network model for

vehicle recognition and face recognition. Procedia

Computer Science, 107: 715-720.

https://doi.org/10.1016/j.procs.2017.03.153

[28] Chen, L., Ye, F., Ruan, Y., Fan, H., Chen, Q. (2018). An

algorithm for highway vehicle detection based on

convolutional neural network. Eurasip Journal on Image

and Video Processing, 2018: 1-7.

https://doi.org/10.1186/s13640-018-0350-2

[29] “Intel® CoreTM i7-9750H Processor.”

https://www.intel.com/content/www/us/en/products/sku

/191045/intel-core-i79750h-processor-12m-cache-up-

to-4-50-ghz/specifications.html, accessed on Oct. 04,

2023.

[30] “Python .” https://www.python.org/, accessed on Oct. 13,

2022.

2335

[31] “PyQt5 Reference Guide — PyQt Documentation

v5.15.4.”

https://www.riverbankcomputing.com/static/Docs/PyQt

5/index.html, accessed on Oct. 04, 2023.

[32] “OpenCV.” https://opencv.org/, accessed on Oct. 13,

2022.

[33] “NumPy.” https://numpy.org/, accessed on Oct. 06, 2023.

[34] “pandas - Python Data Analysis Library.”

https://pandas.pydata.org/, accessed on Oct. 06, 2023.

[35] “GitHub - mps-youtube/pafy: Python library to

download YouTube content and retrieve metadata.”

https://github.com/mps-youtube/pafy, accessed on Oct.

06, 2023.

[36] “TensorFlow.” https://www.tensorflow.org/, accessed on

Oct. 06, 2023.

[37] “YouTube.” https://www.youtube.com/, accessed on Oct.

04, 2023.

[38] “İBB Trafik Yoğunluk Haritası.”

https://uym.ibb.gov.tr/yharita6/, accessed on Oct. 04,

2023.

[39] “OpenCV: How to Use Background Subtraction

Methods.”

https://docs.opencv.org/4.x/d1/dc5/tutorial_background

_subtraction.html, accessed on Oct. 04, 2023.

[40] “OpenCV: Improved Background-Foreground

Segmentation Methods.”

https://docs.opencv.org/4.x/d2/d55/group__bgsegm.htm

l, accessed on Oct. 06, 2023.

[41] “OpenCV - Open Computer Vision Library.”

https://opencv.org/, accessed on Oct. 04, 2023.

2336

