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In contemporary industrial processes, the estimation of thermodynamic parameters is 

paramount, yet challenging due to the impact of diverse variables. These parameters, often 

elusive, require precise identification through computational models. Recently, both deep 

learning and rough set theory have emerged as powerful tools in various domains. This 

study proposes a novel approach that synergizes these two methodologies for the enhanced 

estimation of thermodynamic parameters. The focus lies on developing a one-dimensional, 

multi-regional coupled temperature field model, alongside the identification of pertinent 

thermodynamic parameters. The integration of deep learning with rough set theory forms 

the crux of this methodology, aiming to address the challenges in processing ambiguous 

and uncertain data, and in managing high-dimensional, complex structures. The hybrid 

model thus constructed is poised to significantly improve the handling of ambiguous and 

uncertain information, thereby boosting the accuracy and efficiency in identifying 

thermodynamic parameters. The methodological advancement presented in this study not 

only contributes to the field of thermodynamic parameter estimation but also sets a 

precedent in the application of integrated computational techniques. 
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1. INTRODUCTION

The precise estimation of thermodynamic parameters is 

recognized as critical in modern industrial production, crucial 

for system stability, energy efficiency optimization, pollution 

reduction, and economic benefit enhancement [1-3]. The 

complexity of industrial processes, compounded by the 

interplay of environmental conditions, material properties, and 

equipment parameters, often renders direct observation and 

measurement of these parameters a formidable challenge [4-

7]. Hence, the development of a reliable and accurate model 

for thermodynamic parameter identification and estimation 

holds significant theoretical and practical importance in the 

realm of industrial process optimization [8, 9]. 

Recent advancements in deep learning, a sophisticated 

subset of machine learning technologies, have spurred 

unprecedented achievements in areas like image recognition, 

natural language processing, and predictive analytics, offering 

novel perspectives and methodologies for tackling intricate 

issues [10-13]. Concurrently, rough set theory, renowned for 

its efficacy in data analysis and knowledge acquisition, has 

gained recognition for its proficiency in managing uncertainty 

and ambiguity, demonstrating exceptional utility in diverse 

complex problem-solving contexts [14-16]. The integration of 

these two methodologies, deep learning and rough set theory, 

in thermodynamic parameter identification, promises to 

harness the strengths of both, thereby enhancing the accuracy 

and reliability of the identification process, and presenting 

wide-ranging application prospects and substantial theoretical 

contributions. 

However, current approaches in thermodynamic parameter 

identification, deep learning, and rough set theory exhibit 

significant limitations [17-19]. Predominantly, these 

methodologies grapple with the processing of ambiguous and 

uncertain information and struggle with complex, high-

dimensional data structures, which crucially impacts the 

precision and reliability of identification outcomes. These 

shortcomings present substantial barriers to the optimization 

of industrial production processes [20-22]. 

In light of these challenges, this paper introduces a novel 

methodological approach: the amalgamation of deep learning 

and rough set theory for thermodynamic parameter 

identification. The key research focuses include the 

establishment of a one-dimensional multi-regional coupled 

temperature field model for thermodynamic parameter 

identification, and the construction of a composite model that 

integrates deep learning with rough set theory. This innovative 

approach is anticipated to adeptly manage ambiguous and 

uncertain information, thereby elevating the precision and 

efficiency of thermodynamic parameter identification. Such 

advancements are poised to offer invaluable theoretical and 

practical guidance in industrial production process 

optimization, specifically in the accurate estimation of 

thermodynamic parameters.
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2. MODEL DESCRIPTION AND THERMODYNAMIC 

PARAMETER IDENTIFICATION 

 

2.1 Model description 

 

Temperature fields experiencing predominant heat 

conduction in vertical planes are observed in diverse natural 

and artificial environments. For example, the Earth’s crust is 

composed of multiple strata, transitioning in temperature from 

cooler surface layers to warmer depths. Similarly, atmospheric 

temperatures vary with altitude, decreasing in the troposphere 

and increasing in the stratosphere. In aquatic environments 

like lakes and oceans, temperature changes with depth, 

generally warmer at the surface and cooler below. In built 

environments, such as high-rise buildings, temperature 

gradients are often observed from lower to upper floors. 

The analysis of these temperature fields is instrumental in 

understanding climatic systems, contributing to more accurate 

climate change predictions and responses. In architectural 

contexts, it aids in efficient energy management. In aquatic 

ecosystems, such temperature variations are crucial for the 

survival of species and ecosystem stability, thus facilitating 

environmental protection. Geologically, these temperature 

distributions inform the exploitation of geothermal resources 

and the understanding of crustal dynamics. 

In vertical temperature fields, a thermal gradient typically 

emerges with depth or altitude due to heat transfer mechanisms 

like conduction, convection, and radiation, transferring heat 

from warmer to cooler areas. Given the complexity of these 

fields, models often simplify by focusing predominantly on 

vertical heat conduction, a valid assumption in many cases due 

to its predominance over horizontal transfer in both natural and 

man-made environments. 

For modeling these multi-layer temperature fields, a 

Cartesian coordinate system is employed. This entails 

selecting a point on the top two material layers’ interface as 

the origin, extending a vertical line downwards to form the z-

axis. Consequently, a right-angled coordinate system is 

established, with the interface as the origin and the vertical 

direction as the z-axis. 

Consider a three-layered temperature field with layer 

thicknesses denoted by m1, m2, and m3. The respective regions 

of these materials are represented as F1= [-m1, 0], F2= [0, -m2], 

and F3= [m2, m2+m3]. The comprehensive time domain for the 

coupled temperature field is designated as U= [0, yd] ⊂E. 
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The energy conservation principle, a cornerstone in 

thermodynamics, dictates that energy within a closed system 

is conserved, merely transforming from one form to another. 

Fourier's law of heat conduction, a fundamental tenet in this 

context, posits that the flow density of heat is directly 

proportional to the temperature gradient, the proportionality 

constant being the thermal conductivity of the material. Under 

these guiding principles, a multi-layer temperature field 

equation is constructed. This equation reflects the principle 

that the temporal rate of temperature change is equal to the 

product of thermal diffusivity and the spatial second-order 

derivative of temperature, encapsulating the characteristic of 

heat migration from warmer to cooler areas. In alignment with 

this model, specific boundary conditions are delineated. The 

initial conditions are defined as the temperature distribution at 

time t=0, and the boundary conditions dictate the temperature 

or heat flow at the spatial perimeters of the system. The heat 

source term is symbolized by h(x, y), the heat exchange 

coefficient between the uppermost and the subsequent material 

layer is denoted by g, and the temperature of the topmost layer 

is represented by Yv. Thus, the function g0 (y) is described as 

g0(y)=(g(Y(x, y)-Yv/Ja)x=-m1, setting the parameters for heat 

exchange at the uppermost boundary. 
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In multi-layer temperature fields, the material constituting 

the bottom layer is typically characterized by high thermal 

conductivity, significant density, and substantial specific heat 

capacity. These attributes are pivotal in facilitating effective 

heat transfer and regulation within the temperature field, 

thereby contributing to its stability. Further, the density of the 

material xF2 in the bottom layer, is signified by Au(x). The 

three layers in the temperature field are characterized by their 

average specific heats, densities, and thermal conductivities, 

denoted by va, ϑa, Ja, vu, ϑu, Ju, vq, ϑq, Jq, respectively. An 

approximate formula for these calculations is presented, 

facilitating the estimation of these parameters. 
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Constants in the model are represented by va, ϑa, Ja, vq, ϑq, 

and Jq. The vector comprising parameters to be identified is 

expressed as w=(vu, ϑu, Ju), clearly situated within the 

mathematical domain E3
+. The subsequent equations and 

derivations follow, providing a framework for the precise 

estimation of these thermodynamic parameters within the 

defined system. 
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The empirical determination of the parameter w within the 

domain E3
+ necessitates the establishment of its lower and 

upper bounds. The lower bound of the measured parameter w 

is denoted as w-E3
+, and the upper bound is represented as 

w+E3
+. This delineation allows for the formulation of the 
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permissible range of the parameter w, vital for the model's 

calibration and validation. 

 

  3:sfW w w w w E− + +=     (6) 

 

The influence of solar radiation on the temperature field, 

particularly the shortwave radiation from the sun, is a 

fundamental aspect of the model. The intensity and angle of 

solar radiation play a pivotal role in shaping the temperature 

field, with intense solar radiation elevating temperatures in the 

upper layer and consequently affecting the lower layers. The 

angle at which solar radiation strikes influences its intensity 

and distribution, further impacting the temperature field. The 

interaction of solar radiation with materials, characterized by 

their reflectivity, transmissivity, and extinction coefficient, 

dictates the proportion of radiation that is reflected, absorbed, 

and transmitted. In the model, the shortwave radiation from 

the sun, combined with the reflectivity, transmissivity, and 

extinction coefficient of the middle layer, is expressed through 

the variables εk, βk, Upk, and ek. The heat source term h(x, y), 

encompassing the effect of solar radiation on the temperature 

field, is characterized by the following expression: 
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where, 

 

( ) ( ) ( ), 1 exp , 1,2.k k k k pk kh x y e U e x k = − − =  (8) 

 

2.2 Identification of thermodynamic parameters 

 

The atmospheric layer is utilized as a model to explore the 

characteristics of a multi-layer temperature field and the 

interrelationships among its layers. Observational projects in 

this context include the measurement of temperatures at 

various altitudes, barometric pressure readings at different 

elevations, humidity levels across layers, wind speed and 

direction per layer, shortwave and longwave solar radiation, 

cloud coverage and precipitation, atmospheric gas 

composition, aerosol distribution, surface characteristics of the 

Earth, and atmospheric stability. The subsequent paragraphs 

delineate the steps for identifying thermodynamic parameters 

within a one-dimensional multi-layer coupled temperature 

field model. 

Temperature data, spanning various altitudinal layers within 

the environment, are systematically gathered. The acquisition 

of this data is predominantly conducted through instruments 

such as temperature sensors, meteorological stations, and 

satellites equipped for meteorological observation. Following 

the collection phase, a pivotal step involves the development 

of temperature distribution functions. These functions are 

formulated based on the empirical data's distribution 

characteristics, ensuring a comprehensive representation of 

critical influencing factors on temperature, notably altitude, 

latitude, or temporal aspects. Temperatures at time instance 

ykU and location xjF are recorded and represented as Yf(xj, 

y), for k=1,2,...,m1, and j=1,2,...mx. Based on the gathered data 

set {Yf(xj, yk)}, a temperature distribution function Yf(x, y), 

where (x, y)F, is fitted. The continuity of temperature 

changes necessitates the assumption of the function Yf(x, 

y):W→E being continuous. 

In the coupled multi-layer temperature field system, the 

temperature Y(x, y; w), where wWsf, is uniquely ascertainable. 

Post derivation of the temperature distribution function, its 

accuracy is assessed. The primary metric for this evaluation is 

the discrepancy between the temperatures determined by the 

system Yf(x, y; w) and the empirically measured temperatures 

Yf(x, y). The study advances by considering the sum of the 

squares of these errors as a quadratic functional K( ), with the 

aim to find a temperature distribution function that minimizes 

this functional, a process known as the least squares estimation. 
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Upon formulating the error functional, an identification 

model is constructed. The purpose of this model is to ascertain 

a set of thermodynamic parameters that minimizes the error 

functional. Parameters such as thermal conductivity, density, 

and specific heat capacity are considered. The identification 

process involves solving an optimization problem to 

determine parameters that minimize the error functional within 

established constraints. 

 

( ) ( ):    . . , :    sfSBMX MIN K w s t Y x y w A w W   (10) 

 

The continuity of the mapping w→Y(x, y; w)：Wsf→A, 

along with the functional K(w), relative to the parameter 

wWsf, establishes that Wsf⊂E3
+ constitutes a non-empty, 

bounded, and closed set. Consequently, it is deduced that there 

exists at least one parameter w*Wsf that satisfies the 

following criterion: 

 

( ) ( )* , sfK w K w w W    (11) 

 

In addressing the optimization problem, a critical analysis 

of the conditions requisite for achieving an optimal solution is 

conducted. Fundamental principles of calculus dictate that at a 

point where a function reaches an extremum, the gradient at 

this juncture is required to be zero. For the optimal 

determination of parameter w*, the standard approach involves 

computing the first variation of K(w) within the vicinity of w*. 

Should Y(x, y; w) be Ga^teaux differentiable at w*Wsf, and 

Y′(w*) represent its Ga^teaux derivative at w=w*, then K(w) is 

also deemed Ga^teaux differentiable at w=w*. The Ga^teaux 

derivative of K(w) is assumed to be indicated by Y′(w*), 

leading to the expression of the necessary condition for 

optimality regarding w*: 
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The Ga^teaux differentiability of Y(x, y; h) with respect to w 

at w=w* is demonstrable. Therefore, the following relation is 

derived: 
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In cases where the computational complexity of the model 

proves to be exceptionally high, it is pragmatic to employ 
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approximation methods to simplify the model. The modified 

identification model, incorporating such simplifications, is 

then presented as: 

 

( ) ( ):    . . , ;   f f sfSBMX MINK w a y Y x y w A w W   (14) 

 

 

3. CONSTRUCTION OF AN INTEGRATED ROUGH 

SET AND DEEP LEARNING MODEL 

 

This research introduces a novel fuzzy rough convolutional 

neural network (CNN) model, blending fuzzy rough set theory 

with deep convolutional networks, to effectively identify 

thermodynamic parameters in a one-dimensional multi-layer 

coupled temperature field. The model's architecture, illustrated 

in Figure 1, encompasses several layers: an input layer, 

convolutional layers, pooling layers, fully connected layers, a 

fuzzy rough set theory layer, and an output layer. The initial 

stage involves leveraging the advanced feature-learning 

capabilities of deep convolutional networks for automated 

feature extraction from the one-dimensional multi-layer 

coupled temperature field data. Convolutional layers, 

employing multiple kernels, convolve the input data to extract 

local spatial features. Subsequently, pooling layers down 

sample these features, thereby reducing data dimensions and 

increasing the model’s resilience to minor spatial variations. 

Fully connected layers further process these high-dimensional 

feature maps into one-dimensional feature vectors, setting the 

stage for classification tasks. 

 

 
 

Figure 1. Thermodynamic parameter identification process 

flowchart 

 

Following the fully connected layers, a layer based on fuzzy 

rough set theory is integrated. This theory, adept at handling 

imprecise, uncertain, and fuzzy data, maps the feature vectors 

into the domain of thermodynamic parameters, thereby 

enhancing the accuracy of the model's output in reflecting 

actual parameters. During this phase, the minimization of 

fuzzy classification uncertainty is pursued as an optimization 

objective. A differentiable fuzzy rough loss function is 

proposed to achieve this. Through the optimization of this loss 

function, the model learns to distinguish more effectively 

between varying thermodynamic parameters. The final stage 

involves computing the derivative of the fuzzy rough loss 

function and employing the backpropagation algorithm for 

updating the model's parameters, a crucial step in model 

training. This iterative process of forward and backward 

propagation gradually refines the model parameters, aligning 

the model's predictions more closely with the actual 

thermodynamic parameters. In this fuzzy rough CNN model, 

the primary input features include temperature, pressure, 

humidity data, and other physical parameters pertinent to the 

one-dimensional multi-layer coupled temperature field. Data 

sources include ground meteorological stations, 

meteorological satellites, radar detection systems, and other 

relevant technologies. Figures 2 and 3 provide schematic 

representations of the training phase and the fuzzy decision-

making phase of the model, respectively. 

 

 
 

Figure 2. Schematic of the training phase of the fuzzy rough 

CNN model 

 

 
 

Figure 3. Schematic of the fuzzy decision-making phase of 

the fuzzy rough CNN 

 

Fuzzy rough set theory, recognized for its efficacy in 

managing data characterized by uncertainty and fuzziness, 

plays a pivotal role in the proposed model. Utilizing fuzzy 

upper and lower approximations, this theory establishes the 

maximum and minimum bounds within which thermodynamic 

parameters can range. The disparity between these bounds is 

utilized to assess the discriminative capability of features in 

relation to thermodynamic parameters. Consequently, the 

fuzzy rough loss function, founded on this principle, is 

formulated. The magnitude of this loss function, indicative of 

the difference between fuzzy upper and lower approximations, 

serves as a measure of the features’ discriminative power 

concerning thermodynamic parameters. A smaller value of 

this function signifies a stronger discriminative ability, 

enhancing the predictive accuracy of the model. Therefore, the 

model's optimization objective is to minimize the fuzzy rough 
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loss function. Figure 4 illustrates the computational flowchart 

for this loss function. 

The derivative calculation process within the fuzzy rough 

CNN model is a critical aspect of model optimization. The 

chain rule of derivatives, a cornerstone of the backpropagation 

algorithm, is employed for the effective computation of 

derivatives of the loss function with respect to the model 

parameters. This is integral in neural networks, where outputs 

result from a series of intricate, interrelated computations. The 

chain rule enables the sequential backward calculation of the 

gradient of the loss function. The fuzzy rough loss function, 

being a complex function of the model's parameters, 

necessitates the determination of its derivatives for 

optimization purposes. The entire computational steps of the 

fuzzy rough loss function being differentiable, the chain rule 

is applied to ascertain the gradient of the loss function. The 

feature layer vector, represented by z(l), the weights of the fully 

connected layer by q(l), and the biases of the fully connected 

layer by n(l), are considered in this derivation process. The 

paper exemplifies the derivation of the fuzzy rough loss 

function mde(I) with respect to z(l), q(l), and n(l). 

 

 
 

Figure 4. Schematic of the calculation process of the fuzzy 

rough loss function 

 

The computation of the fuzzy rough loss function 

derivatives constitutes a crucial step in the model's 

optimization process. This function, representing the 

discrepancy between fuzzy upper and lower approximations, 

undergoes differentiation to calculate its partial derivatives. In 

accordance with the fundamental theorem of calculus, these 

partial derivatives are determined as the differences between 

those of the fuzzy upper and lower approximations. This 

necessitates the differentiation of the loss function's formula. 

The partial derivative formulas for mde(I) with respect to z(l), 

q(l), and n(l) are articulated as follows: 
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For two given samples, denoted by z, t∈I, and the feature 

vector generated for sample t through the "ConvNet" 

represented by t(l)∈G(l), the derivative of the classification 

uncertainty i(z) of sample z with respect to t(l) is derived 

through the following formula: 
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Subsequently, the fuzzy lower approximation is computed. 

This approximation, being a function of the sample feature 

vector, necessitates differentiation of each element of this 

vector. The complexity of this process is attributed to the fact 

that the sample feature vector results from a series of intricate 

calculations, each potentially influenced by other elements or 

model parameters. For a sample in the training set, represented 

by z, and t=arg mint ∈ I((fu(t)-1)j(z,t)+1), the formula for 

derivation is as follows: 
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The derivation of the fuzzy upper approximation follows a 

procedure akin to that of the fuzzy lower approximation. Each 

element of the sample feature vector undergoes differentiation, 

employing the chain rule of derivatives. The formula for this 

derivation process is as follows: 
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Subsequently, differentiation of the Gaussian kernel 

function j(z, t) is undertaken. As a function dependent on the 

sample feature vector, the Gaussian kernel function requires 

partial derivatives with respect to these vectors. This step 

entails differentiating the Gaussian kernel function's formula 

and applying the chain rule of derivatives. The derivative of 

j(z, t) with respect to z(l) is expressed by: 
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(19) 

 

Following these steps, the partial derivative ∂mde(I)/∂z(l) of 

the fuzzy rough loss function mde(I) in relation to the sample 

z's feature vector is computable. This derivative emerges as a 

product of several components: the partial derivatives of the 

fuzzy rough loss function with respect to both the fuzzy upper 

and lower approximations, and the partial derivatives of these 

approximations in relation to the sample feature vector. 

Assuming the output of the model's last convolutional layer is 

denoted by z(l-1), the normalized output of the fully connected 

layer by z(l), the weight matrix by q(l), and the bias vector by 

n(l), the following relations are established: x(l) is represented 

as q(l)×z(l-1)+n(l), and the normalization coefficient α2
N as ∑z∈
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I(q(l)×z(l-1)+n(l))2. Consequently, the output of the fully 

connected layer is expressed as z(l)=x(l)/ （ α2
N ） 1/2. The 

formulas for deriving mde(I) in relation to α2
N and x(l) are: 
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The procedure entails the application of differential calculus 

to the formulas of the loss function, including both the fuzzy 

upper and lower approximations. The chain rule of derivatives 

is methodically employed in this process. Furthermore, for a 

sample z in the fully connected layer with unnormalized 

features denoted by x(l), the formulas for calculating 

∂mde(I)/∂q(l) and ∂mde(I)/∂n(l) using the chain rule of derivatives 

are: 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The one-dimensional multi-layer coupled temperature field 

model, as delineated in this study, demonstrates its potential in 

accurately capturing the dynamics of temperature changes. 

This is evidenced by the trends observed in Figures 5 and 6, 

where the congruence of the measured temperatures (depicted 

by the black line) and computed temperatures (represented by 

the red line) over time is noticeable. Despite this general 

consistency, there are instances where discrepancies between 

the computed and measured temperatures are evident, 

indicating areas where the model does not perfectly replicate 

the actual physical phenomena. This paper's model articulates 

the interlayer coupling relationships and spatial-temporal 

characteristics of temperature fields. While deviations are 

present at certain data points, the overall efficacy of the model 

in predicting temperature trends is affirmed, underscoring its 

viability for practical application. The model's proficiency is 

highlighted by: 1) Its accurate reflection of the empirical data 

trends, validating the appropriateness of the parameter settings 

and the strategy for temperature field coupling; 2) Its 

capability to provide proximate real-world temperature 

estimations at points of divergence, forming a basis for future 

enhancements through model optimization and parameter 

adjustments. 

An integrated model, merging deep learning with rough set 

theory for thermodynamic parameter identification, has been 

developed. Figure 7 illustrates the variations in fuzzy upper 

and lower approximations across different iteration counts. At 

the initial stage of model training, with the iteration count at 

zero, it is observed that the fuzzy upper approximation's value 

(represented by the blue line) significantly surpasses that of 

the fuzzy lower approximation (indicated by the red line). This 

initial disparity suggests a pronounced degree of uncertainty 

and fuzziness in the model's early predictions of 

thermodynamic parameters, as evidenced by the substantial 

gap between the upper and lower approximation boundaries. 

As iterations progress, a marked decrease in the fuzzy upper 

approximation is noted, eventually stabilizing and converging 

with the fuzzy lower approximation. Post 100 iterations, a 

parallel trend between these two lines is observed, signaling 

the model's gradual stabilization and the narrowing of the 

range for thermodynamic parameter identification. This 

convergence is indicative of reduced uncertainty and fuzziness 

in the model's predictions. Notably, beyond a certain iteration 

threshold, the fuzzy lower approximation remains constant, 

whereas the fuzzy upper approximation declines from 254 to 

190 before stabilizing. This trend suggests an emerging 

consistency in the model's learned features, reflecting an 

enhanced comprehension of the intrinsic relationships and 

structures of thermodynamic parameters. In conclusion, after 

adequate training, the integrated model combining deep 

learning and rough set theory demonstrates a significant 

reduction in the uncertainty and fuzziness associated with 

thermodynamic parameter identification, thereby enhancing 

the precision and reliability of its predictions. These findings 

underscore the proposed model's efficacy and highlight the 

improvement in its predictive stability and reliability, achieved 

through iterative learning. 

 

 
 

Figure 5. Comparison of computed and measured 

temperatures for the bottom layer material 

 

 
 

Figure 6. Comparison of computed and measured 

temperatures for the upper layer material 
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Figure 7. Variation of fuzzy upper and lower approximations 

with the number of iterations 

 

 
 

Figure 8. Variation of fuzzy rough loss function value with 

the number of iterations 

 

Table 1. Average RMSE in thermodynamic parameter 

identification for different models 

 

Model 
Normal 

Data 

Noise 

Addition 

(x) 

Missing 

Features 

(y) 

Missing 

Samples 

(z) 

x+y+z 

LSTM 0.1369 0.1258 5.12 0.1326 3.78 

FCN 0.1257 0.1289 0.1236 0.1247 0.1274 

CNN 0.1236 0.1265 0.7512 0.239 0.6125 

The 

proposed 

model 

0.1216 0.1236 0.1215 0.1205 0.1209 

 

Table 2. Average relative error (%) in thermodynamic 

parameter identification for different models 

 

Model 
Normal 

Data 

Noise 

Addition 

(x) 

Missing 

Features 

(y) 

Missing 

Samples 

(z) 

x+y+z 

LSTM 1.325 1.236 1.358 1.347 1.235 

FCN 1.326 1.258 1.458 2.001 3.045 

CNN 1.348 1.268 1.356 1.235 1.147 

The 

proposed 

model 

1.125 1.147 1.03 1.147 1.025 

 

Figure 8 provides a graphical representation of the variation 

in the fuzzy rough loss function value relative to the number 

of iterations. It is observed that with an increase in iteration 

counts, the value of the fuzzy rough loss function experiences 

a marked decline, reaching a state of stability after 

approximately 100 iterations. This trend signifies that during 

the initial training phase, the deep learning model rapidly 

assimilates data features, thereby enhancing the accuracy of 

thermodynamic parameter estimation. The diminution of the 

loss function value mirrors the process through which the 

model refines its predictive precision, assimilating the intrinsic 

linkages among thermodynamic parameters and the data's 

distribution characteristics. A diminishing loss function value 

indicates a reduced disparity between the model's predictions 

and the actual empirical data. When the loss function value 

attains and sustains a low, stable level, it suggests that the 

model has potentially converged to an optimal or near-optimal 

solution. The results here validate the effectiveness of the 

proposed model's optimization algorithm, evidencing its 

applicability and utility in thermodynamic parameter 

identification. 

The data presented in Tables 1 and 2 facilitates a 

comprehensive comparison of the performance of various 

models, including the proposed model, Long Short-Term 

Memory (LSTM), Fully Convolutional Networks (FCN), and 

CNN, across diverse data conditions. When evaluated on 

standard datasets (free from noise, missing features, and 

samples), the proposed model exhibits a lower average Root 

Mean Square Error (RMSE) and average relative error 

compared to the LSTM, FCN, and CNN models. This outcome 

suggests a superior accuracy of the proposed model in the 

identification of thermodynamic parameters. In scenarios 

characterized by compromised data quality, such as datasets 

with noise, missing features, and samples, the proposed model 

demonstrates remarkable robustness. Particularly notable is its 

performance in the combined x+y+z condition, where it 

maintains the lowest RMSE and relative error, markedly 

surpassing the traditional models. This robustness is crucial for 

practical applications, as real-world data often encompass 

various imperfections. Contrastingly, while other models 

exhibit pronounced performance deterioration under data-

deficient conditions, the proposed model consistently 

maintains low error levels. For example, the CNN model's 

RMSE rises to 0.7512 in the case of missing features (y) and 

to 0.6125 in the x+y+z scenario, highlighting the significant 

resilience of the proposed model with respective values of 

0.1215 and 0.1209. In conclusion, the proposed model's 

consistent performance and robustness across different data 

quality scenarios significantly emphasize its stability and 

reliability in diverse dataset conditions. These attributes afford 

the model a substantial advantage in the accurate identification 

of thermodynamic parameters, underscoring its practical 

utility. 

Figure 9 illustrates the error curves for various models in 

thermodynamic parameter identification, delineating each 

model's performance under different data conditions. The 

proposed model, as depicted, consistently occupies the lower 

error regions in all scenarios, notably in normal data and in 

conditions involving noise addition, missing features, missing 

samples, and their combination (x+y+z). This graphical 

representation unequivocally demonstrates the proposed 

model's enhanced precision and robustness in contrast to other 

models. Under diverse conditions, including complete and 

impaired data sets, the proposed model's error curve is 
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expected to display a steady and uniform trajectory. In contrast, 

other models may exhibit more pronounced fluctuations or 

abrupt increases in error. Especially in scenarios where data is 

significantly compromised (e.g., x+y+z condition), the 

disparity in error between the proposed model and others 

becomes more evident. The proposed model maintains a 

consistently low error level, while the error curves of the other 

models show marked elevation, thereby accentuating the 

superior adaptability and robustness of the proposed model in 

handling imperfect data. 

 

 
(1) Normal data 

 

 
(2) Noise addition 

 

 
(3) Missing features 

 
 

(4) Missing samples 

 

Figure 9. Error curves of different models in thermodynamic 

parameter identification 

 

 

5. CONCLUSION 

 

This research initially centered on developing a one-

dimensional multi-regional coupled temperature field model, 

with the objective of accurately identifying thermodynamic 

parameters through a precise representation of temperature 

variations across time and space. An analysis of empirical data, 

juxtaposed with model predictions, demonstrated that the 

proposed model adeptly captures the dynamic nature of 

temperature changes. While certain deviations were noted at 

specific time points, the overall predictions of the model 

closely aligned with actual measurements, thereby affirming 

its efficacy and potential for practical implementation. 

Moreover, addressing the limitations of traditional methods 

in handling datasets with noise, missing features, and 

incomplete samples, a novel model integrating deep learning 

with rough set theory was introduced. Comparative 

assessments across various data conditions underscored this 

model's superiority, particularly in scenarios marred by 

compromised data integrity. This model, enhanced by the 

incorporation of rough set theory into deep learning 

frameworks, exhibited heightened stability and accuracy, 

especially in the context of data uncertainty and fuzziness. The 

experimental results, particularly the application of the fuzzy 

rough loss function during the training process, further 

corroborated the model's effectiveness. The observable 

decline and subsequent stabilization of the loss function value 

post-initialization reflected the model's rapid convergence to 

an optimal or near-optimal state, thereby reducing prediction 

errors and improving the precision of thermodynamic 

parameter identification. 

In conclusion, the findings from this study reveal that the 

fusion of deep learning with rough set theory presents an 

effective approach for the identification and prediction of 

thermodynamic parameters within a one-dimensional multi-

regional coupled temperature field. The integrated model not 

only maintains low error rates but also demonstrates 

robustness in various data scenarios, including those with 

noisy data and missing features or samples. These attributes 

validate both the scientific merit and the practical applicability 
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of the proposed approach, offering new insights and 

methodologies for modeling and analyzing complex systems 

in future endeavors. 
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