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Automatic Speaker Recognition (ASR) is a crucial application in the realm of speech 

processing, with Artificial Intelligence (AI) being extensively employed in areas such as 

authentication, surveillance, forensics, and security. The cornerstone processes of these 

applications encompass feature matching, feature extraction, and performance evaluation. 

However, the present speaker identification and verification techniques are not without their 

flaws, including vulnerability to distortion resulting from noise and the ability to mimic 

signals via voice recording devices. Given these challenges, there's a pressing need for a 

fresh feature extraction technique that offers robust speaker identification using an enhanced 

spectrogram. This paper addresses this need by proposing an innovative and efficient feature 

extraction methodology, christened "Optimized Variance Spectral Flux (OVSF)". This 

potent technique, based on the Daubechies 40 wavelet and power spectrum of a signal, 

facilitates the extraction of unique features of the speaker. For the feature matching phase in 

speaker recognition, the characteristics of different speakers are compared by applying the 

time-honored Bayesian information criterion distance metric. The proposed system's 

effectiveness is assessed through a series of metrics including Receiver Operating 

Characteristics (ROC), detection error trade-off curves, the Equal Error Rate (EER), and the 

Area under the Curve (AUC). The experimental results yield an AUC and EER for the 

proposed method of 94.38 and 10.3564, respectively, indicating a higher accuracy than the 

mel-frequency cepstral coefficient technique. 
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1. INTRODUCTION

The application of voice-based speaker recognition in the 

arenas of forensics, biometrics, voice call centres, voice 

search, and diverse security applications (inclusive of banking 

access, computer access control, and telephonic transactions) 

has been the subject of heightened interest. This attention is 

not without substantial financial implications, driven in part by 

the utilisation of audio recording devices in criminal 

documentation and the burgeoning use of mobile technologies 

in thwarting crime and nefarious activities, notably 

international terrorism. 

In the forensic sphere, Automatic Speaker Recognition 

(ASR) has demonstrated its capacity to yield accurate and 

reliable results within controlled environments, given 

adequate signal quality and sufficient speech duration. 

However, the informative richness of the voice signal, 

encapsulating details about the speaker, the language used, the 

duration of speech, the speaker's emotional state, and the 

environmental context, introduces a myriad of challenges. 

Conventional speaker recognition methods, characterized 

by their labor-intensive nature, necessitate considerable efforts 

and time for the pre-processing of audio recordings. As such, 

the strategic utilisation of feature extraction methods in 

automated speaker recognition could significantly streamline 

the data processing workflow, thereby enhancing performance 

efficiency [1]. 

The ASR system is structured around two core modules: the 

enrolment phase (Figure 1), and the recognition phase, which 

subsumes identification or verification procedures (Figure 2). 

Feature vectors are derived from raw signals in the feature 

extraction module during transformation. This phase is crucial, 

as it preserves speaker-specific characteristics (such as 

frequency, loudness, and pitch time) while curtailing the 

statistical redundancies of the raw signal through the use of 

feature vectors in the training phase. During the recognition 

phase, a similarity score, or recognition rate, is obtained from 

the voices of unidentifiable individuals and compared to the 

models housed in the system database. The final decision is 

rendered based on this similarity score. 
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Prior research has contributed to the understanding and 

development of speaker recognition systems. Chaudhary et al. 

[2] conducted a comparative analysis of speech features in 

audio recordings for speaker identification systems. A 

comprehensive review of speaker recognition, encompassing 

its past, present, and future, was published in 2021 [3]. Earlier, 

in 2009, a study delineated the various disciplines of speech 

processing, highlighting the uses and limitations of speech 

recognition, segmentation, and diarization [4]. Thanks to these 

and other efforts, Speaker Recognition Systems (SRS) and 

speech performance have seen remarkable improvements over 

the years, with noise reduction and speech signal enhancement 

playing a significant role [5]. 

 

 
 

Figure 1. Enrollment phase 

 

 
 

Figure 2. Recognition phase 

 

In 2010, Kinnunen and his colleagues ventured into the 

exploration of super vectors as features in text-independent 

Speaker Recognition Systems [6]. Lee et al. [7] later proposed 

optimised features for speaker recognition, aiming to enhance 

performance and minimise potential degradation. With the 

advent of deep learning techniques, a new horizon was opened 

in speaker recognition, as outlined in the study [8]. The 

application of Mel Frequency Cepstral Coefficients (MFCCs) 

for tasks concerning speaker recognition has been described in 

the study [9]. However, current speaker verification 

techniques face challenges related to signal impersonation via 

voice recording devices. Wavelets, particularly high-level 

features, provide a promising solution. Not only do they help 

improve accuracy, but they also enhance effectiveness, given 

their resistance to channel effects. In 2017, a novel feature-

matching technique was proposed that leveraged a T-test 

distance metric with an enhanced spectrogram based on 

Daubechies wavelet. This technique was designed for robust 

speaker identification and yielded superior results. However, 

its complexity led to slower response times [10]. Thus, despite 

advancements, the field continues to grapple with the delicate 

balance between accuracy and efficiency, presenting an 

ongoing area for exploration and innovation. 

 

1.1 Objectives 

 

The overarching goal of this study is to circumvent the 

limitations and challenges inherent in existing speaker 

recognition system algorithms and to introduce an improved, 

simple, efficient, and rapid novel approach. The development 

of this novel method is predicated on the accomplishment of 

the following tasks: 

1. The proposal of a speaker recognition system 

predicated on feature extraction techniques 

deploying Orthogonal Variable Spreading Factor 

(OVSF) in conjunction with the Bayesian 

Information Criterion (BIC) for feature matching. 

2. The collection of standard audio recordings of 

speakers to facilitate model training and testing. 

3. The evaluation of the proposed model's performance 

using Receiver Operating Characteristic (ROC) 

curves, the Area Under the Curve (AUC), the 

Detection Error Trade-off (DET), and Equal Error 

Rate (EER). 

 

1.2 Contribution 

 

The seminal contribution of this paper is the development 

of a novel feature extraction technique, OVSF, for an ASR. 

This technique leverages the Daubechies 40 wavelet and 

Variance Spectral Flux (VSF) to extract unique speech 

features of an individual. The refined and enhanced features 

derived from this method diverge from those obtained in 

previous studies, demonstrating promising performance when 

implemented in ASR. 

 

1.3 Structure 

 

This paper initiates with an overview of the ASR, followed 

by a definition of the study objectives and its contribution. 

Section 2 delves into the proposed feature extraction technique, 

which harnesses the power of VSF and Discrete Wavelet 

Transform (DWT), with the Bayesian Information Criterion 

(BIC) deployed for feature matching within feature 

classification. Section 3 elucidates the proposed speaker 

recognition model and outlines its performance evaluation 

criteria, encompassing the ROC, the AUC, DET curves, and 

the EER. Experimental results, which illustrate the recognition 

tests, are presented and discussed in Section 4. Based on these 

findings, final remarks and conclusions are drawn in Section 

5. 

 

 

2. METHODS AND ALGORITHMS USED 

 

2.1 Feature extraction techniques 

 

The objective of feature extraction is to lessen transmission 

bandwidth, power, and data (in terms of memory space) by 

capturing the speaker’s essential characteristics. It is also 

required to enhance weak speech signals and measure the 
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variability of the spectrum of speech signals over time for 

different speakers. The Spectral Flux (SF) is a useful measure 

for distinguishing signals whose spectrum changes slowly 

from those whose spectrum changes quickly [11]. The 

Wavelet Transform (WT) has excellent multi-resolution 

properties of time, frequency, and amplitude, and therefore it 

is used for extracting the localised contributions of the signal 

of interest. It also has the property to enhance the signal and 

suppress the noise from the speech signal [12, 13]. So, in this 

research work, two algorithms, WT and SF, are combined and 

a new technique, OVSF, is proposed to extract optimised 

features for speaker identification and verification. This paper 

employs one more existing feature extraction method, which 

is based on DWT-MFCC, for comparison with the proposed 

technique. The detailed descriptions with graphical outputs of 

DWT, MFCC, and OVSF are illustrated in the following 

section. 

 

2.1.1 Discrete wavelet transform 

Since the 1990s, to solve engineering problems, DWT has 

been extensively used due to its time resolution property and 

high frequency [14]. In the time-frequency domain, it can 

examine a signal simultaneously. It also improves speech 

signal strength by denoising [15]. The signal (speech) is 

broken into subsequent high- and low-frequency component 

levels throughout the wavelet transformation process [16]. 

Figure 3 depicts that when DWT is applied to the signal 

(speech), it is split into two equal parts. The first part is the 

low-frequency noise-free speech (i.e., approximation 

coefficients), which carries about 98% of its information with 

scaled amplitude. The second part is a high-frequency signal 

(i.e., detail coefficient) representing noise.  

 

 
 

Figure 3. Decomposition of the speech signal into 

“approximations” and “details” Using DWT 

 

The WT has described the product of the mother wavelet 

ψ(t) and an input signal x(t). It is represented in Eq. (1). 

 

Wψx(m,n)=
1

√m
∫ x(t)ψ ∗ (

t−n

m
)

−∞

∞
dt  (1) 

 

In Eq. (1), mother wavelet is: 

 

Ψm,n(t)=ψ(
t−n

m
)  (2) 

 

where, m is scale parameter and n is shift parameter. The DWT 

function (at time location tN and level N) can be expressed as 

in Eq. (3): 

 

DN(tN)= x(t) ψm (
t−tN

2N )  (3) 

where, N is the decomposition filter that scales the output by a 

factor of 2N (at frequency level N). Eq. (3) of DWT is applied 

to compress and scale the original speech signal, as shown in 

Figure 4. This figure has three parts. The first part is the 

original speech waveform, which has 385718 samples. When 

DWT is applied, the number of samples is reduced to 192862, 

which is graphically represented in the second part of Figure 

4. Further, the compressed signal goes through the feature 

extraction methods MFCC and OVSF. 

 

 
 

Figure 4. Original speech signal, compressed speech signal, 

and its MFCC 

 

2.1.2 Mel frequency cepstral coefficient 

For reducing data size, feature extraction is considered the 

most significant part of speech processing. MFCC is a 

common technique for extracting speech signal features from 

the SIS. In a noisy environment, its performance degrades. The 

term mel is derived from a clipping of the word melody, and it 

is a unit of pitch. The alliance between the mel and the linear 

frequency scale is described in the study [17] and expressed as 

fmel = 2595log(1 + f/700). 

To obtain the MFCC features of the preprocessed signal 

using Daubechies 40 wavelet, the cepstral magnitude of FFT 

frequency bins (i.e., based on a human auditory perception 

model) is averaged within frequency bands spaced like a mel 

scale [18]. It is estimated by applying the following steps [9]: 

i. Apply Discrete Fourier Transform (DFT) on the 

windowed signal. 

 

h(n) = {
1,   0 ≤ n ≤ N − 1

0,     else
}  (4) 

 

X(K) = ∑ x(n)e−j2nK/N, (0 ≤ n, K ≤ N − 1)N−1
n=0   (5) 

 

ii. The power spectrum of 𝑋(𝐾) is estimated as |X(K)2| 
and then converted into mel scale using filter bank 

(HM(K)) as follows: 

 

∑|X(K)2|HM(K) , (0 ≤ m ≤ M)   (6) 

 

iii. Next step is to compute logarithm of frequency band 

energy obtained from Eq. (6). 

 

LM = ln ∑|X(K)2|HM(K), (0 ≤ m ≤ M)  (7) 

 

iv. Finally, the frequency information obtained in Eq. (7) 

is compressed by taking its Discrete Cosine 

Transform (DCT), and then the first 10 MFCC 

coefficients are selected as the best unique features. 
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v. c(n) = ∑
LM cos (

πn(m+
1

2
)

M
) 

  (8) 

 

Graphically, the MFCC of the speech signal is revealed in 

the last waveform of Figure 4. The Voice waveform of a text 

message is seen in Figure 5. 

 

 
 

Figure 5. Steps to extract VSF of speech signal [11] 

 

To design a database for training and testing purposes, we 

used the Audacity tool (http://audacity.sourceforge.net) to 

record twenty candidates' voices. The voice part provides ten 

varieties of the varied physical voice of the standard spoken 

text. Speech's spectral palette can be viewed as the MFCC 

spectrum. 

 

2.1.3 Proposed feature extraction technique (OVSF) based on 

variance spectral flux (VSF) and DWT 

VSF is a powerful feature extraction technique usually used 

to segment speech and non-speech signals in an audio 

recording. It is based on the signal’s power spectrum. The 

features of speech using VSF are obtained by following the 

steps shown in Figure 5. 

The audio signal is pre-processed to remove DC 

components, and then it is normalised. It is not practical to 

consider the whole input signal at once, as it is fundamentally 

non-stationary in nature. So, the normalised input signal is 

transformed into a piecewise stationary ordering of ‘frames’ 

of length 20–30 milliseconds. 

 

 
 

Figure 6. Outputs of framing of the compressed speech 

signal and proposed technique based on OVSF 

 

A window function, such as a Henning window, typically 

multiplies the frames to help with edge effects during spectral 

analysis. After each frame has been processed, the window has 

shifted from the start time to the next frame by a frame shift 

that is an amount of time less than the length of a frame 

(typically 10 ms), as shown in the first part (framing of the 

compressed speech signal) of Figure 6. 

It is further converted into a frequency domain by using FFT. 

The most important step of VSF is the estimation of Spectral 

Flux (SF). When the input signal is changing, the SF is a 

measure of the variation in the input signal’s power spectrum. 

The SF is computed by comparing one frame against the 

previous frame on the basis of the power spectrum. Between 

the two normalised spectrum magnitudes, it is an ordinary 

Euclidean norm and is defined as in Eq. (9) as follows: 

 

SF = ‖Si −Si−1‖2 =
1

N
(∑ (Si(k) − Si−1(k))2N−1

k=0
)

1

2
   (9) 

 

where, 𝑆𝑖  represents the frames spectrum magnitude vector 

and is given in Eq. (10). 

 

Si(k) = |∑ s (n +
Ni

2
) ω(n)exp 

−2πkn

N
}

N−1

n=0
|kϵ[0,N-1]  (10) 

 

where, 𝑠 (𝑛 +
𝑁𝑖

2
) is audio data, 𝜔(𝑛) is the window function 

and N is the window size. A Hanning window is used in this 

case [19]. 

The proposed feature extraction technique in this research 

“OVSF” is based on DWT and VSF. Therefore, Eq. (10) is 

applied to the frames of approximation coefficients obtained 

from DWT. The speech signal detects the variance in its 

frequency, as shown in the bottom part (proposed technique 

based on OVSF) of Figure 6. 

 

2.2 Feature matching technique 

 

Many distance metrics and speaker classification algorithms 

have been proposed for speaker identification [17, 19]. 

Popular distance metrics are Bayesian Information Criteria 

(BIC), Generalised Likelihood Ratio (GLR), and Cross 

Likelihood Ratio (CLR). The BIC is probably the most 

extensively used metric of these three due to its effectiveness 

and simplicity [20]. 

 

2.2.1 Bayesian information criterion for speaker classification 

In this paper, the proposed speaker recognition method uses 

the delta BIC distance metric to find the distance between the 

features of two speakers. Zero distance between two speakers 

shows similar speakers. Two speakers, i and j, of frame lengths 

Ni and Nj and parameterized acoustic feature vectors of Xi and 

Xj are considered, respectively. Their respective standard 

deviation and mean values are µj, ơj and µi, ơi. On fusing 

speaker’s Xi and Xj into X, their variance and mean turned as 

ơ and µ respectively, with length N of frame. Then the 

estimation of distance between the two speakers is in Eq. (11) 

as: 

 

∆BIC =
N

2
log|∑ X| −

Ni

2
log|∑ Xi| −

Nj

2
log|∑ Xj| − λP  (11) 

 

where, λ is a free design parameter. Its value is 10 and it 

depends on the data being modelled.  

P is a function of the number of free parameters in the model 

and is known as penalty term as presented in Eq. (12) as: 
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P =
1

2
(d +

1

2
d(d + 1))  (12) 

 

The similarity of the two speakers depends on the value of 

delta BIC. It should be low for similar speakers. 

 

 

3. PROPOSED SPEAKER RECOGNITION MODEL 

 

A novel feature extraction technique based on DWT and 

VSF is proposed in this research work, as explained in the 

previous section. This section elucidates the implementation 

of the proposed method in the speaker recognition system with 

the help of a diagram, as shown in Figure 7. 

It follows the same procedure as a conventional recognition 

system (i.e., feature extraction and feature matching), but with 

some modifications. Based on the DWT, the audio signals 

were first enhanced and compressed in the ratio of 1:2 at level 

1. It is done by using the Daubechies 40 (db40) wavelet with 

an energy of 99.9% (approx.). Next, the features of the 

compressed signal were detected using the proposed method 

(VSF). After that, the distance metric delta BIC is applied to 

its output for feature matching and speaker classification. 

 

 
Figure 7. Proposed diagram of a speaker recognition system 

 

This research work is divided into two parts: SR using the 

proposed OVSF method and SR using the traditional MFCC. 

The algorithm for its implementation follows the following 

steps: 

Step 1: Input data 

Input the audio recordings of 33 speakers in.wav form. A 

graphic representation of the waveform of the first speaker is 

shown in part of Figure 5. On each recording, the following 

steps are applied in sequence and saved. 

Step 2: Feature Extraction 

i. Preprocess the speech signal using the Daubechies 40 

wavelet, which divides the signal into low-frequency 

and high-frequency coefficients. Low-frequency 

coefficients carry 99.9 percent of speech information, 

which is scaled and denoised and used for further 

processing. The high-frequency coefficient is 

discarded. 

ii. Framing of the low frequency coefficient (Frame size 

of 1323 samples with overlapping of 441 samples). 

iii. OVSF is applied to each frame. 

iv. Finally, features are extracted for all the speech 

recordings of 33 speakers and saved for classification. 

Step 3: Feature Matching 

All the extracted features of 33 speakers are arranged in a 

[33×33] matrix for feature matching using the distance metric 

algorithm BIC, and then the obtained result is converted into a 

single column. The obtained results are the hypothesised 

results. 

Step 4: Performance Evaluation 

Hypothesised results and ground truth are compared 

according to the confusion matrix given in Table 1 and plotted 

as ROC and DET to compute area under the curve and equal 

error rate. 

Step 5 

Step numbers 1 to 4 are repeated by using the traditional 

algorithm MFCC for feature extraction instead of OVFS. 

Step 6 

Finally, performance results obtained from both systems 

using DET [21], ROC [22, 23], AUC, and EER are compared. 

The evaluation process results in four possible outcomes, as 

shown in Table 1, to check the existence of a given speaker in 

the specified database. Hit (Ground truth says the speaker is 

present in the database and the predicted value is “Present''), 

miss (Ground truth says the speaker is present in the database 

and the predicted value is “Absent''), false alarm (Ground truth 

says the speaker is absent in the database and the predicted 

value is “Present"), and correct rejection (Ground truth says 

the speaker is absent in the database and the predicted value is 

“absent"). In these four outputs, two types of errors were 

detected: missed detections and false alarms [24-28]. 

• Missed detection (Error 1): Speaker is not attributed 

when the speaker’s speech exists in the database. 

• False alarms (Error 2): Speaker is attributed when 

there is no speaker’s speech in the database. 

 

Table 1. Confusion matrix: Description of two errors based 

on ground truth and prediction for the presence of a speaker 

in the database 

 
                   Ground Truth 

Prediction 

Existence of Speaker in the 

Database 

Present Absent 

Practical 

Decision for the 

existence of a 

speaker in the 

database 

Present Hit or TP 

(Correct 

decision) 

False Alarm 

or FP 

(Error 2) 

Absent Missed 

Detection or FN 

(Error 1) 

Correct 

Rejection or 

TN 

(Correct 

decision) 

  P=TP+FN N=FP+TN 

 

where, TP: True positive, TN: True Negative, FP: False 

positive, FN: False Negative. This table is used while 

computing ROC and DET for the investigation of the 

performance of the speaker recognition system. 

 

 

4. PERFORMANCE EVALUATION METRICS  

 

4.1 Receiver operating characteristic 

 

The ROC is a frequently used methodology to compare the 

classifier's performance in the speaker recognition system. It 

is based on hit and error detection probabilities. The maximum 

value of the ROC curve is 1, and the minimum value is 0 on 

both axes. The horizontal axis represents the false positive rate 
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(FPR) or false alarm rate, and the perpendicular axis is for True 

Positive Rates (TPR). It can be calculated using Table 1 as [26]: 

 

TPR = 
𝑇𝑃

𝑃
=

No. of outputs greater than or equal to threshold

No. of positive targets 
 (13) 

  

FPR =  
𝐹𝑃

𝑁
=

No. of outputs greater than  threshold

No. of Negative targets 
 (14) 

 

False negative rate (Miss Rate) = 1 – TPR (15) 

 

The area under ROC curve is calculated as [18]: 

 

AUC = 0.5 ∗ [TPR(2: end) + TPR(1: end − 1)]  ∗
[FPR(2: end) − FPR(1: end − 1)](16) 

 

The value of AUC will always lie between 0 and 1.  

 

4.2 Detection error trade-off 

 

DET curves in a speaker recognition system serve to 

represent the performance of the detection task. It involves the 

trade-off between two errors: false alarm and missed speech, 

reckoned using Eqs. (14) and (15). False alarm rate (False 

acceptance rate, FAR) is plotted on the horizontal axis, while 

Missed speech rate (False rejection rate, FRR) is plotted on the 

vertical. 

The operating point at which two error rates are equal is 

called the EER. The value of EER determines the system's 

performance; it is also referred to as the crossover error rate 

(CER). When the DET curve is close to the origin, EER will 

be low, and then the system's quality will improve [23]. It is 

commonly used to measure and compare the overall accuracy 

level of different biometric recognition techniques. It can also 

be obtained by finding the intercept point of two graphs 

against accuracy, one for FRR (whose scored value is arranged 

in increasing order) and the other for FAR (whose scored value 

is arranged in decreasing order). Typically, the lower the FRR 

and the FAR values, the lower the EER value, which in turn 

indicates a better accuracy performance of a biometric 

authentication method [24]. 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section represents the results achieved along with the 

database used for experimental purpose. 

 

5.1 Database  

 

In this research work, the recordings of the utterances of 33 

speakers (23 females and 10 males) with 5 samples each of 15-

20 seconds were used. Out of 33 speakers’ samples, 5 samples 

are used as the test dataset. Recordings of 11 speakers were 

taken from the Personal Digital Assistant (PDA) speech 

database [27, 28]. This database was recorded internally by 

Yasunari Obuchi at CMU in 2002–2003 using a PDA, a 

handheld mobile device used for personal or business tasks 

such as scheduling and keeping calendar and address book 

information handy. In this dataset, the speeches of various 

speakers were recorded by four small microphones mounted 

around a PDA. The remaining 22 recordings were taken using 

a mobile phone in MP3 format. Further, these recordings were 

converted into.wav form to be used in MATLAB software. 

The sampling frequency of each recording is 44,100 Hz. 

5.2 Results analysis 

 

After the implementation and development of the proposed 

speaker recognition system, it is tested by samples of five 

speakers. For testing, the distance between the MFCC features 

of speaker number 5 and each of the other 33 speakers is 

calculated using BIC and shown in Figure 8. It shows that 

when speaker 5 is compared with itself, its value is negative; 

otherwise, its value is positive. A similar test is applied to our 

proposed method using DWT-based VSF and distance-metric 

BIC, and its output is shown in Figure 9.  

It also shows that the value of the distance between two 

same speakers is negative and for different speakers is positive. 

The performance of the proposed system shows that the 

dissimilarity measure is improved as compared to the existing 

system. 

The proposed algorithm's performance for the speaker 

identification system is weighed by the traditional ROC curve. 

In this graph, the true positive rate (missed speech rate) is 

plotted as a function of the false positive rate (false alarm rate) 

for different cut-off points. The ROC curves for two 

techniques are shown in Figure 10, and the AUC for these 

curves is calculated using Eq. (16) and given in Table 1. It is 

found that the proposed method covers a maximum area of 

94.38% as compared to MFCC. 

 

 
 

Figure 8. Outputs measuring the distance between speaker 

number 5 and all the 33 speakers using Delta BIC with 

MFCC 

 

 
 

Figure 9. Outputs measuring the distance between speaker 

number 5 and all the 33 speakers using Delta BIC with the 

proposed algorithm 
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Figure 10. ROC curves for MFCC and proposed method 

using VSF 

 

The performances of two techniques used in the ASR 

system have also been represented by DET curves as shown in 

Figure 11.  

 

 
 

Figure 11. DET curves for MFCC and proposed algorithm 

based on DWT-based VSF 

 

It is a graph of two error rates: false alarm rate and miss rate, 

drawn on the x and y axes, respectively. The false alarm rate 

is computed using Eq. (14), and the miss rate is obtained by 

Eq. (15). The curve for the proposed algorithm, DWT-based 

VSF, signified in blue, is close to the origin compared to the 

MFCC curve represented in red. It shows that the proposed 

method has lower errors than MFCC, so its performance is 

more accurate. The EER on the DET curve is a point where 

FPR and FNR are equal. The lower the EER, the better is the 

accuracy of the system. On the proposed method curve, the 

EER is obtained at 10.3564, which is less than the EER 

acquired using MFCC, which is 17.9487. Table 2 compares 

the results attained by MFCC and the proposed algorithm 

using ROC, DET, AUC, and EER. 

 

Table 2. Comparison of results using ROC and DET 

 
Algorithm Area under Curve (%) EER 

MFCC 90.70 17.9487 

Proposed method 

(wavelet based VSF) 

94.38 10.3564 

 

5.3 Findings and their significance 

 

The main objective of this research is to propose an efficient 

speaker recognition model that uses a new feature extraction 

technique based on DWT and VSF. This technique is named 

"OVSF," which successfully enhances the weak speech signal 

and suppresses its noise. It also effectively measures the 

variability of the spectrum (slowly to quickly) of the speech 

signal over time for different speakers. Implementation of this 

technique has given better results in speaker identification and 

verification than the existing algorithms. The scope of this 

novel feature algorithm is in telebanking, telephone shopping, 

and database access-related services where speaker’s voice 

features were verified and identified and then enabled to 

control access to the services. 

 

 

6. CONCLUSION AND FUTURE SCOPE 

 

This research presents an efficient feature extraction 

algorithm for the speaker recognition system performed on 

recordings of the independent speech of 33 speakers. The 

proposed algorithm, based on wavelet transform and VSF, is 

applied to extract the features of different speakers' speech 

signals. Initially, the Daubechies 40 (db 40) wavelet is used to 

compress and denoise the speech signal. Its approximation 

coefficient carries 99.9% of the speech information on which 

VSF is applied to extract its unique features that carry a multi-

resolution spectrum. Next, a feature-matching technique using 

a traditional BIC classifier is applied for the classification of 

speakers. The results obtained are then represented by ROC 

and DET curves. The evaluation process results in four 

possible outcomes: TP, TN, FP, and FP. The ROC curve is 

drawn between the FP rate and the TP rate, while the DET 

curve is drawn between the FP rate and the FN rate. From these 

two characteristic curves, the AUC and EER are computed as 

94.38 and 10.3564, respectively, for the proposed method. 

The same steps of the speaker recognition process have 

been applied to the existing feature extraction technique, 

MFCC, which results in a 90.70 AUC and 17.9487 EER. 

Finally, the results obtained were compared, and it was found 

that AUC is increased and EER is reduced by using the 

proposed method, which is more accurate than MFCC. 

Segmentation and classification of small utterances of length 

less than five seconds in an audio recording are more 

challenging in the speaker diarization system. So, further 

research can be done on audio diarization using a new method 

based on OVSF. 
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