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In the realm of ophthalmology, diabetic retinopathy (DR) represents a critical concern, 

arising from the detrimental effects of blood sugar fluctuations on retinal vessels, and 

frequently evades early detection due to the absence of initial symptoms. Addressing this 

challenge, the current study delineates a novel classification methodology designed to gauge 

the severity of DR, thereby laying the groundwork for an early warning system. Within this 

methodology, an assortment of five deep learning models—namely VGG16, VGG19, 

EfficientNetB5, EfficientNetB7, and EfficientNetV2S—underwent training and evaluation 

processes utilizing the Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset, 

characterized by its imbalanced nature. The study juxtaposes the VGG models, noted for 

their simplicity yet burdened with a higher parameter count, hence more computationally 

and memory-intensive, against the EfficientNet models, which are renowned for their 

efficiency achieved through optimal network scaling. This selection of two VGG variants 

and three EfficientNet models facilitated a comprehensive analysis of the effects of model 

complexity, parameter volume, and computational efficiency on the classification efficacy 

in DR. Additionally, the study employed ensemble techniques, encompassing both hard and 

soft voting methods along with stacked generalization, to enhance classification 

performance by counteracting the impact of dataset imbalance. The individual model 

performances revealed that the EfficientNetB5 model registered the lowest accuracy at 

88.12%, while the EfficientNetB7 model attained the highest accuracy, standing at 94.07%. 

The ensemble approaches, incorporating both soft and hard voting techniques, demonstrated 

further improvement, achieving accuracy scores of 94.84%. However, it was the stacked 

generalization approach that emerged as the most effective, recording a remarkable accuracy 

of 95.55%. These findings corroborate that the ensemble models, through their collective 

strength, surpass the accuracy rates of individual models, thereby eclipsing the performance 

benchmarks set by existing literature in the field by effectively mitigating the influence of 

data imbalance on classification accuracy.  
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1. INTRODUCTION

Diabetes, characterized by elevated and fluctuating blood 

sugar levels, stands as an incurable disease impacting over 400 

million individuals globally. It is projected that by 2040, 

approximately 642 million middle-aged individuals will be 

affected by diabetes [1]. This chronic condition not only poses 

a direct threat to life but also precipitates secondary 

complications in various bodily systems, including the heart, 

blood vessels, kidneys, and eyes. Among these complications, 

DR, a consequence of retinal vessel damage induced by high 

blood sugar, is a prominent concern. 

DR is typically categorized into two principal stages: non-

proliferative and proliferative [2]. The non-proliferative stage, 

being the initial phase, is marked by blurred vision due to 

leakage from minute blood vessels. The proliferative stage 

represents an advanced progression of the disease. In the 

absence of early detection, the retina commences the 

formation of new blood vessels, which are prone to bleeding. 

The severity of bleeding correlates with the risk of intermittent 

or permanent vision loss [3]. 

The necessity of early detection of DR to prevent vision 

impairment is well-acknowledged. Annual diabetic eye 

screenings are advocated for individuals with diabetes. These 

screenings entail the examination of retinal vessels through 

photographic imaging, facilitating the early identification of 

DR prior to any significant impact on vision [4]. Timely 

diagnosis enables patients to mitigate the side effects of DR 

through lifestyle modifications. 

In the diagnostic process, photographs from diabetic eye 

screenings are scrutinized by medical professionals, with a 

focus on blood vessel and retinal feature analysis. To enhance 

this diagnostic approach, the application of deep learning 

methods is being explored. Deep learning, a subset of 

computer science, endeavors to emulate human brain 

functions to address complex issues [5]. The implementation 

of deep learning techniques offers the potential to utilize 

existing eye screening data for the predictive analysis of new 
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screening images. 

The literature has seen the publication of several datasets, 

notably APTOS 2019 [6], EyePACS [7], IDRiD [8], and 

Messidor [9], all aimed at advancing automated deep learning-

based tools for DR detection. These datasets are composed of 

retinal eye fundus color images, each presenting varying 

severity levels of DR, and have been clinically graded by 

medical experts. The primary challenges associated with these 

datasets are their size and the distribution of classes within 

them. For instance, IDRiD exhibits a limited number of image 

samples across each class, presenting a significant hurdle for 

deep learning-based research. Conversely, the APTOS 2019 

dataset is characterized by an imbalance in the quantity of 

images per class, which introduces bias into the classification 

results. 

Focusing on the APTOS 2019 dataset, studies utilizing the 

transfer learning approach have yielded commendable results 

in classification performance. Sheikh and Qidwai's 

investigation involving four pre-trained networks-DenseNet, 

VGG, ResNet, and Inception models-revealed that the 

utilization of PNG format images in model training enhanced 

classification performance when compared to JPEG format 

images [10]. They underscored the critical role of 

normalization in achieving more precise and consistent 

outcomes. Their research documented classification 

accuracies on the APTOS 2019 dataset using PNG format 

images post-normalization: 90.5% with DenseNet121, 79.3% 

with VGG16, 84.7% with ResNet50, and 85.8% with 

InceptionV3 models. 

In a similar vein, Rahman and Dola explored the efficacy of 

data augmentation techniques applied to original RGB format 

images as a preliminary step in dataset balancing [11]. They 

then applied three deep learning networks within a transfer 

learning framework to the APTOS 2019 dataset. Their 

findings indicated classification accuracies of 96.54% for 

DenseNet169, 90.93% for DenseNet121, and 90.93% for 

ResNet50 models. 

In a distinct approach, Lu et al. [12] implemented an 

enhancement of images by integrating YPbPr and brightness 

spaces. Their methodology incorporated various image 

processing techniques including resizing, contrast-limited 

adaptive histogram equalization, and background removal. A 

custom architecture was developed, comprising two distinct 

blocks: the ShuffleNet V2 basic block and the ShuffleNet V2 

block for spatial downsampling. This approach yielded a 

maximum accuracy of 96.66% on the APTOS 2019 dataset. 

Yadav et al. [13] explored multiple architectures, such as 

InceptionResNetV2, InceptionV3, Xception, MobileNetV2, 

VGG19, and DenseNet201. Their findings highlighted 

InceptionResNetV2 architecture as the most accurate model. 

Considering the importance of image processing in 

computer vision problems, Samanta et al. [14] applied crucial 

preprocessing steps such as the elimination of non-informative 

black backgrounds and the application of CLAHE 

(Contrastive Limited Adaptive Histogram Equalization). 

Utilizing a transfer learning approach with the DenseNet121 

network on the APTOS 2019 dataset, they achieved a kappa 

score of 0.8836 on validation data and 0.9809 on training data. 

Sugeno et al. [15] commenced their study by removing 

blurry or duplicate images from the dataset, followed by 

extracting non-essential content from the background. They 

also applied a Laplacian filter and introduced a masking 

method for red or white lesions. Post-preprocessing, the 

EfficientNetB3 model was implemented under a transfer 

learning framework, achieving a classification accuracy of 

84% on the APTOS 2019 dataset. 

In a similar endeavor, Gangwar and Ravi [16] focused on 

the Messidor and APTOS 2019 datasets to determine DR 

severity. Techniques such as blurring, background 

elimination, and data augmentation were employed during 

preprocessing. Their architecture included a modified pre-

trained InceptionResNet-v2 model with additional 

convolutional layers. The proposed model attained test 

accuracies of 72.33% and 82.18% on the Messidor and 

APTOS 2019 datasets, respectively. 

Islam et al. [17] adopted the CLAHE technique for image 

enhancement on the APTOS 2019 dataset as an initial step. 

Moreover, they utilized supervised contrastive learning, a 

method involving two augmented versions of the same input 

to identify similar feature sets for varying input images' 

detection processes. This technique led to classification 

accuracies of 98.36% for DR and non-DR categorization and 

84.36% for predicting DR severity. 

Ingle and Ambad [18] incorporated CLAHE in part of their 

research, developing two models using CLAHE and FastAI 

model generation techniques. They implemented image 

preprocessing steps, such as rotation, scaling, and lighting, to 

improve model accuracies before introducing the augmented 

data to a pretrained ResNet50 model. Their findings indicated 

accuracies of 93% for the CLAHE-based method and 95% for 

the FastAI-based approach on the processed APTOS 2019 

dataset. 

Hayati et al. [19] also adopted a CLAHE-based image 

enhancement technique to develop an accurate classifier. Post 

image preprocessing, they utilized pretrained models like 

VGG16, ResNet34, InceptionV3, and EfficientNetB4, 

reporting an accuracy of 97.83% on the APTOS 2019 dataset 

with the EfficientNetB4 model. 

Aswini et al. [20] introduced a novel histogram equalization 

method to augment contrast. Subsequently, they employed the 

Grey Level Cooccurrence Matrix (GLCM) for feature 

extraction and fed these features into an Improved AlexNet 

Model-based CNN (IAM-CNN) classifier to ascertain DR 

severity levels. 

In various studies, feature vectors have been pivotal in 

extracting retinal information, with the classification of these 

features indicating potential for enhanced results. For 

example, Bodapati et al. analyzed the feature maps of the 

pretrained VGG16 model, achieving a classification accuracy 

of 84.31% on the APTOS 2019 dataset [21]. 

Shaik and Cherukuri [22] applied CLAHE separately to the 

RGB channels of retinal images. They utilized the VGG16 

network for feature extraction, reporting classification 

accuracies of 85.54% on the APTOS 2019 dataset and 66.41% 

on the IDRiD dataset. 

In a study conducted by Shaik and Cherukuri [23], the 

Xception architecture was employed to extract lesion-specific 

features from retinal images. Utilizing these features, a neural 

SVM was trained, achieving accuracies of 63.24% on the 

IDRiD dataset and 84.31% on the APTOS 2019 dataset. 

Canayaz [24] adopted a neural network-based feature 

extraction methodology for classifying images from both the 

APTOS 2019 and Messidor-2 datasets. The study employed 

DenseNet121 and EfficientNetB0 models for deep feature 

extraction, followed by the application of feature selection 

algorithms. The selected features were then utilized in 

conjunction with classical machine learning models, such as 

support vector machine, random forest, and k-nearest 
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neighbor, culminating in an accuracy of 95.85%. 

Zhang et al. [25] implemented a multi-point attention-based 

semi-supervised learning approach on the APTOS 2019 

dataset, reporting an accuracy of 90.3%. Cahoon et al. [26] 

noted the high imbalance of classes within the APTOS 2019 

dataset and advocated for data augmentation to achieve class 

balance, resulting in a reported accuracy of 80% post-

balancing. 

The concept of model or dataset ensembling has been 

explored in several studies to improve the prediction 

performance for DR severity levels. Karki and Kulkarni [27] 

merged two DR datasets, namely APTOS 2019 and EyePACS, 

to create an ensemble of deep learning models. They trained 

models including EfficientNetB1, EfficientNetB2, 

EfficientNetB3, and EfficientNetB5, and achieved a kappa 

score of 92.43%. 

Sikder et al. [28] extracted histogram features from retinal 

images and constructed an ensemble of decision trees using 

the bagging method. They documented a classification 

accuracy of 91.07% on the APTOS 2019 dataset. In a 

subsequent study, Sikder et al. [29] eliminated noisy and 

duplicate images and adjusted the contrast levels of images as 

a preprocessing measure. The proposed ensemble of classifiers 

reported an accuracy score of 94.20% on the APTOS 2019 

dataset. 

Ensemble techniques have been a focal point in numerous 

studies involving deep neural networks. Bodapati et al. [30] 

implemented a multi-model fusion strategy using pretrained 

VGG16 and Inception models. Their findings indicated that 

this multi-model fusion significantly enhanced classification 

performance, achieving a DR detection accuracy of 97.82% 

and a DR severity prediction accuracy of 82.54% on the 

APTOS 2019 dataset. Kaushik et al. [31] employed a 

technique of concatenating the outputs of three custom-built 

CNNs, which were then input into an additional dense layer 

for classification. This approach resulted in an accuracy of 

97.92% for DR detection and 87.45% for DR grading. 

Yue et al. [32] introduced an attention-driven cascaded 

network concept, focused on detecting the severity level of 

DR. This model extracts context features from the current 

layer to aid in the generation of lesion-aware information for 

subsequent layers, reporting an accuracy of 83.40% on the 

APTOS 2019 dataset. 

Playout et al. [33] developed a custom vision transformer 

and compared its performance with ResNet152, 

WideResnet101, and Optic-Net71 CNN models on the 

APTOS 2019 dataset. Among these, the Optic-Net71 emerged 

as the most accurate, with an accuracy of 92.59%. 

Nahiduzzaman et al. [34] proposed an extreme learning 

machine architecture. Following feature scaling, the extracted 

features were fed into this network, culminating in a 

classification accuracy of 97.27% on the APTOS 2019 dataset. 

Bhuvaneswari and Vaidyanathan [35] generated feature maps 

using convolutional layers and then constructed an ensemble 

comprising support vector machine, random forest, and 

Adaboost classifiers, reporting an accuracy of 96.2%. 

Some studies have concentrated specifically on the 

detection of the presence or absence of DR, rather than 

assessing its severity. In these instances, retinal images within 

datasets are reclassified into two groups: DR and no_DR. The 

primary aim of such analyses is to efficiently identify DR 

cases, without delving into the severity level of the condition. 

Cinarer and Kilic [36] applied a Gaussian filter and data 

augmentation to the reorganized APTOS 2019 dataset, 

categorized into DR and no_DR groups. Their approach 

yielded classification accuracies of 95.26% for the AlexNet 

model and 98.17% for the VGG16 model. Dwivedi and Attry 

[37] explored various models within transfer learning 

approaches for binary classification of DR on the APTOS 

2019 dataset. The highest recorded accuracy was 96.73% 

using the MobileNetV2 model. 

Sanjana et al. [38] utilized a range of models including 

Xception, InceptionResNetV2, MobileNetV2, DenseNet121, 

and NASNetMobile on the APTOS 2019 dataset for DR 

detection. The respective accuracies achieved were 86.25%, 

96.25%, 93.75%, 81.25%, and 80%. 

Padmanayana and Anoop [39] focused on creating an 

accurate binary classifier for the APTOS 2019 dataset. Their 

methodology encompassed image processing techniques such 

as cropping, resizing, Gaussian blur, and CLAHE filtering, 

followed by inputting the images into a custom-built CNN 

model. They reported a test accuracy of 94.6% in DR 

detection. 

Zhang et al. [40] adopted a source-free transfer learning 

approach, initially training models from scratch on the 

extensive EyePACS dataset, specifically for retinopathy 

images. Post-learning phase, these models were employed to 

classify the APTOS 2019 dataset, which was reclassified into 

two classes: DR and no-DR. This method achieved an 

accuracy of 91.2% on the binary dataset for DR classification. 

In a study focusing on DR detection, Adriman et al. [41] 

extracted Local Binary Patterns (LBP) from retinal images in 

the APTOS 2019 dataset. They then trained models such as 

ResNet, DenseNet, and DetNet using these LBP feature sets. 

The highest accuracy of 96.35% was observed with the 

ResNet34 model, while Densenet121 and DetNet59 models 

achieved accuracies of 84.05% and 93.99%, respectively. 

Li et al. [42] innovated in the field of binary DR detection 

by implementing a graph network. Utilizing auto-encoder 

feature learning for retinal feature extraction, they applied a 

graph convolutional network (GCN) with these features, 

achieving an accuracy of 94.4% on the APTOS 2019 dataset. 

While previous studies have made significant strides in the 

machine learning-based diagnosis of DR, there remains a lack 

of research employing a stacked generalization approach over 

a soft voting-based fusion concept. The current study 

introduces an ensemble learning model that incorporates 

decision-level fusion and a stacked generalization approach 

using a 1D CNN architecture, aiming to enhance the 

classification of DR across four severity levels. 

The key contributions of this research are outlined as 

follows: i) The proposed model was tested on the APTOS 

2019 dataset, renowned in DR research, to assess its 

generalization capabilities and mitigate bias in unbalanced 

databases. ii) The individual performances of five advanced 

deep learning architectures, namely VGG16, VGG19, 

EfficientNetB5, EfficientNetB7, and EfficientNetv2S, were 

evaluated. iii) A combination of the decisions from individual 

classifiers was achieved using two majority voting schemas 

(hard and soft voting) for decision-level fusion. iv) The 

ensemble learning approach, not previously applied in DR 

classification literature, was anticipated to yield more accurate 

results than base models, particularly through the novel 

implementation of a stacked generalization ensemble concept. 

v) Experimental results underscored the effectiveness and 

robustness of the proposed ensemble approach in accurately 

determining the severity level of DR, as evidenced by high 

general accuracy, F1-scores, precision, and recall values. 
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The structure of the remainder of the study is organized as 

follows: Section 2 introduces the materials and methods used; 

Section 3 presents the experimental results; Section 4 

discusses these findings; and Section 5 concludes the study. 

 

 

2. MATERIALS AND METHODS 

 

In this study, five advanced deep learning models, 

specifically VGG19, VGG16, EfficientNetB3, 

EfficientNetB7, and EfficientNetv2S, were employed to 

assess the severity of DR. Furthermore, two majority voting 

schemes, namely hard and soft voting, were applied to 

evaluate the contribution of decision-level fusion to the 

classification performance of individual models. Additionally, 

a 1-D CNN model-based stacked generalization approach was 

implemented on the outcomes of the soft voting process. All 

experiments were conducted using the APTOS 2019 dataset, 

recognized as the most prominent DR dataset. 

 

2.1 Dataset information 

 

In 2019, the APTOS compiled a dataset for DR, aiming to 

facilitate the prediction of its severity and presence. The 

APTOS 2019 dataset, which is publicly accessible and 

downloadable from Kaggle [6], comprises 3662 retinal 

images. These images were sourced from multiple clinics 

utilizing various camera types. Experts have classified the 

images into five categories: no DR, mild, moderate, severe, 

and proliferative DR. Figure 1 illustrates the distribution of 

these images across the different classes. 

 
 

Figure 1. The distribution of the images over the classes in 

APTOS 2019 dataset 

 

2.2 Proposed approach 

 

This study introduces a stacked generalization approach 

applied to the soft voting results of five deep learning models 

for classifying the severity of DR in the APTOS 2019 dataset. 

Prior to the training phase, various de-noising processes were 

performed on the images. The deep neural network 

architectures selected as base learners for the decision-level 

fusion step included VGG19, VGG16, EfficientNetB3, 

EfficientNetB7, and EfficientNetv2S. 1D-CNN was designed 

for use in the stacked generalization phase. The workflow of 

the study is summarized in Figure 2, with detailed 

explanations provided in subsequent sub-sections. 

 

 

 
 

Figure 2. Flowchart of the proposed approach 

 

2.2.1 Preprocessing methods 

The APTOS 2019 dataset, comprising retinal images 

collected from multiple clinics using different camera types, 

inherently includes noisy and blurred images due to the varied 

equipment used. To address this, data preprocessing 

techniques were employed as a preliminary part of the 

proposed approach. 

Initially, the high-resolution retinal images were resized to 

224×224 pixels, a dimension compatible with the specific 

requirements of the VGG and EfficientNet architectures 

utilized. Subsequently, a Gaussian filter was applied to 

mitigate salt and pepper noise, characterized by sudden pixel 

intensity variations. Furthermore, considering the retinal zone 

in the images is typically encircled by uninformative black 

backgrounds, a histogram-based automatic cropping process 

was implemented. This step aimed at eliminating the 

background and isolating the retinal area. It involved 

threshold-based histogram filtering on the intensity values of 

each pixel, where columns or rows consisting solely of black 

pixels were removed. Finally, spatial domain data 

augmentation techniques were applied to the original images 

to enhance model robustness and consistency. The chosen 

augmentation methods included rotations up to 60 degrees, 

horizontal and vertical image flipping, image zooming by a 

scale of 0.2, and intensity rescaling to grayscale. These 

parameters were selected to maintain the integrity of the 

original image data and avoid distortions that could introduce 

errors, potentially resulting in inaccurate data inputs into the 

models. 

 

2.2.2 Base learners: Deep learning models 

Machine learning, a subset of artificial intelligence, 

harnesses data to develop predictive models for intricate 

problems, blending statistical and artificial intelligence 
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techniques [43]. Deep learning, a specialized branch of 

machine learning, utilizes neural networks. Unlike traditional 

neural networks, deep networks not only learn the 

relationships among variables but also comprehend the 

underlying principles governing these relationships [44]. 

Consequently, deep learning methods have achieved 

remarkable accuracy and effectiveness in complex 

classification challenges, such as diagnosing DR. 

In this research, deep networks were employed as the 

foundational learners in predicting the presence and severity 

of DR using retinal images from the well-regarded APTOS 

2019 dataset. Five models-VGG16, VGG19, EfficientNetB5, 

EfficientNetB7, and EfficientNetV2S-were chosen for their 

unique attributes. VGG models, although older, are known for 

their simplicity but tend to be computationally expensive and 

memory-intensive due to their large parameter count. In 

contrast, the EfficientNet series represents more recent 

architectures, designed to balance high performance with 

efficiency through optimal network scaling. This study 

selected different versions of both VGG and EfficientNet 

models to examine the effects of model complexity, parameter 

quantity, and computational efficiency on classifying DR. 

Each model was adapted using the transfer learning approach, 

pre-trained on the extensive ImageNet dataset. Modifications 

to dense and dropout layers were made to optimize them for 

the APTOS 2019 dataset. During the training phase, 

hyperparameter tuning was conducted, and the optimal 

parameters were identified. The Adam optimizer was set at a 

learning rate of 0.0001 with a batch size of 32, based on 

preliminary study findings. Training iterations were capped at 

25 epochs with an early stopping feature, which halts training 

if no progress in loss function is observed after 5 epochs. 

Given the significant class imbalance in the dataset, a class 

weight balancing technique was applied. During training, each 

class was assigned a weight inversely proportional to its 

sample size. This technique adjusted the training loss 

calculation to consider class weights, applying more severe 

penalties for misclassifications in heavily weighted classes. 

This approach aimed to counteract the models' tendency to 

favor predicting the more common class. Unlike previous 

studies that relied solely on data augmentation to synthesize 

images for balancing class samples, this study utilized both 

class weight balancing and data augmentation, emphasizing 

the importance of original images during training. 

In terms of model validation, two prominent methods are 

generally employed. One common method involves dividing 

the dataset into three distinct subsets: training, validation, and 

testing, each allocated specific ratios. However, it is crucial to 

acknowledge that the random division of data in this approach 

can potentially skew the model's performance, as it may not 

representatively reflect the overall dataset. Additionally, a 

fixed split could restrict the amount of data available for 

training or validation, possibly leading to less-than-optimal 

model training and tuning. Consequently, the k-fold cross-

validation method is deemed more suitable, particularly for 

datasets with limitations and imbalances, such as the APTOS 

2019. This method provides a more comprehensive evaluation 

of the trained model's performance [45]. In this study, a 5-fold 

validation was employed, necessitated by the computational 

demands of training five pre-trained deep learning models. In 

this validation scheme, each model is subjected to training and 

validation five times, with each of the five folds serving as the 

validation set once (comprising 732 images from the APTOS 

2019 dataset), while the remaining folds are utilized for 

training. The ultimate performance metric is calculated as the 

average outcome across all iterations. 

Ensemble learning, the strategy of integrating multiple base 

learners to generate a collective output, is also known as 

decision-level fusion in deep networks [46]. This method is 

efficient in producing models that are not only individually 

successful but also function as independent decision-makers. 

In this research, three different decision-level ensemble 

approaches were applied to the base learners to achieve 

enhanced accuracy. 

 

2.2.3 Hard voting 

Hard voting is an ensemble technique that amalgamates the 

class predictions from multiple models. In this study, five deep 

learning models were trained using identical training sets. For 

each image in the test set, the classification predictions from 

each model were collated. The final class assignment for each 

image was determined by the majority vote among these 

predictions in the hard voting ensemble method. The 

implementation of hard voting is illustrated in Figure 3, using 

an example image for demonstration. 

 

 
 

Figure 3. Hard voting over an example image 

 

2.2.4 Soft voting 

Soft voting, akin to hard voting, is a decision-level fusion 

method that leverages outputs from multiple models. 

However, it diverges in its approach by considering the class 

assignment probabilities of each model instead of solely 

relying on classification predictions, as in hard voting. The 

ensemble structure takes into account the summed 

probabilities of class assignments from different models. The 

final decision is then based on the majority of these total 

probabilities. To evaluate the performance of the soft voting 

ensemble method, a similar training and testing procedure was 

executed as with hard voting. The models were trained with 

the same dataset, and the classification probabilities generated 

by these models were aggregated. The class of the image is 

then determined based on the highest total probability ratio. 

The implementation of soft voting is depicted in Figure 4. 
 

 
 

Figure 4. Soft voting over an example image 
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2.2.5 Stacked generalization 

Stacked generalization, akin to hard and soft voting 

methods, is another ensemble learning technique that utilizes 

multiple models for the final decision-making process. 

However, distinct from the majority voting mechanism 

employed in both soft and hard voting, stacked generalization 

is founded on the principle of training an additional model 

using the outputs of the base models [47]. This can be executed 

by employing either the predicted classes or the prediction 

probabilities of the base models. Prior research indicates that 

the use of model probabilities tends to yield more accurate 

results [48]. Accordingly, a stacked generalization architecture 

that leverages the prediction probabilities of base learners has 

been implemented for analyzing retinal images. The output 

probabilities from the five base learners are input into a 1D-

CNN model. The workflow of the stacked generalization 

method applied in this study is depicted in Figure 5. 

 

 
 

Figure 5. Stacked generalization over an example image 

 

2.2.6 Performance metrics 

In evaluating the models' performance for determining the 

severity of DR, this study utilized accuracy, precision, recall, 

and F1-score metrics. Accuracy indicates the proportion of 

correctly predicted samples in the entire dataset. Precision 

measures the fraction of positive identifications that are 

actually correct. Recall assesses how many true positive 

instances are correctly identified. The F1-score is a composite 

metric that reflects the balance between precision and recall. 

These metrics collectively provide a comprehensive 

assessment of the models' effectiveness in accurately 

classifying the severity levels of DR. 

 

 

3. EXPERIMENTAL RESULTS 

 

The experiments were conducted using Python on Google 

Colab, with the aid of an Nvidia Tesla T4 GPU (16GB) to 

expedite the training phase of the models. The test platform 

was also equipped with 12 GB of RAM and an Intel(R) 

Xeon(R) CPU, operating at a speed of 2.2 GHz. 

Given the diverse conditions under which the images were 

collected, several preprocessing techniques such as 

background removal, blurring, resizing, and data 

augmentation were applied to standardize the input for the 

models. Five deep learning models — VGG16, VGG19, 

EfficientNetB5, EfficientNetB7, and EfficientNetV2—were 

chosen as base learners. For each model's training, the same 

augmented dataset version was used. 

The efficacy of ensemble model approaches is intrinsically 

linked to the performance of the individual base models. 

Enhancing the performance of each base learner contributes to 

a more accurate overall classification score in the ensemble. 

To maximize base learner accuracy, a preliminary fine-tuning 

of hyper-parameters was conducted. Various combinations of 

hyperparameters, including the number of neurons, learning 

rate, dropout rate, activation functions, and optimization 

algorithms, were explored for each model. Additionally, early 

stopping was implemented as a criterion to halt training and 

prevent model overfitting. A learning rate scheduling 

approach was applied, where the rate remained unchanged for 

the initial 10 epochs, allowing the optimizer to make 

significant strides towards the global optimum. Subsequently, 

the learning rate was reduced by a factor of 0.1 every 10 

epochs, facilitating finer optimization adjustments. 

 

 
 

Figure 6. Confusion matrices of the models 
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Table 1. The performances of individual and ensemble usage 

of models (%) 
 

Model Name Acc. Prec. Rec. F-Score 

VGG16 

VGG19 

EfficientNetB5 

EfficientNetB7 

EfficientNetV2S 

Hard Voting 

Soft Voting 

Stacked General. 

93.78 

93.28 

88.12 

94.07 

93.71 

94.84 

94.84 

95.55 

89.29 

89.57 

78.64 

89.53 

88.68 

90.87 

91.10 

93.64 

89.66 

89.13 

85.87 

90.32 

88.91 

91.08 

91.08 

90.90 

89.47 

88.49 

81.97 

89.92 

89.29 

90.97 

91.09 

92.25 
 

For validating the performance of both base and ensemble 

models, a K-Fold Cross-validation schema was employed, 

with the K-value set at five. This meant that the data was 

divided into training and test sets at an 80/20 ratio, with this 

arrangement repeated five times, each with a uniquely 

constituted 20% test set. The models' performances were 

validated based on scores obtained from the confusion 

matrices for each fold. 

The final confusion matrices for each individual model, as 

well as the ensemble versions utilizing hard voting, soft 

voting, and the stacked generalization approach, are presented 

in Figure 6. The derived Accuracy, Precision, Recall, and F1 

Scores from these matrices (Figure 6) are summarized in Table 

1. 

According to Table 1, the VGG16 and VGG19 models 

demonstrated comparable classification accuracies, largely 

due to their shared VGG architectural framework. These 

networks feature a sequential layer arrangement, which 

accounts for their higher parameter count and consequent 

computational and memory demands. When comparing 

methods with closely matched accuracies, such as VGG16 and 

VGG19, the F1 score, a combination of precision and recall, 

offers deeper insights. Notably, VGG16, being more compact 

and faster than VGG19, emerged as more efficient in DR 

classification, achieving an F1 Score approximately 1% 

higher. This advantage can be ascribed to the limited sample 

size of the APTOS 2019 dataset, which is not extensive 

enough to fully exploit the parameter-rich VGG19 network. 

Consequently, the scaled-down VGG model displayed slightly 

superior performance in certain classes, as indicated by its 

higher F-Score. 

The EfficientNet architecture has been adapted into various 

sub-versions, each varying in width, depth, resolution, and 

other compound aspects. This study focused on two advanced 

iterations of the original EfficientNet baseline-B5 and B7-

along with EfficientNet V2S, a custom variant designed to 

expedite training. From the 5-fold validation results, the 

EfficientNet B5 model displayed the lowest performance 

across all metrics, a consequence of its compact structure 

intended for versatile implementation across platforms. 

Specifically, its accuracy, precision, and recall were 88.12%, 

78.64%, and 85.87%, respectively. In contrast, EfficientNet 

B7, characterized by greater depth and width than its 

counterparts and more sophisticated connections than VGG's 

sequential networks, outperformed all other individual 

models. It achieved accuracy, precision, and recall scores of 

94.07%, 89.53%, and 90.32%, respectively, with the highest 

F1 score at 89.92%. EfficientNetV2S, incorporating custom 

adjustments to the EfficientNet framework, such as the 

removal of superfluous layers and parameter optimization, 

mirrored the performance of EfficientNetB7 closely. These 

results underscore the impact of network architecture 

adjustments on model efficiency and effectiveness. 

Table 2. Class-wise performances of ensemble approaches 
 

Method Acc. Label Prec. Recall F-Score 

 

 

Hard 

Voting 

 
 

 

94.84 

No DR 

Mild 

Moderate 

Severe 

Prolif. 

Average 

99.05 

88.07 

93.46 

84.21 

89.55 

90.87 

98.61 

93.78 

92.99 

82.90 

87.12 

91.08 

98.83 

90.84 

93.22 

83.55 

88.31 

90.97 

 

 

Soft 

Voting 

 

 
 

94.84 

No DR 

Mild 

Moderate 

Severe 

Prolif. 

Average 

98.94 

87.22 

93.47 

85.10 

90.78 

91.10 

98.56 

94.05 

93.09 

82.90 

86.78 

91.08 

98.75 

90.50 

93.28 

83.99 

88.73 

91.09 

 

 

Stacked 

General. 

 

 
 

95.55 

No DR 

Mild 

Moderate 

Severe 

Prolif. 

Average 

98.89 

94.56 

91.79 

90.70 

92.28 

93.64 

99.06 

89.19 

96.29 

80.83 

89.15 

90.90 

98.98 

91.79 

93.99 

85.48 

90.69 

92.25 
 

In this study, three ensemble approaches were implemented 

alongside individual models. The hard voting approach 

combined the class assignment results from each model, with 

the final decision based on the majority vote. A crucial aspect 

of this method is the use of an odd number of models to avoid 

a tie in votes, representing a significant trade-off in hard 

voting. On the other hand, the soft voting approach aggregated 

class assignment probabilities, with the final classification 

based on the class having the highest cumulative probability. 

The key challenge in this method is efficient memory 

utilization. Both hard and soft voting are categorized as 

decision-level fusion techniques. Additionally, a stacked 

generalization approach was employed, which involved a 1D 

CNN architecture for classification, processing the output 

from the soft voting method. The design of the 1D CNN is 

critical, as it requires careful consideration of various 

parameter trade-offs. The overarching goal of these ensemble 

methods is to improve classification performance by 

capitalizing on the strengths of each base model, thereby 

achieving a more accurate and reliable outcome. 

The results outlined in Table 1 demonstrate that all three 

ensemble methods surpassed individual network 

performances across all evaluated metrics. Both hard and soft 

voting methods achieved a classification accuracy of 94.84%. 

Notably, the soft voting approach was more effective in class 

label determination, evidenced by its higher precision score of 

91.10%. The stacked generalization approach outperformed 

the others in terms of classification accuracy, achieving the 

highest rate at 95.55%. Furthermore, this approach also 

attained the highest precision score, which contributed to the 

highest F1 score of 92.25%, indicating a superior balance of 

precision and recall compared to the other methods. 

As the ensemble model approaches yielded superior results, 

detailed class-wise metrics for the three utilized ensemble 

methods are provided in Table 2. This allows for a more 

granular analysis of each method's performance across 

different classes. 

The three ensemble approaches demonstrated comparable 

performance for the 'No DR' and 'Moderate' DR classes, with 

each approach achieving around 98% and 93% accuracy, 

respectively. Notably, the hard voting approach, which 

focuses on model outputs rather than class probabilities, offers 

computational advantages due to its lower complexity. In the 

classification of the 'Mild' and 'Proliferative' DR classes, the 

stacked generalization method slightly surpassed both hard 
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and soft voting methods. However, its most notable superiority 

was evident in the classification of the 'Severe' DR class, 

where it outperformed the other two approaches. In terms of 

precision, which measures the accuracy of positive 

identifications, stacked generalization was approximately 5% 

more precise than both hard and soft voting. However, hard 

and soft voting recorded recall scores—indicating the 

proportion of actual positives correctly identified—nearly 2% 

higher than that of stacked generalization. Consequently, this 

led to the stacked generalization approach achieving F1 scores, 

a balance of precision and recall, that were 2% and 1.5% 

higher than those of the hard and soft voting methods, 

respectively. 

 

 

4. DISCUSSION 

 

This research presented an evaluation of the performance of 

five deep learning models and three ensemble methods in 

classifying DR. The analysis, utilizing the APTOS 2019 

dataset, focused on accuracy, precision, recall, and F1 score 

metrics. In selecting models for experimental validation, 

VGG16 and VGG19 were chosen to assess the efficacy of 

classical convolutional neural network architectures. 

Additionally, two official enhancements (B3 and B7) and one 

custom-designed model (V2S) based on the EfficientNet 

architecture were selected for exploring the impact of more 

complex structures on the APTOS 2019 dataset. Beyond the 

assessment of individual models, three ensemble approaches-

hard voting, soft voting, and stacked generalization-were also 

examined. 

The VGG16 and VGG19 models, though similar in their 

deep architecture, differ in their number of convolutional 

layers; VGG16 comprises 138.4 million parameters, while 

VGG19 has 143.7 million. Experimental findings revealed 

comparable performance for both models on the APTOS 2019 

dataset, suggesting a need for larger datasets to effectively 

train deeper models such as VGG19. 

From the EfficientNet architecture variants, three models 

were selected for this study: the B5 and B7 versions of 

EfficientNet, comprising 30.6 million and 66.7 million 

parameters, respectively, and the EfficientNet V2S, a custom 

design with 21.6 million parameters, engineered to expedite 

the training phase [49]. Despite having fewer parameters 

compared to the VGG16 and VGG19 models, EfficientNet B7 

outperformed all with the most accurate classification. In 

contrast, EfficientNet B5, exhibiting a precision score at least 

10% lower than its counterparts, recorded the lowest 

performance, indicating a higher rate of class assignment 

errors. This analysis demonstrates the significance of 

parameter count and architectural efficiency in deep learning 

models, particularly in the context of DR classification. 

The experimental outcomes underscore the efficacy of 

ensemble methods in enhancing classification performance. 

The weakest base learner in this study, EfficientNet B5, 

achieved an individual classification accuracy of 88%. 

However, the ensemble approaches surpassed the accuracy of 

any single model, indicating that the integration of multiple 

models in the decision-making step can compensate for the 

incorrect classifications of individual base models. 

Soft voting is particularly advantageous when the class 

probabilities provided by the base learners are closely 

matched. For example, if one model predicts a 49% probability 

for class 1 and another model predicts 51% for class 2, a model 

adept at distinctly differentiating between these two classes 

can offset the first model's uncertainty. Nevertheless, the 

findings of this study reveal that both soft and hard voting 

ensembles yielded comparable performance levels. This 

suggests that the class differentiation by the base learners was 

consistent and stable, and the choice between using class 

assignments or probabilities did not markedly affect the 

ensemble results. In the context of hard voting, it is imperative 

to employ an odd number of models to ensure an uneven 

number of decisions. This setup prevents a deadlock scenario 

where equal votes might render the ensemble ineffective, 

making this consideration vital for the success of the hard 

voting method. 

Stacked generalization is anticipated to outperform soft 

voting as it utilizes the class probabilities to train an additional 

model. This model is capable of discerning the tendencies of 

each base learner by examining their outputs alongside the 

actual class labels. By acknowledging these tendencies, it can 

potentially achieve more precise results. The experimental 

findings of this study affirm that the stacked generalization 

model attained the highest accuracy, precision, and F1-score 

values. However, in the context of medical diagnosis, 

inaccurately classifying patients as healthy can have serious 

consequences. Hence, recall becomes a critical metric, 

representing the model's ability to correctly identify patients 

with the condition. Both the hard voting and soft voting 

models demonstrated recall values of 91%, while stacked 

generalization achieved a comparable recall rate of 90.9%. 

Given the proximity of these metrics across the evaluated 

ensemble models, hard voting might be considered a 

preferable option. This is attributed to the fact that, unlike soft 

voting and stacked generalization, hard voting solely relies on 

the class output of the base learners, leading to reduced 

computational demands. 

In comparing our three ensemble methods—soft voting, 

hard voting, and stacked generalization—with current state-

of-the-art studies, it is evident that our ensemble approach 

enhances performance, surpassing previous research in 

various metrics. This improvement aligns with the anticipated 

benefits of ensemble methods, which harness the accuracy and 

diversity of individual models to create a more formidable 

classifier. In terms of accuracy and recall, Rahman and Dola's 

study, utilizing a single DenseNet model, showed notable 

results. However, our stacked generalization framework 

excelled in precision, benefiting from the incorporation of 

multi-model fusion. Furthermore, all our ensemble techniques 

outdid the single-model application of DenseNet in precision, 

a vital metric for accurate DR stage determination. Zhang et 

al. [25] achieved a higher recall score (95.90%) but trailed in 

accuracy and precision. Importantly, their attention network 

underperformed in the 'No DR' classification compared to our 

ensemble techniques. Similarly, Sikder et al. [29] reported 

higher precision (94.34%) but lower accuracy and recall. In 

the context of healthcare, where detecting the presence of DR 

is crucial, recall emerges as a critical metric, underscoring the 

effectiveness of our proposed ensemble methods. 

Nahiduzzaman et al.'s [34] results demonstrated better 

accuracy and precision but a reduced recall (95.00%). Hayati 

et al. [19] reported a higher accuracy value (97.83%) but did 

not provide precision or recall metrics, which limits a 

comprehensive comparison. For a detailed evaluation, a 

comparative analysis of these studies is presented in Table 3, 

illustrating the efficacy of our ensemble approaches in the 

context of DR classification. 
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Table 3. Performance comparison of proposed framework and present studies 

 
Dataset Paper Methodology Accur. % Precision % Recall % 

A
P

T
O

S
2

0
1
9

(3
6

6
2

im
ag

es
in

5
ca

te
g

o
ri

es
) 

Rahman and Dola [11] DenseNet169 Transfer Learning 96.54 90.79 96.23 

Sugeno et al. [15] EfficientNet-B3 84.00 - - 

Sheikh and Qidwai [10] DenseNet121 90.5 87.00 90.00 

Playout et al. [33] Optic-Net71 92.59 93.22 91.96 

Nahiduzzaman et al. [34] Extreme Learning Machine 97.27 96.00 95.00 

Bodapati et al. [30] 
Multi-Model Fusion on 

Pre-trained VGG16 and Inception Models 
82.54 82.00 83.00 

Gangwar and Ravi [16] 
Pre-trained Inception-ResNet-v2 Model 

Customized by Adding Convolutional Layers 
82.18 - - 

Hayati et al. [19] EfficientNetB4 97.83 - - 

Lu et al. [12] 
Transfer Learning-based Lightweight 

Convolutional Neural Network 
96.66 97.00 96.85 

Zhang et al. [25] 
Multi-Point Attention-based 

Semi-supervised Learning Approach 
90.30 86.40 95.90 

Yue et al. [32] Attention-Driven Cascaded Network 83.40 69.66 67.70 

Islam et al. [17] 
Supervised Contrastive Learning Using 

Margin Hyperparameter Tuning for Optimization 
84.36 70.51 73.84 

Ingle and Ambad [18] 
Pretrained Resnet50 Model using 

FastAI Model Generation Approach 
95.00 - - 

Canayaz [24] 
Feature Extraction Using EfficientNetB0 and DenseNet121 

Classification with Traditional Models 
95.85 95.85 95.85 

Bodapati et al. [21] Analyzing Feature Maps of Pre-trained VGG16 Model 84.31 - - 

Shaik and Cherukuri [22] Hinge Attention Network 85.54 85.91 85.54 

Shaik and Cherukuri [23] 

Training a Neural SVM Using 

the Lesion-Specific Features that are Extracted by 

Using Xception Architecture 

84.31 75.86 66.16 

Sikder et al. [29] 
Training a Tuned XGBoost Model Using 

GLCM and Histogram Features 
94.20 94.34 92.68 

Sikder et al. [28] 
Using Histogram Features of Retinal Images on an Ensemble of 

Decision Trees 
91.07 90.40 89.54 

Proposed 

Framework 
Hard Voting Ensemble 94.84 92.01 90.87 

Proposed 

Framework 
Soft Voting Ensemble 94.84 91.07 91.10 

Proposed 

Framework 
Stacked Generalization Ensemble 95.55 90.91 93.64 

 

 

5. CONCLUSION 

 

This research focused on developing ensembles of deep 

learning models, employing hard voting, soft voting, and 

stacked generalization techniques, to classify the severity 

levels of DR. The APTOS 2019 dataset, encompassing four 

severity levels of the condition and a healthy state, was utilized 

for experimentation. 

Due to the varied conditions under which retinal images 

were collected, a range of image preprocessing methods were 

applied. These included the removal of non-informative 

backgrounds, application of blurring, resizing, and data 

augmentation. Hyperparameter tuning was conducted to 

optimize the training of the base models, exploring different 

configurations of neurons, learning rates, dropout rates, 

activation functions, and optimization algorithms. Techniques 

such as early stopping and learning rate scheduling were also 

employed. 

Models based on the VGG architecture, known for their 

simplicity but associated with high parameter counts, were 

contrasted with the more recent EfficientNet series, designed 

for enhanced performance through efficient network scaling. 

Two versions of VGG and three variations of EfficientNet 

were selected, aiming to investigate the impact of model 

complexity, parameter count, and computational efficiency on 

the classification of DR. The base models for the ensemble 

approaches included VGG16, VGG19, EfficientNetB5, 

EfficientNetB7, and EfficientNetV2S. 

The results revealed that ensembles outperformed 

individual models in precision, recall, accuracy, and F1 scores. 

The stacked generalization method achieved the highest 

accuracy at 95.55%, while both hard voting and soft voting 

models attained an accuracy of 94.84%. Compared to prior 

state-of-the-art research, the proposed ensemble methods 

exhibited superior performance across all metrics. This 

signifies a significant contribution to the existing literature by 

providing more accurate results. 

A limitation of this study is the increased computational 

demand associated with constructing ensemble models, 

necessitating the training of multiple models and the 

amalgamation of their outputs. Despite this, an application for 

predicting the severity of DR is planned, utilizing pre-trained 

networks for image testing to reduce processing times. This 

application could serve as a valuable diagnostic tool, offering 

improved accuracy over many existing methods. Future 

research will explore the utilization of diverse networks such 

as NasNet, DenseNet, ResNet, and lighter networks like 

AlexNet and ShuffleNet within the stacked generalization 

ensemble framework to potentially enhance performance and 

reduce computational costs. The development of this 

application will facilitate practical and swift analyses of 

fundus images obtained from eye screening tests, significantly 

improving the accuracy and reliability of clinical results. 
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NOMENCLATURE 

 

1D one dimensional 

Acc. accuracy 

AdaBoost adaptive boosting 

APTOS Asia Pacific Tele-Ophthalmology Society 

CNN convolutional neural network 

CPU central processing unit 

DenseNet deterministic networking 

DetNet dense convolutional network 

DR diabetic retinopathy 

EfficientNet efficient convolutional neural network 

FCM fuzzy c-means clustering 

GB gigabyte 

GCN graph convolutional network 

GLCM grey level cooccurrence matrix 

GPU graphics processing unit 

IDRiD Indian Diabetic Retinopathy Image Dataset 

JPEG Joint Photographic Experts Group 

M million 

Optic-Net optical network 

PNG portable network graphics 

Prec. precision 

Prolif. proliferative 

RAM random access memory 

Rec. recall 

ResNet residual network 

RGB red green blue 

SVM support vector machine 

VGG Visual Geometry Group 

Xception extreme inception 

XGBoost extreme gradient boosting 

YPbPr analog video signal carried in cable 
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