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Background: The distribution of illicit material such as obscene images and child sexual 

abuse (CSA) content constitutes a serious crime in numerous jurisdictions worldwide. The 

identification and detection of such content is a crucial component of forensic investigations, 

and is integral to the apprehension and prosecution of offenders. Traditional methods for 

identifying such material are predominantly manual, requiring expert review, and are 

consequently time-consuming and susceptible to human error. Deep learning, with its 

proficiency in discerning complex patterns and features in large-scale data, offers a 

promising alternative for the automated and accurate detection of obscene and CSA content. 

This research advances a deep learning model for detecting obscene images and CSA in 

digital forensic evidence. Methods: A dataset of 3000 obscene and 3000 non-obscene images 

was compiled, with the obscene images sourced from a social sharing platform, Reddit. 

Images were classified as obscene if they portrayed sexual organs or activities for the 

primary purpose of eliciting sexual arousal. A convolutional neural network (CNN) based 

deep learning model was then developed to detect the obscene content. The efficacy of the 

proposed model was compared with existing methodologies using the NPDI benchmark 

dataset. Pre-trained CNNs were used to extract feature vectors from the images which were 

subsequently used in conjunction with a neural network classifier to categorise the images. 

To detect CSA, the UTKFace dataset was employed to identify minors in images, using a 

lightweight CNN model with skip connections to recognise juvenile faces. Results: The 

proposed model for obscene content detection demonstrated a robust performance, 

achieving an accuracy of 99.8% and 99.4% respectively in the training and testing segments 

of the NPDI dataset. This model has potential applicability to both image and video files. 

Meanwhile, the model for identifying minors achieved an accuracy of 99.6% and 99.0% in 

the training and testing segments of the UTKFace dataset respectively. Conclusion: The 

findings of this study underscore the efficacy and high performance of the deep learning 

models proposed for the detection of obscene images and CSA content. These results 

highlight the potential for these models to be employed in digital forensic investigations for 

automated content detection, which would significantly advance efforts in combatting the 

distribution of illicit content. 
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1. INTRODUCTION

1.1 Background 

In the contemporary digital age, facilitated by the 

proliferation of the Internet and technological advancements, 

access to diverse data types has become increasingly seamless. 

This ease of access undeniably enhances various facets of life, 

including education, science, and healthcare, but it 

simultaneously augments the dissemination of harmful content. 

Numerous online content-sharing platforms are monitored 

by Law Enforcement Agencies (LEAs) and automatic content 

recognition systems to curb the propagation of inappropriate 

content on the Internet [1]. Upon detecting such content, 

countermeasures range from blocking the offending platforms 

or websites to removing the harmful content. Content intended 

for specific age groups also necessitates stringent control 

systems, particularly to safeguard children from potential 

online hazards. 

Globally, content deemed inappropriate for public 

consumption predominantly involves the sharing of 

pornographic material. Despite numerous platforms 

implementing restrictions or outright bans on the distribution 

of such content, the illicit dissemination of this material 

persists [2]. 

In the current landscape, access to sites and platforms 

dedicated to sharing pornographic content varies greatly, with 

outright prohibition in some countries, and age-verified 

accessibility in others. Furthermore, child abuse and child 

pornography (collectively referred to as CSA) are universally 

recognized as criminal activities [3]. The detection and 

blocking of such criminal content, particularly after it has been 
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disseminated, becomes critically important. 

The increasing accessibility and demand for such content 

heightens the probability of encountering this data in crime-

related evidence. Additionally, pornographic content 

disseminated on the Internet often finds its way into digital 

media. The rapid detection of such content not only aids in 

blocking data published on the Internet but also proves 

instrumental in identifying objectionable content during 

forensic digital evidence investigations, thereby expediting 

crime resolution. The detection of pornographic content on 

confiscated digital media can significantly accelerate the 

comprehensive investigation of the crime [4]. 

 

1.2 Literature review 

 

1.2.1 Early studies based on traditional techniques for 

pornography detection 

Numerous methodologies for detecting pornographic 

content in video and image data have been proposed in 

academic literature. A common objective in many of these 

previous studies has been the detection of human skin, given 

its prevalence in most pornographic material. Techniques such 

as color-based identification or manually applied features to 

localized areas were employed to discern human skin [5-7]. 

However, these methods possess a significant limitation: all 

data in which skin color is dominant can be erroneously 

classified as pornographic content. For instance, skin color is 

prominently observed in certain contexts such as sports 

competitions, beach scenes, and fashion shows, yet these 

scenarios are not pornographic in nature. Consequently, the 

use of skin color detection as an isolated technique can result 

in a high rate of false positives, reducing its effectiveness as a 

standalone tool. Moreover, its inability to function effectively 

with grayscale data allows for easy circumvention of the skin 

color detection method. 

To achieve more accurate results, subsequent studies used 

classifiers with multiple manually extracted regional features. 

Some studies have employed the Bag-of-Visual-Words 

(BoVW) method in conjunction with features like SIFT, SURF, 

and ORB, using classical machine learning classifiers such as 

Support Vector Machines (SVMs) [8-12]. 

 

1.2.2 Deep learning-based studies for pornography detection 

While traditional feature extraction methods have achieved 

partial success, they have not yet reached the desired level in 

terms of reducing false positives and augmenting overall 

accuracy. The promising results garnered from applying deep 

learning techniques to image data have incentivized 

researchers to utilize these methods for detecting pornographic 

content. Early studies in this domain recommended leveraging 

successful ImageNet pre-trained models as feature extractors. 

Some of these studies fused the decisions from multiple pre-

trained models to detect pornography in images [13]. In 

contrast, other studies introduced custom CNN architectures 

for this purpose, as exemplified in the study [14]. However, 

these custom architectures often require additional data for 

training, making it challenging to compare these studies with 

the broader literature. 

Numerous studies have explored diverse approaches to 

enhance the detection of inappropriate content in images and 

videos. Some researchers have proposed integrating motion 

data from videos with image data for training. For instance, 

Perez et al. [15] combined GoogleNet image features with 

motion features extracted using optical flow and MPEG 

motion vectors, achieving an impressive accuracy of 97.9% on 

the NPDI dataset. Wehrmann et al. [16] used GoogleNet and 

ResNet CNN models for image data feature extraction and 

employed the LSTM model to capture temporal connections 

in video data, achieving a peak accuracy of 95.6%. 

Various methods for detecting and safeguarding against 

pornography have been explored across different domains. 

Yousaf and Nawaz [17] introduced a model for automatically 

filtering inappropriate content in YouTube videos. Their 

model utilized the EfficientNet-B7 CNN model for extracting 

features from video frames and incorporated a BiLSTM model 

with 128 hidden units to capture temporal information, 

achieving a commendable accuracy of 95.66%. Gautam and 

Vishwakarma [18] proposed a Frame Sequence ConvNet that 

employed the ResNet-18 backbone to analyze sequential 

features of NPDI videos. By extracting features from 

sequential frames using the ResNet-18 model, their approach 

reached a peak accuracy of 98.3% on the NPDI dataset. 

Furthermore, Yang and Xu [19] developed a generative 

adversarial network (GAN) model for automatically censoring 

inappropriate content in educational platform streams. They 

trained their model specifically on indoor images from the 

NPDI dataset for binary classification, achieving an average 

accuracy of 98% in detecting inappropriate content within 

videos. 

Conversely, some studies have reframed the detection of 

pornographic images as an object detection problem. For 

example, Mallmann et al. [20] aimed to censor specific body 

areas using object detection models like the Faster R-CNN and 

SSD with different backbones. They achieved a maximum 

mean average precision (mAP) of 63.5% using the Faster R-

CNN model with the Inceptionv2 backbone. Similarly, Hor et 

al. [21] aimed to detect inappropriate body parts in videos 

using object detection models, with the EfficientDet model 

achieving the highest accuracy, averaging 75% on a dataset 

derived from the NPDI dataset. 

 

1.2.3 Studies about age estimation 

Historically, studies on age determination have relied on 

handcrafted features for facial and body analysis [22]. For 

instance, Hajizadeh and Ebrahimnezhad [23] achieved an 87% 

accuracy in classifying images into four age groups by 

utilizing probabilistic neural networks and HOG features 

extracted from various facial regions. Eidinger et al. [24] 

deployed LBP and FPLBP methods in tandem with dropout-

SVM to determine age and sex from facial images, obtaining 

accuracies of 66.6% and 45.1% on the Gallegher and Adience 

datasets, respectively, for 7 and 8 age groups. Sai et al. [25] 

employed LBP, Gabor, and biological features, coupled with 

ELM classification, achieving a 70% accuracy for age group 

classification. 

Recent studies have underscored the superiority of deep 

learning models, particularly Convolutional Neural Networks 

(CNNs), over traditional approaches. One of the pioneering 

studies by Wang et al. [26] introduced a two-layer CNN model, 

which outperformed handcrafted features in age estimation 

tasks. Chen et al. [27] proposed a ranking-CNN model, which 

enhanced age estimation results by amalgamating binary CNN 

classifiers. Anda et al. [28] developed a VGG-16-based CNN 

model, demonstrating successful results in identifying 

borderline age groups. Castrillón-Santana et al. [29] improved 

the performance of non-adult face classification by integrating 

local face descriptors with deep CNN model features. 
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In the context of Child Sexual Abuse (CSA) detection, age 

determination using facial features has gained considerable 

attention, largely due to the availability of labeled data. Sae-

Bae et al. [30] proposed a CSA detection system that combined 

skin tone detection and age estimation from facial images, 

achieving accuracies of 83% and 96.5% in detecting explicit-

like images and child faces, respectively. Yiallourou et al. [31] 

considered various factors such as age, gender, lighting, and 

the number of people in the pictures to classify CSA material, 

utilizing LBP features for age estimation. Macedo et al. [32] 

integrated age estimation and pornography detection, 

achieving an accuracy of 79.84% by identifying faces with the 

MTCNN face detector and classifying child faces using a fine-

tuned VGG-16 CNN model. Similarly, Gangwar et al. [33] 

proposed an attention-based CNN model for age classification 

and pornography detection, achieving accuracies of 92.7% and 

97.1% on CSA and NPDI dataset classifications, respectively. 

In our work, we propose a system with fewer parameters 

than other models and also test the model with a novel dataset 

collected from the internet. Given that transfer learning is 

known to enhance accuracy [34] when data is limited, we 

employed models trained with the ImageNet dataset, which 

contains considerably more data than pornography benchmark 

datasets, in our proposed model. 

 

1.3 Problem statement 

 

The surge in data directly influences the volume of data 

potentially associated with crime [35]. Digital forensics 

encompasses the processes of preventing crimes before they 

occur, responding as they are committed, and revealing and 

examining evidence after a crime has been perpetrated. The 

impact of today's data growth is palpable in this field [36]. 

Particularly after crimes are committed, the demand for 

experts needed to scrutinize the evidence is escalating daily. 

At this juncture, there is a clear need for software tools that 

provide automatic detection and analysis methodologies for 

data expected to be investigated in digital environments [37]. 

Various commercial and open-source software tools are 

employed in forensic evidence analysis [38]. These tools ease 

the examination process and present the data in the digital 

environment in a comprehensive and understandable manner. 

The tools include features such as data carving, visualization, 

indexing, data type grouping, performing operating system-

specific analyses, and reporting. However, conveying the 

content analysis of this data to the examiner often constitutes 

the most exhausting and time-consuming portion of the 

investigation. To expedite this step, efforts are being made to 

develop software capable of performing automatic content 

analysis, particularly for image data [39-41]. 

Nonetheless, evidence examiners using automatic content 

analysis tools in digital evidence investigations have reported 

that these tools typically function by filtering the hash values 

of known data. This is a limiting factor for the evidence review 

process, indicating a need for tools that evaluate content 

without dependency on hash values [42]. Additionally, a 

significant proportion of participants in this study (61.7%) 

reported experiencing sluggish performance with the tools 

used, while a considerable percentage (23.4%) voiced 

concerns about the accuracy of the applied software. These 

challenges underscore the immediate need for improved tools 

and software solutions that enhance efficiency and accuracy. 

In conclusion, the exponential increase in data directly 

affects the amount of data linked to criminal activities, thereby 

necessitating advancements in digital forensics. The critical 

need for automated detection and analysis methods is evident, 

especially considering the rising number of experts required to 

scrutinize evidence post-crime. While many commercial and 

open-source software tools facilitate the examination of digital 

evidence, content analysis remains a daunting and protracted 

task. This underscores the pressing need for tools that can 

appraise content without solely relying on hash values, and 

that also address concerns related to performance and accuracy. 

The findings of this study highlight the urgency of developing 

superior tools and software solutions that can boost efficiency 

and accuracy in evidence examination, thereby tackling the 

challenges faced by practitioners in the field. 

 

1.4 Motivation and contributions 

 

Motivations: 

This study is motivated by the identified limitations and 

challenges that forensic practitioners encounter in the realm of 

digital forensics. The burgeoning volume of data, 

dependencies on hash values, and concerns surrounding 

performance and accuracy have collectively underscored the 

need for enhanced tools and software solutions. By addressing 

these motivations, this study seeks to advance the development 

of automated content analysis methods to augment the 

efficiency, reliability, and comprehensiveness of digital 

evidence examination. The ultimate aim is to equip 

practitioners with advanced tools that can expedite the 

investigative process and facilitate more effective analysis of 

digital data in forensic investigations. 

In this study, we propose the use of the OCDet model in 

digital evidence investigations to automatically present 

pertinent data to the examiner. In addition, we introduce the 

IMPD model to detect underage individuals in explicit content, 

should it exist. Our goal is to swiftly and automatically detect 

CSA material using the proposed dual-model system. With 

this proposed system, the digital evidence examination process 

will be expedited, and the demand for manpower will be 

reduced. While the developed model is intended for forensic 

evidence examination, its near real-time operation speed 

allows for its application in areas such as broadcast content 

censorship and online media analysis.  

 

Contributions: 

This work presents the following contributions: 

• We propose a robust deep learning-based model to assist 

in forensic evidence investigations. 

• We present a new dataset, collected from the internet, for 

obscene image detection. 

• Our proposed OCDet model, to our knowledge, achieves 

state-of-the-art performance on the NPDI benchmark dataset. 

• We propose a lightweight, high-performance IMPD CNN 

model with skip connections to detect underage faces in 

images. 

• We propose a CSA detection system by integrating the 

aforementioned models. 

• Both proposed models boast an accuracy rate of over 99%. 

 

 

2. MATERIAL 

 

A deep learning-based model was proposed using two 

different datasets to detect obscene data. One of the datasets 
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used is the NPDI dataset [11], which is widely used in the 

literature. In addition, a second data set was created by making 

use of the pictures obtained from the internet links and 

published publicly. These two datasets contain a variety of 

backgrounds, people from different ethnicities, and difficult 

and easy examples. The UTKFace [43] dataset is also used for 

immature face detection in this work. The UTKFace dataset 

consists of images that include faces of people from different 

ethnicity, age, and gender. 

 

2.1 Pornography-800 dataset 

 

The Pornography-800 dataset (NPDI Dataset) contains 

video data in two different categories (Porn-nonPorn). This 

dataset includes 400 pornographic and 400 non-pornographic 

videos. The non-pornographic videos are divided into 2 levels 

and these levels are named easy and hard levels. Easy-level 

non-pornographic videos contain landscapes without people, 

everyday pictures without human skin density, etc. The hard-

level non-pornographic videos show wrestling competitions, 

people on the beach, etc. The length of the videos in the dataset 

range from 3 minutes to 30 minutes. These long videos in the 

dataset were divided into shorter shots, and each shot's key 

frame was saved as an image. Each video is divided into an 

average of 20 shots. The resulting dataset has 16727 frames 

(images) extracted from the videos. In this way, a dataset was 

created to detect pornographic content on both video and 

pictures. The NPDI dataset was used to have large data and 

include compelling data in this study. Sample images from the 

NPDI dataset are shown in Figure 1. As shown in Figure 1, the 

dataset contains different images with various backgrounds 

and difficulties. 

 

 
 

Figure 1. NPDI dataset sample images 

 

Additionally, it should be noted that the dataset used in this 

study consisted of videos with varying quality and content, 

which led to the inclusion of mislabeled images or images of 

very low quality. It is important to highlight that the image 

data was extracted from the frames within these videos. 

Therefore, the training set was inspected manually, and 1711 

images were moved to non-pornographic class. Samples from 

removed images are shown in Figure 2. 

 

 
 

Figure 2. Removed images from the NPDI dataset 

As can be seen in Figure 2, as these images are extracted 

from videos, some images may not include any humans or are 

just not pornographic. Therefore, these images were used as 

negative examples in the training phase. 

 

2.2 Internet NSFW dataset 

 

A second dataset was used to test the generalization ability 

of the proposed model, which achieved successful results in 

the experiments performed on the NPDI dataset. The second 

dataset was created using the image links published on the 

GitHub platform by Bazarov [44]. In the published project, 

there are links to 1,589,331 pictures in total, divided into 159 

different categories. This amount corresponds to 

approximately 500 GB of data. However, the images in these 

links are not verified (incorrectly labeled data may be found), 

corrupted data may be found, and duplicate data may be found. 

This study created a new data group with 3000 images 

randomly selected from these links to be used in the obscene 

class. Since the source of the created data set is the data shared 

openly on the Internet by people, it is possible that the images 

are deleted over time, that they are shared on the same platform 

more than once, or that they have very different content. For 

this reason, the data must be passed through a preprocessing 

step. After downloading images, all data was controlled and 

validated by a participant and authors manually. In the 

validation step, all images were checked for corrupted or 

irrelevant content. Images were labeled as obscene if they 

primarily intend to elicit sexual arousal in individuals through 

depictions of sexual organs or activities. Nearly all images in 

obscene class have a person with explicit body parts which are 

accepted as obscene in studies [20, 21]. It is important to 

emphasize that within this dataset, data explicitly depicting 

organs considered obscene in the aforementioned studies are 

categorized as "obscene," while the labeling does not 

encompass any obscenity inferred from poses or diverse facial 

expressions. Furthermore, it is noteworthy that the dataset 

predominantly comprises indoor images, with outdoor images 

representing a minority. While this distribution aligns with the 

data commonly encountered in both online sources and 

forensic investigations, it raises a concern that should not be 

overlooked. In addition to collected obscene images, for the 

creation of non-obscene images, 3000 randomly selected 

images from the Google Open Images dataset, 90% of the 

images obtained from there have “human” labels which means 

these images contain people in them. This approach has 

significantly enhanced the utility of the dataset in 

distinguishing between individuals with normal conditions 

and those exhibiting explicit behaviors, thereby improving its 

efficacy for accurate classification. Sample images from the 

newly created dataset are shown in Figure 3. 

 

 
 

Figure 3. Sample images from the newly created dataset 
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After creating and preprocessing datasets, image counts of 

each dataset are shown in Figure 4. As shown in Figure 4, the 

NPDI dataset contains approximately 6000 explicit and 10000 

non-explicit images in two groups classified as easy and 

difficult. In the NFSW data set, there are approximately 3000 

data belonging to the explicit and non-explicit classes. Due to 

the imbalance of the classes in the NPDI data set, the data from 

the non-explicit class, where the hard and easy data are mixed, 

were randomly selected to be equal to the number of data in 

the training set. In this way, it was ensured that the data set 

was balanced. 

 

 
 

Figure 4. Image counts of final datasets 

 

2.3 UTKFace dataset 

 

UTKFace dataset is a large-scale face dataset with a long 

age range from 0 to 116 years old. This dataset contains over 

20,000 face images. These images are labeled according to the 

age, gender, and ethnicity of the people. In addition, these 

images cover large variations in pose, facial expression, 

illumination, occlusion, and resolution. Sample images of the 

UTKFace dataset are given in Figure 5. 

 

 
 

Figure 5. Sample images from the UTKFace dataset 

 

In the UTKFace dataset, all images are labeled with their 

age and other information. Since we only categorize people 

into two classes (mature and immature), we labeled images of 

people under 18 as immature. All other images are used in 

mature classes. The age distribution of all images is given in 

Figure 6. In our experiments, we used cropped face images 

from this dataset to make the model more robust. 

We annotated all images with two labels. After the 

annotation process, we obtained 4229 images for the immature 

class and 19475 images for the mature class. Although there 

was an imbalance between the obtained classes, there was no 

overfitting problem in the experiments, since there was 

sufficient data for the minority immature class. 

 

 
 

Figure 6. Age distribution of UTKFace dataset 

 

 

3. PROPOSED METHOD 

 

The proposed method consists of two parts: the obscene 

detection part and the age detection part. The model has four 

main steps namely preprocessing, feature extraction, 

classification and decision fusion. 

Image preprocessing: Image preprocessing pipeline 

consists of two primary elements: image resizing and image 

normalization. Image resizing is performed to standardize the 

dimensions of all input images. By resizing images to a 

consistent resolution or aspect ratio, we eliminate variations in 

size and simplify the subsequent computational processes. 

Following image resizing, image normalization is applied to 

adjust the pixel values of the images to a common scale. This 

process involves techniques such as mean subtraction and 

min-max scaling. Normalization helps to mitigate the impact 

of varying pixel value ranges across images, promoting fair 

comparisons and improving the convergence of subsequent 

analysis algorithms. Additionally, within our proposed model, 

a crucial preprocessing step involves the detection and 

cropping of all faces present in the images. This essential 

process is seamlessly integrated into our preprocessing 

pipeline. The formulas of preprocessing steps are given in Eqs. 

(1)-(5). 

Feature extraction: In our proposed model, a significant 

stage of the pipeline is dedicated to feature extraction. This 

step involves the utilization of two distinct Convolutional 

Neural Network (CNN) models designed for specific tasks: 

obscenity detection and immature face detection. One of these 

models comprises a pretrained CNN, while the other is newly 

created. These CNN models are employed to extract deep 

features from preprocessed images. 

The pretrained CNN model, which has been trained on a 

large-scale dataset, possesses the capability to learn high-level 

representations of general image features. By utilizing this 

pretrained model, we leverage the knowledge gained from 

extensive prior training to extract discriminative features 

related to obscenity detection. 

For the task of immature face detection, a separate CNN 

model is specifically designed and trained from scratch. This 

model is tailored to capture facial features associated with 

immaturity, enabling effective identification of immature 

faces in the images. The formulas for extracting features from 

image input with CNN models are given in Eq. (6). 
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Classification: In the classification step of our proposed 

model, we employed fully connected layers to classify the 

deep features extracted from the images. These fully 

connected layers serve as the final component of our model's 

architecture, responsible for mapping the extracted features to 

the corresponding class labels. 

The deep features obtained from the feature extraction step 

encode rich and discriminative information about the input 

images. However, they are in a high-dimensional space and 

not directly interpretable for classification purposes. Therefore, 

we utilize fully connected layers, also known as dense layers, 

to transform these deep features into meaningful predictions. 

Formulas used for transforming deep features into predictions 

are given in Eqs. (7)-(9). 

Decision fusion: Finally, the results obtained from the two 

parts were combined in the decision fusion step, and the CSA 

detection classification was performed. The formula for fusing 

decision of the classification results are given in Eq. (10). 

The flow diagram of the proposed method is given in Figure 

7. 

The proposed model exhibits a reduced number of trainable 

parameters in comparison to other relevant studies 

documented in the literature. For instance, a comparable 

model in [33] was reported to possess 9M parameters for tasks 

involving pornography and age group detection. In contrast, 

our model consists of merely 4M parameters, achieving an 

approximate reduction of 50% in terms of trainable parameters. 

Moreover, our model demonstrates superior performance on 

the NPDI dataset for pornography detection. Conversely, in 

contrast to the approach in [15, 16, 19] that involves the 

utilization of continuous data types such as video, our training 

process employs a reduced amount of data. In conclusion, our 

model outperforms alternative approaches while 

simultaneously requiring a smaller dataset and less 

computational power. 

In the proposed model, we used CNN models to classify 

obscenity and immaturity. The model gets input data and 

applies the face detection algorithm to the input image to get 

faces. After face detection, face images and original input 

images are fed to CNN architectures as shown in Figure 7. For 

the obscene detection task, we used a pre-trained 

MobileNetV3-large CNN model. This model was first used 

only as a feature extractor for training newly added fully 

connected layers by freezing the weights in the network. After 

a short training, we unfree all layers except the batch 

normalization layer of the MobileNetV3-large model and 

trained the network secondly in an end-to-end fashion. The 

second training was performed with a much lower learning 

rate not to distort already trained layer weights. The 

architecture of the MobileNet-based model OCDet model is 

given in Figure 8. 

Although the MobileNetV3-large model looks small in 

Figure 8, it is a large model with 69 convolution layers, 

excluding the classification layer. At the same time, we also 

processed face images with other skip connection CNN that 

we created for immature detection. The architecture of the 

IMPD model is given in Figure 9. As seen from here, our 

network has one skip connection and 5 convolution layers 

followed by two dense layers with dropout. This model is a 

lightweight model according to the OCDet model. 

 

 
 

Figure 7. Flow Diagram of the proposed method 

 

 
 

Figure 8. The architecture of the fine-tuned OCDet CNN model 
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Figure 9. The architecture of the IMPD model 

 

We trained the IMPD model from scratch in an end-to-end 

fashion. As a result, both models get successful results in the 

relevant tasks, ensuring that the result obtained in the decision 

fusion stage is robust. Parameter numbers, kernel sizes, output 

sizes, and other details of the models are given in Table 3 and 

Table 5. 

The process steps of the proposed model are as follows. 

Step 0: Resize and rescale the input images. 

Since the datasets contain various-sized images, we resized 

images of NPDI and the manually collected dataset into 224 × 

244. On the other hand, the UTKFace dataset cropped face 

images were already resized into 200 × 200 images, and we 

used these images. The formula notation of the resizing 

process is given in Eq. (1). 

 

𝑋(𝑖) = 𝑅(𝑋(𝑖), [ℎ, 𝑤]) (1) 

 

where, 𝑋(𝑖) represents the i.th image in the dataset, and R is 

the resizing function that resizes input images to h × w sized 

images. In this way, it is ensured that all images are 224 × 244 

in size. After resizing, images are rescaled using the method in 

Eq. (2). 

 

𝑋(𝑖) = 𝑋(𝑖)./255 (2) 

 

where, 𝑋(𝑖) is the i.th input image. All pixel values are rescaled 

into an interval of [0,1] by dividing every pixel value of images 

by 255. This way, we prevent our models from the exploding 

gradient problem. In step 0, Eq. (1) is applied to all datasets 

except the UTKFace dataset, while Eq. (2) is applied to all 

datasets.  

Step 1:  Detect faces in images and preprocess face images. 

Face detection and preprocessing are performed by Eqs. (3), 

(4), and (5). In Eq. (3) faces in images are cropped and face 

images are resized and rescaled using Eqs. (4) and (5). 

 

𝐹(𝑖) = 𝐷𝑒𝑡𝑒𝑐𝑡𝐹𝑎𝑐𝑒(𝑋(𝑗))  

𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛}  
(3) 

 

𝐹(𝑖) = 𝑅(𝐹(𝑖), [ℎ, 𝑤])  (4) 

  

𝐹(𝑖) = 𝐹(𝑖)./255  (5) 

 

where, F(i) denotes the i.th face image detected in the j.th image. 

Here m is the number of faces detected from images in the 

dataset. And n is the number of images in the dataset, R is the 

resizing function. DetectFace is the face detection function 

that returns face images cropped from the original images. 

After then this, as shown in Eq. (4), cropped face images are 

resized into h x w since our IMPD model expects images in 

200 × 200 × 3 shape. Finally, in Eq. (5), resized face images 

are also rescaled. 

Step 2: Feed original images and face images to CNN 

models. 

In Eq. (6), the calculation of output in a CNN layer is given. 

 

𝑋𝑖,𝑗
𝑙 = ∑ ∑ 𝑤𝑠1,𝑠2𝑋(𝑖+𝑠1)(𝑗+𝑠2)

𝑙−1𝑠2−1
𝑠2=0

𝑠1−1
𝑠1=0   (6) 

 

where, Xl-1 is the input image, i, and j are the pixel indexes of 

images, l is the layer index, s1, and s2 are the kernel sizes of 

the convolution layers and XI is the output of the l. th CNN 

layer. In this situation, X0 is the original image data. Here 

every new output is calculated by multiplying inputs with 

corresponding w weights of the convolution layer. And the 

input of convolution layers is the output of the layer before the 

l.th layer. The network architectures of the CNN models are 

given in Figure 8 and Figure 9. 

Step 3: Classify images using MLP classifiers. 

In Eq. (7), the calculation of output in a fully connected 

layer is given. 

 

𝑧(𝑖) = 𝑎(𝐼 ∗ 𝑊(𝑖) + 𝐵(𝑖))  (7) 

 

where, z(i) is the i.th fully connected layer output in MLP, I is 

the input of the fully connected layer, W(i) is the weights of the 

fully connected layer, B(i) is the bias values of the fully 

connected layer, and a is the activation function. In our 

experiments, we used the ReLU activation function in CNN 

and MLP layers except for the last layer of the MLP, wherein 

we used the softmax activation function. 

Step 4: Get softmax probabilities of predicted classes and 

final predictions. 

In softmax activation step, outputs of the model are 

calculated using Eq. (8) and then the final decision is 

calculated as given in Eq. (9). 

 

𝑠𝑓𝑚𝑥(𝑧) = { 
𝑜(𝑖) =

𝑒𝑧(𝑖)

∑ 𝑒𝑧(𝑗)𝑘
𝑗=1

𝑖 ∈ {1,2,3, … 𝑘}

  (8) 

 

𝑝 = Max(𝑜)  (9) 

 

where, sfmx is the softmax activation function and z is the 

input vector to the softmax activation function. Here e is the 

exponentiation constant, o(i) is the i.th element of the output 

probabilities, z(i) is the i.th element of the input vector, and k is 
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the number of classes. Finally, Max is a function to find the 

index of the maximum value in vector o and obtain class 

prediction p. This step is applied to both CNN model outputs, 

and two classification results are obtained. 

Step 5: Combine prediction results to decide CSA existence 

as given in Eq. (10). 

 

𝑐𝑠𝑎(𝑝1, 𝑝2) =  {
1, 𝑝1 = 𝑝2 = 1

0, 𝑝2 = 0
  (10) 

 

where, csa is the function for deciding CSA existence. p1 and 

p2 are predictions of IMPD and OCDet. These prediction 

values get the value 1 if the content contains immature or 

obscenity; otherwise, they take the value 0. When two 

predictions are 1, the image contains both immature and 

obscenity which means it probably contains CSA. 

 

 

4. RESULTS 

 

The proposed CNN-based IMPD and OCDet models were 

programmed using Python programming language on a 

personal computer with 32 GB memory, an Intel Xeon E5 

processor, and an 8 GB graphic processor unit with Cuda. We 

used classification evaluation metrics in our experiments to 

observe our proposed models. The mathematical formulas of 

the performance metrics used in experiments are given below 

[45] in Eqs. (11)-(14). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (12) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (13) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (14) 

 

where, TP, TN, FP, and FN are the counts of true positives, 

true negatives, false positives, and false negatives, 

respectively. These values are obtained from the confusion 

matrices of the proposed models. The resulting confusion 

matrices of the OCDet and IMPD models are given in Figure 

10. 

As can be seen from Figure 10, the classification accuracies 

of the proposed models are 99.35% and 99.03% for obscenity 

and immature detection. The training curves of the two models 

are given in Figure 11. 

According to Figure 11, models are not over-fitted and 

achieve high accuracies on both training and test data. To 

understand the performance of the models in more detail, we 

extracted TP, TN, FP, and FN values from confusion matrices. 

With these values, the performances of the proposed models 

are calculated using Eqs (11)-(14) according to various 

evaluation metrics. Obtained results are given in Table 1. 

 

 
 

Figure 10. a) Confusion matrix of the OCDet model b) Confusion matrix of the IMPD model 

 

 
(a) 
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(b) 

 

Figure 11. (a) Training curves of the OCDet model (b) Training curves of the IMPD model 

 

Table 1. Evaluation results of the proposed models 

 
 OCDet Model IMPD Model 

TP TN FP FN TP TN FP FN 

941 1336 7 8 843 3852 11 35 

Precision 0.9926 0.9871 

Recall 0.9916 0.9601 

Accuracy 0.9935 0.9903 

F1-Score 0.9921 0.9734 

 

As shown in Table 1, both models achieve over 99% success 

on the NPDI and UTKFace datasets. The evaluation results 

guarantee the accuracy of the proposed CSA detection model 

by combining the obtained results from the two models. 

Unfortunately, it has not been possible to test it on real data 

since it is illegal to access such data. 

 

 

5. DISCUSSION 

 

In this study, we proposed two CNN models for detecting 

obscenity and immaturity in image and video data to detect 

CSA finally. We proposed two models for the specific tasks; 

IMPD for immature person detection and OCDet for obscene 

content detection. The OCDet model achieved an accuracy of 

99.8% which is state-of-the-art accuracy in classifying the 

NPDI dataset. And it has fewer trainable parameters than other 

successful studies in the literature. Similarly, a lightweight 

CNN model with residual blocks is proposed to classify 

immature faces in images. This model also demonstrated 

exceptional performance on the UTKFace dataset, achieving 

an impressive classification accuracy of 99.0%. 

For the OCDet model, we first used a pre-trained model on 

the ImageNet dataset as a feature extractor, and then we fine-

tuned this model to obtain the best results. For the selection of 

this model, we compared different popular CNN models' 

feature extraction performances by adding three fully 

connected layers after the CNN models listed in Table 2 and 

only trained newly added layers with features obtained from 

the CNN models. An overview of the model created with pre-

trained models is given in Figure 12. 

In Figure 12, m, n, and k are dimensions of the output 

activation maps of the CNN models -could have different 

values for different models- and p is the probability of the 

predicted class. After the global average pooling layer, the 

activation map is resized by calculating the average along the 

first two axes. n denotes neurons in fully connected layers. We 

added two fully connected layers with 512 units after the pre-

trained model. In the training phase, we deactivated half of the 

connections with the dropout layer to prevent the model from 

overfitting. Obtained results of various CNN models are given 

in Table 2. 

 

 
 

Figure 12. The architecture used to compare pre-trained CNNs 
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Table 2. Obtained results on the NPDI dataset without fine-

tuning using pre-trained CNNs 

Model 
Train 

Accuracy 

Test 

Accuracy 

Average 

Inference 

Time (sn) 

1 Xception 0.9844 0.9664 0.44 

2 VGG19 0.9611 0.9642 0.18 

3 VGG16 0.9474 0.9581 0.09 

4 InceptionV3 0.9785 0.9585 0.68 

5 InceptionResNetV2 0.9776 0.9685 1.07 

6 EfficientNetB4 0.9887 0.9673 1.04 

7 EfficientNetB0 0.9914 0.9764 0.57 

8 ResNet50 0.9790 0.9734 0.44 

9 ResNet101 0.9881 0.9773 0.55 

10 MobileNetV3Large 0.9891 0.9786 0.46 

11 DenseNet121 0.9805 0.9666 0.85 

12 EfficientNetB7 0.9948 0.9742 0.41 

13 MobileNetV2 0.9124 0.9219 1.33 

Table 2 shows the best performance on test data belonging 

to the MobileNetV3-large model. Besides, the second-best 

performance on training data also belongs to it. Some models' 

test results are higher than training because dropout layers are 

used in the created model. During the training phase, the 

dropout layer prevents some activations from being active and 

ensures that the whole model is trained in a balanced way, but 

all model activations are used during testing. This sometimes 

causes test results to be higher. According to the average 

inference times (calculated using 10 random images), the best 

models are VGG models, which can process 10 images in a 

second. On the other hand, the MobileNetV3-large model is 

coming after the VGG models with Xception, Resnet50, and 

EfficinetNetB7 models and they process one image in 0.4 

seconds. 

The MobileNetV3-large model was chosen as the base 

model because the EfficientNet models are closer to being 

over-fitted and the MobileNetV3large model got the best 

results in the test dataset. We did not change the structure 

given in Figure 10 because it has already obtained good results. 

Instead, we aimed to achieve higher performances by fine-

tuning the model with newly added fully connected layers. In 

this process, we first froze pre-trained weights of the 

MobileNetV3-large model and only changed the weights of 

newly added fully connected layers by using transfer learning. 

After a short training, we unfreeze all layers of the 

MobileNetV3-large model and trained all layers using the 

parameters given in Table 3. 

Table 3. Training details of the proposed model 

Transfer Learning Fine-Tuning 

Epochs 3 30 

Optimizer Adam [46] Adam 

Learning Rate 0.001 0.0001 

Trainable Parameters 164,226 4,341,858 

Total Parameters 164,226 4,390,658 

We achieved very good results with these parameters only 

using static images on the NPDI dataset. After transfer 

learning, we decreased the learning rate parameter to prevent 

pre-trained model weights from changing too much, as stated 

by Li et al. [47]. Because shallower layers of the pre-trained 

model are already very good at detecting low-level features 

like edges, changing these weights too much would destroy the 

pre-learned feature extraction methods in the model.  

The proposed OCDet model achieved an average accuracy 

of 99.8% and 99.4%, respectively on training and test data of 

the NPDI dataset. While preparing the data for training, we 

first selected the same number of random data as the training 

set as the test data among the hard and easy test data. Then we 

divided the data into two groups 80% training data and 20% 

validation data. We trained the model for 30 epochs as the 

model started to over-fit after this point. In addition, the 

trained model was evaluated using an internet dataset, which 

was previously introduced in Section 2. The internet dataset 

comprises 6000 images, with an equal distribution of 3000 

obscene and 3000 normal images. Notably, all images in this 

dataset feature humans in various poses, while the obscene-

labeled images predominantly depict individuals in indoor 

settings, simulating real-life scenarios. When we evaluated the 

trained model on the NPDI dataset with our newly created 

dataset, the model achieved an accuracy of 98% on this 

evaluation task. This result shows the generalizing power of 

the model. We also trained the model with the second dataset 

by dividing the dataset into 80% training and 20% test data. 

This time the model achieved 100% and 99.2% accuracy on 

training and test data, respectively. The results show that the 

proposed model is suitable for robustly detecting obscenity in 

images and videos. 

Table 4. Comparison of the proposed method with the 

literature 

Work Dataset Data Method 
Overall 

Accuracy 

[13] NPDI Keyframes Transfer Learning 94.0% 

[11] NPDI Keyframes BoVW 86.5% 

[15] NPDI Videos 
Transfer Learning+ 

Motion Features 
97.9% 

[16] NPDI
Sequential 

frames 

Transfer 

Learning+LSTM 
95.6% 

[21] NPDI KeyFrames EfficientDet 75.0% 

[19] NPDI Videos 
Generative 

Adversarial Network 
98.0% 

[18] NPDI
Sequential 

frames 

Transfer 

Learning+CNN 
98.3% 

[14] 
NPDI+extra 

data 
Keyframes CNN 99% 

Ours NPDI Keyframes 
Transfer Learning + 

CNN 
99.35% 

Upon comparison between the proposed model in this study 

and existing models in the literature, it is evident that our 

model achieves superior results. In a previous study [13], the 

authors employed AlexNet and GoogleNet as feature 

extractors, focusing solely on training the last layer added on 

top of these pre-trained models. In contrast, our work involves 

training two separate models for the same task, thereby 

increasing the complexity of the approach. In a previous study 

[11], a BovW method is used but this model is overperformed 

by current deep learning-based models. In a previous study 

[15], authors used a separate feature extraction method to 

enhance the performance of the model but this method requires 

more data and relies on manual feature extraction methods. 

Similarly in the studies [16, 18, 19], authors used sequential 

images as input to their model. these models also require 

sequential frames of videos while our model can be trained 

with only single frames. Also, our model outperforms these 

models thanks to its effective feature extraction ability. In a 

recent study [14], the authors incorporated additional data 

during the training of their model, thereby introducing 
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challenges in comparing their results with the existing 

literature. In contrast, our model effectively addresses these 

issues by utilizing single frames for training and employing a 

single model dedicated to a specific task, facilitating fair and 

meaningful comparisons with the literature. Furthermore, our 

model exhibits a reduced number of trainable parameters in 

comparison to these models, resulting in lower time 

complexity. 

We compared the results obtained with the benchmark 

dataset with the literature and summarized the comparison in 

Table 4. As can be seen, our model over-performs the other 

studies on the NPDI dataset. Besides, our model works with 

frames of the videos, so the proposed model is faster than the 

models that require a sequence of images. In addition, we 

verified the success of the model in the collected private 

dataset, ensuring that the model performance is high on 

different data. 

We proposed the IMPD model to classify face images into 

two classes. For detecting faces, we used the pre-trained model 

proposed by Karakuş et al. [48] as the model has a high 

accuracy rate on a big dataset and can detect faces in different 

light, angle, and alignment conditions. The parameters of the 

proposed classification model are given in Table 5. 

 

Table 5. Parameters of the IMPD model 

 

Layer Name Description Output Shape 
Trainable 

Parameters 

Input 

Model input layer to 

get images with 

desired input size 

200×200×3 0 

Conv2D_1 
Num. of filters=32, 

kernel size=7, stride=1 
200×200×32 4736 

Conv2D_2 
Num. of filters=64, 

kernel size=3, stride=1 
200×200×64 18496 

Conv2D_3 
Num. of filters=32, 

kernel size=3, stride=1 
200×200×32 18464 

Add 

Layer for adding 

outputs of Conv2D_1 

and Conv2D_3 

200×200×32 0 

Conv2D_4 
Num. of filters=128, 

kernel size=3, stride=3 
66×66×128 36992 

Conv2D_5 
Num. of filters=256, 

kernel size=3, stride=2 
32×32×256 295168 

Flatten Flattening layer 1×1×262144 0 

Dense_1 
Num. of units=512, 

activation=relu 
512 134218240 

Dense_2 
Num. of units=2, 

activation=softmax 
2 1026 

 

 
 

Figure 13. The architecture of the IMPD model 

 

We trained the proposed IMPD model from scratch in an 

end-to-end fashion. In the model, we first increased the input 

images' number of channels in the first two layers while 

keeping activations map sizes unchanged using the same 

padding. Then we decreased the number of channels and 

added first and third convolution filter activations to each other 

to combine low-level and high-level features. Thus, the model 

becomes more resistant to overfitting, and representations are 

learned better [49]. We then decreased the dimensions of the 

activation maps by using convolution layers with valid 

padding while increasing the number of channels. The results 

show that the model is achieving good results on the UTKFace 

dataset. The proposed model achieved a maximum accuracy 

of 99.16% on the UTKFace dataset. In our experiments, we 

divided the dataset into training and validation sets whose 

ratios are 80% and 20%. The architecture of the proposed 

method is given in Figure 13. 

Training results show that there is no sign of overfitting and 

the model puts a robust performance on the UTKFace dataset. 

The proposed model achieved an accuracy of 99.7% and 

99.0% on training and test data, respectively. Besides, this 

model's inference time is 5 times lower than the OCDet model. 

The model can process an image in 0.1 seconds. Moreover, the 

model can be run simultaneously with the other model without 

delay. 

The results show that both proposed models have achieved 

successful results on the relevant data.  Considering the 

success of the models, it can be deduced that the proposed 

system works with a 98% success rate in the worst case in the 

decision combination stage. 

In future studies, this model can be developed to have only 

one common CNN model for feature extraction from both face 

images and obscene or normal images. This way, the 

disadvantages such as running two models simultaneously, 

arising from the use of two different models can be avoided.  

Besides the OCDet model can be used for video stream content 

filtering or content moderation applications thanks to its high 

speed of image processing. Similarly, the IMPD model can be 

used in content filtering systems, online platforms, educational 

platforms, and legal proceedings to identify and restrict access 

to age-inappropriate or explicit content. Its application 

promotes safer online environments, ensures age-appropriate 

content delivery, and aids in evidence analysis for legal cases. 

 

 

6. CONCLUSION 

 

This study aimed to accelerate forensic evidence 

investigations through the proposal of obscenity and CSA 

detection model. The model consisted of two sub-models, 
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namely the OCDet model and the IMPD model, both created 

using CNN architectures for obscenity detection and immature 

person detection tasks. The proposed models achieved an 

accuracy of 99.35% and 99.03% on related tasks, respectively. 

The OCDet model achieved state-of-the-art results on the 

NPDI dataset, while the IMPD model exhibited high 

performance in finding immature faces. Moreover, the 

proposed methods exhibited exceptional performance by 

achieving superior results with a reduced number of trainable 

parameters, effectively halving the parameter count compared 

to a model that demonstrated performance comparable to our 

own. This achievement highlights the efficiency and 

effectiveness of the proposed methods in optimizing model 

complexity while maintaining high-performance levels. The 

proposed models demonstrate significant performance 

improvements over existing studies, surpassing them by a 

notable margin of 1% to 15% in terms of the accuracy 

evaluation metric. These results highlight the superior efficacy 

and effectiveness of the proposed models compared to their 

counterparts in the literature. This remarkable outcome attests 

to the effectiveness of the proposed models in surpassing the 

performance of previously proposed studies and models. The 

proposed models demonstrated the potential to automate and 

improve the accuracy of evidence examination processes by 

automatically filtering. 

The significance of the proposed models lies in their 

potential impact on forensic evidence investigations, where 

rapid and accurate evidence acquisition is crucial. By 

minimizing the reliance on human experts and reducing 

human-induced errors, the proposed models offer a valuable 

tool for law enforcement agencies combating the distribution 

of illegal content, especially in the case of CSA detection—a 

crime of global concern. Considering that commercial 

software often fails to meet the expectations of forensic 

experts, especially in terms of speed and accuracy, the 

proposed methods put forth rapid and robust solutions tailored 

to meet the specific requirements of experts in the field. By 

addressing the limitations of commercial alternatives, the 

proposed methods provide effective and reliable tools that 

align with the distinct needs of forensic experts. 

However, further research is needed to address potential 

challenges and improve the proposed models. Future 

directions may include exploring more advanced CNN 

architectures to use only one model for both obscenity and 

immature person detection tasks and incorporating additional 

data sources to even enhance the generalization power of the 

models.  

In summary, this study has contributed to the field of 

forensic evidence investigations by proposing robust models 

for obscenity and CSA detection. The potential impact of these 

models lies in their ability to automate the detection process, 

improve accuracy, and aid law enforcement agencies in 

combating illegal content distribution. With further research 

and advancements in the proposed models, limitations can be 

overcome and their practical utility can be enhanced. 
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NOMENCLATURE 

X Input image for the model 

h Height of the image file 

w Width of the image file 

m Number of faces in an image 

n Number of images in dataset 

F Cropped face image 

R Resizing function 

s1 Height of the convolution kernel 

s2 Width of the convolution kernel 

z Output of fully connected layer 

𝑎 Activation function of fully connected layer 

I Input of fully connected layer 

W Weights of fully connected layer 

B Biases of fully connected layer  

sfmx Softmax activation function 

o Probability of a class in classification

e Exponentiation constant 

p Final decision of the classification model 

k Number of classes in classification task 

Max Maximum function 

p1 Final decision of the first classification model 

p2 Final decision of the second classification model 

csa Decision fusion function 

Superscripts 

i Index of specific variables 

l Layer index of convolution layers
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