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In the realm of cigarette pack counting systems, prevalent challenges persist, notably the 

low accuracy in count, limited adaptability to intricate scenes and varying environments, 

and a lack of responsiveness to diverse pack types and shapes. This study introduces an 

advanced method for cigarette pack counting, leveraging a combination of various image 

enhancement techniques and an improved Similarity-Aware Feature Enhancement block for 

object Counting (SAFECount) approach. The methodology comprises three integral 

modules: an image enhancement module, a feature extraction module, and a counting 

module. The image enhancement module, tasked with noise reduction and deblurring, 

ensures targeted enhancement effects on cigarette box images. To contend with the rapid 

shifts in cigarette pack appearances, this research integrates specialized color and boundary 

feature extraction networks with the SAFECount method. This integration facilitates the 

fusion of multi-scale, key semantic information, thus amplifying the model's detection 

efficacy. Addressing the scalability limitations prevalent in general models, the study 

employs a few-shot counting (FSC) approach, which endows the model with essential 

generalization and flexibility, requisite for practical applications, even with a minimal 

training dataset. Empirical analyses, conducted using actual data from the Zhongyan 

Corporation's cigarette pack dataset, substantiate the superiority of the proposed method in 

real-world warehouse environments. The method demonstrates a marked improvement in 

counting performance, evidenced by a Mean Absolute Error (MAE) of 1.71 and a Root Mean 

Square Error (RMSE) of 1.95. 
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1. INTRODUCTION

The evolution of AI technology has ushered in a new era of 

applications and advancements, particularly in the domain of 

counting. Deep learning methods for counting have been 

effectively utilized across various fields. In urban areas, these 

methods have been instrumental for crowd monitoring and 

counting, as observed in busy streets, stations, and stadiums 

[1-6]. Such applications provide critical insights into crowd 

dynamics and behaviors. In agriculture, deep learning has been 

employed for crop quantity estimation, facilitating precision in 

agricultural management [7-12]. 

The realm of cigarette pack counting has not been exempt 

from the influence of these advanced methodologies. Accurate 

counting of cigarette packs is a pivotal component of industrial 

production, ensuring the efficiency of production processes. 

The autonomous nature of deep learning methods enables 

automated counting in high-activity production environments, 

thereby obviating the need for manual counting. This 

automation significantly augments both accuracy and 

efficiency. Furthermore, these methods exhibit remarkable 

adaptability in complex scenarios, such as dealing with 

stacked or obscured cigarette boxes, thereby bolstering 

production line management. 

In the broader context of image-based counting, deep neural 

networks have become a cornerstone for object counting. 

Predominantly, these methods are categorized into two types 

[13]: detection and segmentation-based counting methods, and 

density estimation-based counting methods. Detection and 

segmentation-based methods incorporate object detectors and 

segmentation modules within counting systems. These 

methods identify objects in an image and proceed to count 

them, with Mask-RCNN [14] and RetinaNet [15] being 

notable examples. While offering high accuracy and 

comprehensive information, these methods are often 

hampered by higher computational demands and sensitivity to 

variations in target objects. Conversely, density estimation-

based methods approach counting as a regression task, 

generating a heat map correlated to the image to estimate 

target object quantity, followed by count regression from the 

heatmap. LC-DenseFCN [16] and CentroidNet [17] exemplify 

this category. Characterized by simpler structures and higher 

computational efficiency, these methods demonstrate greater 

adaptability to changes in target objects compared to their 

detection and segmentation-based counterparts. However, 

applying these methods to cigarette pack counting in 

warehouse environments presents unique challenges. Firstly, 

images from cigarette warehouses often suffer from noise 

interference due to suboptimal lighting conditions or sensor 
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noise. Secondly, motion blur may occur due to vehicle 

movement during loading processes. The variable appearance 

of cigarette packs, influenced by different batches or design 

changes, further complicates the counting task. Moreover, 

conventional methods, typically trained on fixed datasets, 

struggle to adapt to evolving cigarette pack designs or 

promotional variations, leading to diminished counting 

performance when applied directly to real-world cigarette 

pack counting scenarios. 

To confront these challenges, a plethora of researchers have 

embarked on refining counting methodologies. A prevalent 

strategy, data enhancement, has been extensively employed to 

mitigate image noise and blur [18-25]. In this vein, Zhang et 

al. [26] introduced a novel approach, Noise2Noise, which 

interprets annotations as noise. This method establishes a self-

supervised pre-training task, employing image enhancement 

within the Noise2Noise framework. Additionally, Waqas 

Zamir et al. [27] developed the Restormer model, a robust 

solution for image denoising. This model integrates a Multi-

DCONV Transposed Attention (MDTA) module with a Gate 

DCONV Feed-forward Network (GDFN), thereby 

accentuating local spatial contexts and implicitly modeling 

global pixel relationships. In response to the variable 

appearances of tobacco packs, the FSC method has gained 

traction [28-32]. This innovative approach enables users to 

identify target objects using merely one or a few support 

images. Significantly, this method does not necessitate an 

extensive array of training samples for the test objects. 

Providing the support images are available, a proficiently 

trained model can adeptly conduct inference on new classes. 

Within this context, Lu et al. [29] proposed the Graph 

Matching Network (GMN) model. This model synergizes 

support features with query features, followed by the learning 

of regression heads for point-wise feature comparison. 

However, this approach's comparative effectiveness is 

relatively diminished when contrasted with using similarity 

for comparison. Yang et al. [31] introduced the CFOCNet 

(Coupled Feature-Offset Comparison Network) model, which 

initiates feature comparison with point generation, 

subsequently regressing density maps from the derived 

similarity maps. Ranjan et al. [30] developed the FamNet 

(Few-shot Adaptive Metric Network) model, which augments 

the reliability of similarity maps through multi-scale 

augmentation and test-time adaptation. However, the 

informational capacity of these similarity maps is somewhat 

limited. Consequently, regression from these maps may not 

yield optimal results, particularly in scenarios where objects 

are densely arranged. Numerous studies have endeavored to 

enhance general methods from various angles, aiming to tailor 

them more effectively to the task of cigarette pack counting in 

real-world settings. Despite these efforts, a comprehensive 

solution framework that effectively addresses all the 

aforementioned challenges in their entirety remains elusive. 

To address the challenges identified, an innovative two-step 

solution is proposed. Initially, original images undergo 

processing through an image enhancement module. 

Subsequently, an enhanced version of the SAFECount method 

[32] is employed for the counting process. The first challenge, 

involving denoising and deblurring, is tackled through the 

application of advanced image enhancement techniques. In 

dealing with the frequent variations in the appearance of 

cigarette packs, it is suggested to amalgamate specialized color 

and boundary feature extraction networks with the 

SAFECount method. This combination is key to effectively 

managing these variations, thereby improving the accuracy of 

the counting process. To overcome the scalability issues 

inherent in general counting models, the adoption of a FSC 

approach is proposed. This method facilitates rapid learning 

with a minimal number of samples, enabling the model to 

accurately predict unknown classes based on the knowledge of 

known classes. This approach significantly enhances the 

model's generalization and scalability capabilities. The 

selected representative method for this purpose is the 

improved SAFECount method. This method incorporates a 

multi-scale feature aggregation mechanism, enhancing its 

flexibility and adaptability. By updating and adjusting the 

model with a small number of support samples, it can swiftly 

adapt to changes in the content of cigarette packs and perform 

accurate counting. Empirical studies conducted using the 

Zhongyan cigarette pack dataset reveal that the proposed 

method excels in practical engineering applications. It 

demonstrates superior counting accuracy and scalability 

compared to existing methods. These experimental findings 

corroborate the efficacy and reliability of the proposed 

approach in addressing the challenges of cigarette pack 

counting tasks. 

The contributions of this research are multifaceted and 

significant: 

(1) Image Enhancement: Central to this study is the 

development of an image enhancement module, comprising 

two key components: denoising and deblurring. The denoising 

component substantially reduces image noise, thereby 

augmenting clarity and detail visibility. Concurrently, the 

deblurring component addresses image blur, a consequence of 

camera or object movement, resulting in significantly clearer 

images. These enhancements collectively bolster object 

detection capabilities and consequently, improve counting 

accuracy. 

(2) FSC: A novel FSC approach is introduced, enabling 

swift learning and generalization with a limited number of 

samples. This methodology allows for efficient adaptation to 

various tasks and domains. It offers remarkable flexibility and 

adaptability, significantly reducing manpower requirements 

and enhancing learning efficiency. 

(3) Enhanced SAFECount Method: This research extends 

the SAFECount method by integrating color semantic 

information and boundary semantic information into the 

model. This integration markedly improves the model's 

detection efficiency and accuracy, positioning it at the 

forefront of counting technologies. 

(4) End-to-End Optimization Approach: A unique aspect of 

this study is the development of an end-to-end optimization 

approach. This approach aligns the objectives of image 

enhancement and counting, facilitating a cohesive and 

synergistic improvement in detection performance. 

 

 

2. RELATED WORKS 

 

The SAFECount method [32] represents a significant 

advancement in feature enhancement for object counting. It 

primarily focuses on enhancing counting features by analyzing 

the similarity between query images and reference images. 

Historically, FSC solutions have revolved around the 

representation of sample objects, namely support images, and 

query images using expressive features. These features are 

then scrutinized for feature correlations to determine candidate 

objects. In the context of few-shot learning, 'support' and 
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'query' are pivotal concepts. During training, datasets are 

bifurcated into support sets and query sets. The support set 

comprises a limited number of labeled samples, while the 

query set contains unlabeled samples from the same class 

space as the support set. Within this framework, 'support 

images' denote samples within the support set, and 'support 

features' are the extracted features from these images. 

Similarly, 'query images' and 'query features' pertain to the 

samples and their respective features in the query set. 

FSC methods are generally divided into two categories. The 

first is feature-based, where pooled support features are 

concatenated with query features. A regression head is then 

utilized to ascertain if the combined features closely align. A 

critical drawback of this approach is the pooling step, which 

tends to overlook spatial information from the support images, 

leading to the acquisition of less reliable features. The second 

category is similarity-based, involving the use of original 

features to create similarity maps for regression analysis. 

However, the informational content conveyed by similarity 

maps is considerably lower compared to direct features, posing 

challenges in accurately discerning clear object boundaries. 

This limitation becomes particularly pronounced in scenarios 

where target objects are densely packed, as often encountered 

in practical applications like the dense arrangement of 

cigarette boxes. In such cases, the counting performance of 

these methods can be severely compromised, illustrated in 

Figure 1. 

 

 
 

Figure 1. Schematic diagram of the SAFECount module 

 

The SAFECount module, a pivotal component in the 

proposed methodology, is composed of two integral parts: the 

Similarity Comparison Module (SCM) and the Feature 

Enhancement Module (FEM). The SCM initiates the process 

by projecting the features of both support and query images 

into a unified contrastive space. This is achieved using shared 

convolutions and layer normalization techniques. Following 

this, the SCM employs the support feature as a convolutional 

kernel, executing a sliding operation over the query feature to 

compute a score map. This score map undergoes normalization 

through two distinct processes: exemplar norm and spatial 

norm. Exemplar norm is responsible for normalization along 

the support dimension, while spatial norm focuses on the 

spatial dimensions, collectively resulting in a comprehensive 

similarity map. In the subsequent stage, the Feature 

Enhancement Module takes precedence. Here, the similarity 

map serves as a set of weights for conducting weighted 

computations on the support features. To preserve spatial 

consistency, the support features are inverted and then utilized 

as a convolutional kernel in conjunction with the similarity 

map. This convolution produces a feature that is enhanced by 

similarity weighting. The next step involves merging this 

similarity-weighted feature with the query feature, 

culminating in an enriched feature representation. The 

culmination of this process is the employment of a regression 

head. This head is tasked with predicting the density map 

derived from the enhanced feature representation. The 

intricate design of the SAFECount module, encompassing the 

SCM and FEM, exemplifies the sophisticated approach taken 

to enhance feature representation and accuracy in object 

counting tasks, particularly in challenging scenarios such as 

counting densely packed objects. This module represents a 

significant stride forward in addressing the complexities 

associated with feature enhancement in counting 

methodologies. 

SAFECount, with its innovative approach, offers several 

key advantages: 

(1) Integration of feature extraction and similarity analysis: 

SAFECount uniquely combines the strengths of feature 

extraction and similarity analysis through the Similarity-

Aware Feature Enhancement (SAFE) block. This integration 

ensures that the enhanced features not only encapsulate rich 

semantic information but also accurately identify areas in the 

query image analogous to the support image. This dual 

capability significantly boosts the accuracy of counting. 

(2) Few-shot learning approach: The model adopts a few-

shot learning strategy, enabling the characterization of objects 

of interest with just a few support images, without the 

necessity of prior knowledge about the object types. This 

feature imparts remarkable flexibility and scalability to 

SAFECount, making it adept at adapting to diverse and rapidly 

evolving counting scenarios. 

(3) Multi-Block structure: SAFECount incorporates a 

Multi-Block structure, allowing for the reintegration of 

enhanced features as query features back into the module. 

Adjusting the number of these blocks can lead to further 

enhancements in model accuracy. 

(4) End-to-end framework: The framework of SAFECount 

is designed to be end-to-end, efficiently extracting features 

directly from raw images and conducting counting predictions. 

This eliminates the requirement for any additional prior 

knowledge or manual preprocessing, streamlining the 

counting process and improving efficiency. 

While SAFECount has exhibited commendable 

performance across various domains such as crowd 

monitoring, product counting, and crop estimation, its direct 

application to cigarette pack counting presents certain 

challenges. Primarily, images pertinent to cigarette pack 

counting frequently exhibit issues such as noise, blurriness, 

and complex backgrounds. These factors can significantly 

impede the accuracy of counting. Additionally, the extensive 

variety of cigarette pack types, each with its unique 

appearance, coupled with the rapid changes occurring in 

cigarette warehouses, poses a challenge to the model's ability 

to accurately recognize and count packs. Consequently, it 

becomes imperative to tailor and refine the SAFECount 

model, ensuring it is suitably adapted to meet the specific 

demands and nuances of cigarette pack counting. 

 

 

3. METHOD 
 

3.1 Overall framework 
 

The methodology proposed in this study encompasses a 

comprehensive framework for estimating cigarette pack 
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quantities, incorporating three primary modules: a data 

enhancement module, a feature extraction network, and a 

counting module, detailed in Figure 2. 

Initially, the data enhancement module is deployed to 

address potential noise interference and motion blur 

encountered during the capture of cigarette pack images. This 

is achieved through the integration of two sub-modules 

dedicated to the sequential performance of denoising and 

deblurring tasks on the images. 

Subsequently, the feature extraction network focuses on 

extracting color semantic information and boundary semantic 

information from the target objects. This network comprises 

two sub-modules responsible for generating feature maps 

containing color and boundary features. These maps are then 

fused and subsequently utilized as input for the counting 

module. 

 

 
 

Figure 2. Schematic diagram of cigarette pack counting based on various image enhancement techniques and improved 

SAFECount 

 

 
 

Figure 3. Schematic diagram of the denoising module 

 

The counting module, employing the SAFECount method, 

is pivotal in enhancing regression features by using similarity 

as a guiding principle. The module integrates the SCM and the 

FEM. These modules enable the refined query features to 

concentrate more effectively on areas similar to exemplar 

objects, as defined by support images, thus facilitating 

enhanced accuracy in counting. 

Further sections of this paper will delve into detailed 

descriptions of each component within the proposed model, 

including the image enhancement module, the feature 

extraction network, and the counting module. 
 

3.2 Data enhancement 
 

Within the data enhancement module, two distinct sub-

modules are operational. The initial sub-module is dedicated 

to denoising, and this paper introduces a single-stage blind 

denoising network algorithm, underpinned by a feature 

attention mechanism, designed to refine noisy cigarette pack 

images. The architecture of this network comprises a feature 

extraction module, a feature learning module based on a 

residual structure, and an image reconstruction module, with a 

total of eight convolutional layers, as shown in Figure 3. 

The process begins with feature extraction, executed 

through three dilated convolutional layers. This approach 

expands the receptive field, thereby capturing a more 

extensive range of information. Following this, feature 

learning is facilitated using residual blocks comprising three 

convolutional layers, adept at detecting nuanced differences 

within the image. This step significantly enhances the feature 

representation capability of the network. 

 

 
 

Figure 4. Schematic diagram of the deblurring module 
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The final stage involves image reconstruction, employing a 

residual network augmented with a feature attention 

mechanism, which is generated through convolutional 

processes. This mechanism is instrumental in automatically 

identifying and focusing on pivotal image features, thereby 

diminishing the impact of noise and augmenting the quality of 

the denoising results. Crucially, this is achieved while 

maintaining the integrity of image details. 

The meticulously structured network design is thus 

proficient in accomplishing blind denoising and enhancement 

of cigarette pack images. It is characterized by a reduced 

parameter count and efficient computational capacity, 

rendering it suitable for real-time denoising applications. This 

innovative approach represents a significant advancement in 

the field of image processing, particularly in contexts 

demanding high-quality denoising under stringent 

computational constraints, as shown in Figure 4. 

The second one is the deblurring module. This module is 

inspired by a successful network structure frequently utilized 

in image deblurring, known as the image pyramid structure. 

Utilizing this structure, the feature extraction layers 

progressively restore a clear image, thereby achieving blind 

image deblurring. The architecture of this network adheres to 

a top-down encoder-decoder model, wherein the 

reconstruction of the clear image is progressively realized by 

integrating outputs from different scales of network layers. 

Comprising the network are two sub-networks, each mirroring 

the same structural composition: seven convolutional layers, 

two fully connected layers, and one Long Short-Term Memory 

(LSTM) layer. The process initiates with feature extraction 

executed through convolutional layers, followed by image 

restoration via deconvolutional layers. A "coarse-to-fine" 

strategy is central to this process. This approach involves a 

progressive reduction in the size of the source image, with the 

clear image being restored based on inputs at varying 

resolutions: 
 

𝐼𝑖 , ℎ𝑖 = Net𝑖(𝐵𝑖 , 𝐼𝑖+1 ↑, ℎ𝑖+1 ↑) (1) 
 

where, i denotes the resolution index, i=1 corresponds to the 

original image resolution. Biand Ci represent the blurry image 

and the restored clear image at the i-th resolution, respectively. 

Neti signifies the i-th layer sub-network, while hi indicates 

hidden features. The upsampling of parameters to match the 

network layers is denoted by the operator. The transformation 

of the input image into feature maps involves a reduction in 

dimensions but an increase in the number of channels, 

facilitated by a CNN network. To capture hidden features from 

low-resolution inputs, an LSTM network is integrated, thereby 

enhancing the expressive capacity of the feature maps. 

Additionally, an attention mechanism is implemented, 

dynamically adjusting the weights of the feature maps. This 

adjustment is responsive to variations in image content, further 

improving the deblurring effects. This sophisticated approach, 

combining the strengths of the image pyramid structure, 

LSTM networks, and attention mechanisms, significantly 

advances the capability of image deblurring, particularly in 

challenging scenarios such as those presented by cigarette 

pack images. 

 

3.3 Feature extractor 

 

The feature extraction network consists of two specialized 

subnetworks: one for color feature extraction and another for 

edge feature extraction. Support images and query images are 

processed through these subnetworks to extract pertinent 

features. The color feature extraction network isolates features 

rich in color information from the support images, while the 

edge feature extraction network focuses on extracting 

boundary-related features. These extracted features are then 

fused with the query features using an additive fusion 

technique. This process entails the pixel-wise addition of 

corresponding positions in the feature maps of both the support 

and query features. The resultant combined features, 

encompassing both color and boundary information, are 

subsequently utilized as inputs for the counting module, 

illustrated in Figure 5. 

 

 
 

Figure 5. Schematic diagram of feature extraction 

 

In the Color Feature Extraction process, feature extraction 

is executed in two distinct steps. The first step involves 

initially extracting color features through a convolutional 

network, while the second step utilizes self-attention 

mechanisms to enhance the focus on color features, thereby 

improving cigarette pack recognition and overall performance, 

detailed in Figure 6. 

During the first step, the input image is processed through 

two convolutional layers, followed by a ReLU activation 

function and a max-pooling layer, to extract low-level 

features. A deconvolutional layer is then employed to upscale 

the low-level feature map back to the original input image size. 

These low-level features undergo normalization using a 

SoftMax function, ensuring the feature values are confined 

within a specific range. The normalized low-level features are 

further processed through color mapping via a fully connected 

layer, aligning the feature values with the color space. The 

resultant mapped feature map is then element-wise multiplied 

with the original image, infusing color information into the 

image. 

In the second step, the color-weighted image from the first 

step is further refined. Initially, it is passed through two 

convolutional layers to generate a feature map rich in color 

semantic information. This is followed by the application of 

three 3x3 convolutional kernels with ReLU activation 

functions, mapping the input feature map into spatial 

representations for Query, Key, and Value features. Point-wise 
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multiplication between the Query and Key features generates 

a matrix, indicative of the similarity between queries and keys. 

This similarity matrix undergoes a Softmax operation to derive 

attention weights, where each element reflects the relative 

importance of its position. Finally, these attention weights are 

matrix-multiplied with the Value features, producing a feature 

representation attentively weighted at each position. This 

methodical approach ensures a detailed and focused 

enhancement of color features, crucial for the accurate 

recognition of cigarette packs. 

 

 
 

Figure 6. Schematic diagram of the color feature extraction 

 

 
 

Figure 7. Schematic diagram of the boundary feature extraction 

 

In the Boundary Feature Extraction process, feature 

extraction is conducted in two stages: the initial stage involves 

the preliminary extraction of boundary features using 

convolutional networks and the Sobel operator, while the 

second stage employs spatial attention mechanisms to 

intensify the focus on boundary features, thus enhancing the 

recognition capabilities for cigarette packs and overall 

technical performance, detailed in Figure 7. 

The first stage commences with the input image being 

processed through two convolutional layers, a ReLU 

activation function, and an average pooling layer to extract 

low-level features. A deconvolutional layer then restores the 

size of the low-level feature map to that of the original input 

image. In parallel, the input image is subjected to grayscale 

quantization, converting it into a grayscale image. The Sobel 

operator is subsequently applied via convolution operations in 

both horizontal and vertical directions to obtain response 

values for these directions. By calculating the gradient 

magnitude and angle for each pixel, edge intensity and 

direction are determined. The resulting edge intensity is then 

thresholded, producing a binary edge map that contains crucial 

edge information. 

In the second stage, the newly formed feature map first 

undergoes processing through a convolutional layer and a 

ReLU function for advanced feature mapping, leading to a 

more abstract representation of boundary features. Following 

this, convolutional attention mechanisms are applied, resulting 

in an attention weight map. This map is computed using a two-

dimensional convolution function, further refined with a 

ReLU function to introduce non-linear transformations, and 

finally normalized with a Softmax function to maintain 

attention weights between 0 and 1. These attention weights are 

then element-wise multiplied with the feature map, yielding a 

feature representation attentively weighted at each position. 

Matrix multiplication is the final step, fusing the attention-

weighted feature map with the original feature map, thereby 

enhancing the emphasis on boundary features in the final 

feature map. 

 

3.4 Count block 

 

In the Counting Block, the SAFECount method, specifically 

designed for object counting, is utilized. Both support and 

query features are information-rich, and the utilization of 

similarity offers a more effective means of capturing the 

support-query relationship. This module capitalizes on this 

aspect to enhance regression features, integrating the 

advantages of both support and query features. Moreover, 

color semantic information and boundary semantic 

information are amalgamated into the Support and Query 
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Features. This integration is crucial, as it enables the extraction 

of each cigarette pack's color through the color information 

and determination of their positions through boundary 

information, thereby facilitating a more precise extraction of 

target cigarette packs from the image. Ultimately, the 

enhanced features not only embody rich semantic information 

extracted from the image but also accurately identify regions 

in the query image analogous to the exemplar objects, as 

shown in Figure 8. 

 

 
 

Figure 8. Schematic diagram of the counting block 

 

To realize this, a SCM and a FEM are proposed, as depicted 

in the accompanying figure. The SCM extends beyond basic 

feature comparisons by learning feature projections and 

executing comparisons on these projected features to derive a 

score map. This process is formulated as follows: 

 

𝑹𝟎 = conv (𝑔(𝒇𝑸), kernel = 𝑔(𝒇𝑺)) (2) 

 

where, 𝑹𝟎 represents the score map, 𝒇𝑸 stands for the query 

feature, 𝒇𝑺 represents the support feature, and 𝑔() denotes the 

feature projection, achieved through a 1×1 convolutional layer 

followed by layer normalization. This design aids in selecting 

the most relevant information for object counting from the 

features. After the comparison step, the score maps associated 

with all support images (few samples) are aggregated. This 

aggregation is followed by normalization along two 

dimensions: the exemplar dimension and the spatial dimension. 

The normalization process is essential for generating a reliable 

similarity map, which is instrumental in the counting process. 

The computation of the similarity map is defined by the 

following formula: 

 

𝑹 = 𝑹𝑬𝑵 ⊗ 𝑹𝑺𝑵 (3) 

 

where, R represents the similarity map, 𝑹𝑬𝑵  denotes the 

exemplar normalization result, and 𝑹𝑺𝑵  signifies the spatial 

normalization result. The formula for the exemplar 

normalization result, 𝑹𝑬𝑵, is as follows: 

 

𝑹𝑬𝑵 = softmax 𝑑𝑖𝑚 = 0 (
𝑹𝟎

√𝐻𝑆𝑊𝑆𝐶
) (4) 

 

The formula for the spatial normalization result, 𝑹𝑺𝑵, is as 

follows: 

 

𝑹𝑺𝑵 =

exp (
𝑹𝟎

√(𝐻𝑆𝑊𝑆𝐶)
)

𝑚𝑎𝑥
dim=(2,3)

 (exp (
𝑹𝟎

√𝐻𝑆𝑊𝑆𝐶
))

 (5) 

The 𝑚𝑎𝑥
dim=()

 function in the equation represents finding the 

maximum value along the specified dimension. Furthermore, 

FEM utilizes point-to-point similarity as weighting 

coefficients to fuse support features into query features. The 

implementation steps are:  

In the first step, aggregation of 𝒇𝑺  into 𝒇𝑹
′  is achieved 

through the similarity 𝑹: 

 

𝒇𝑹
′ = conv(𝑹, kernel = flip(𝒇𝑺)) (6) 

 

In the second step, the sumdim  function is employed to 

accumulate 𝒇𝑹
′  along a specific dimension, resulting in the 

similarity-weighted feature 𝒇𝑹: 
 

𝒇𝑹 = sumdim=0(𝒇𝑹
′ ) (7) 

 

Finally, 𝒇𝑹 is efficiently fused into 𝒇𝑸 through a network, 

yielding the enhanced feature 𝒇𝑸
′ : 

 

𝒇𝑸
′ =  layer_norm (𝒇𝑸 + ℎ(𝒇𝑹)) (8) 

 

The fusion process within the SAFECount method ensures 

that the enhanced query feature intensifies its focus on areas 

resembling the exemplar objects as defined by the support 

images, thus facilitating more accurate counting. The 

integration of the SCM and FEM allows for the optimal 

utilization of similarity information to refine the accuracy of 

feature representation. Consequently, the enhanced features 

are enriched with more profound semantic information and are 

adept at prioritizing areas analogous to exemplar objects, 

guided by the support images. This leads to a notable 

improvement in counting precision. 

In this study, the number of SAFECount blocks employed 

is three. Experiments were conducted to determine the optimal 

number of basic blocks. It was observed that as the number of 

SAFECount blocks increased from one to three, there was a 

corresponding enhancement in the model's technical 

performance. However, upon increasing the number of blocks 

to four, a decline in performance was noted. This decrease in 

performance can be attributed to the model becoming 
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excessively complex with the additional blocks, leading to 

overfitting issues. The specific outcomes of these experiments 

are detailed in Table 1. 

 

Table 1. Number of SAFECount block 

 
Block Number MAE RMSE 

1 1.83 2.20 

2 1.79 2.11 

3 1.71 1.95 

4 1.78 2.08 

 

 

4. LOSS FUNCTION 

 

The Loss Function of the entire cigarette pack counting 

system consists of three parts: 𝐿𝐷𝑒𝑛𝑜𝑖𝑠𝑒  stands for the 

denoising module, 𝐿𝐷𝑒𝑏𝑙𝑢𝑟  stands for the deblurring module, 

and 𝐿𝐶𝑜𝑢𝑛𝑡 stands for the counting module. The overall Loss 

is formulated as follows: 

 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝐷𝑒𝑛𝑜𝑖𝑠𝑒 + 𝐿𝐷𝑒𝑏𝑙𝑢𝑟 + 𝐿𝐶𝑜𝑢𝑛𝑡 (9) 

 

The following are the Loss Functions for each individual 

component: 

 

4.1 Denoising module 

 

The denoising submodule employs a pre-training dataset 

where certain cigarette pack images are artificially augmented 

with three types of noise: Gaussian noise, impulse noise, and 

uniform noise. This approach creates complex noise patterns 

in cigarette pack images, each having distinct characteristics. 

Gaussian Noise: A prevalent type of random noise, is 

characterized by amplitudes that follow a Gaussian 

distribution. Its implementation is relatively straightforward, 

and the probability density function of Gaussian noise can be 

mathematically represented. This type of noise typically 

contributes a 'grainy' appearance to images, and it can be 

written as: 

 

𝑃(𝑧) =
1

√2π𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2  (10) 

 

Impulse Noise: Impulse noise, also known as salt-and-

pepper noise, is a type of interference that appears abruptly in 

data. It is akin to sudden, burst-like spikes of high-energy 

noise and often manifests as discrete white or black spots in 

images. The probability density function of impulse noise is: 

 

𝑃(𝑧) = {

𝑃𝑎, 𝑧 = 𝑎
𝑃𝑏 , 𝑧 = 𝑏

1 − 𝑃𝑎 − 𝑃𝑏 , else
 (11) 

 

Uniform Noise: Uniform noise is a type of random 

interference wherein noise values at each sampling point in the 

dataset follow a uniform distribution. This noise often emerges 

due to systematic issues or imperfections during the image 

capture or generation process. The probability density function 

of uniform noise is: 

 

𝑃(𝑧) = {

1

𝑏 − 𝑎
, 𝑎 ≤ 𝑧 ≤ 𝑏

0, else
 (12) 

In the pre-training phase, the L1 loss function is employed 

to quantify the deviation between the network's output image 

and the original noise-free image. The L1 loss function is 

advantageous for this purpose due to its ability to effectively 

measure absolute differences. The minimization loss function 

required in this process is formulated as: 

 

𝐿𝐷𝑒𝑛𝑜𝑖𝑠𝑒 =
1

𝑁
∑  

𝑁

𝑖=1

∥∥𝑦(𝑥𝑖) − 𝑦𝑖
∗∥∥

1
 (13) 

 

where: 

-𝑥𝑖 is the input noisy image. 

-𝑦(𝑥𝑖) is the output of the blind denoising network. 

-𝑦𝑖
∗ is the ground truth for 𝑥𝑖, i.e., the noise-free image. 

-N is the number of paired noisy images and their 

corresponding noise-free images within a batch during training. 

The L1 loss measures the absolute difference between the 

network's output image and the noise-free image, allowing the 

network to better capture noise characteristics and distribution. 

This improves the accuracy and robustness of the denoising 

effect. 

 

4.2 Deblurring module 

 

For the pretraining of the deblurring submodule, the dataset 

includes cigarette pack images ('smokebox images') that have 

been artificially subjected to motion blur. This blur is created 

by averaging consecutive short-exposure frames taken with a 

high-speed camera. Such a method is adept at producing 

images that closely mimic real-world scenarios, replicating the 

complex effects of camera shake and object motion often 

encountered in practical photography. This level of realism in 

the training dataset is crucial for ensuring that the deblurring 

module is well-equipped to handle real-world image 

degradation. 

In the training process of the motion deblurring network, the 

L2 norm loss is employed to measure the difference between 

the network's output image and the ground truth image, i.e.: 

 

𝐿𝐷𝑒𝑏𝑙𝑢𝑟 = ∑  

𝑛

𝑖=1

1

𝑁𝑖
∥∥𝑦𝑖 − 𝑦∗

𝑖∥∥2

2
 (14) 

 

where: 

-𝑦𝑖  is the image after motion deblurring. 

-𝑦𝑖
∗ is the ground truth image. 

-𝑁𝑖 is the batch size. 
 

4.3 Counting block 
 

In the pre-training phase for the counting module, the 

process involves a comparative analysis of the generated 

images against their respective ground truth counterparts. The 

MSE loss is utilized to quantify the differences between these 

sets of images. This loss function is: 
 

𝐿𝐶𝑜𝑢𝑛𝑡 =
1

𝐻 × 𝑊
∥∥𝐷 − 𝐷𝐺𝑇∥∥2

2
 (15) 

 

where: 

-H is the height of the image. 

-W is the width of the image. 

-D is the real image. 

-𝐷𝐺𝑇  is the generated image. 
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(1) xinban 

 
(2) changzui 

 
(3) honglaoban 

 
(4) ruanhongchangzui 

 
(5) xiziyangguang 

 
(6) ying 

 
(7) ruanlan 

 
(8) yangguang 

 
(9) ruanchangzui 

 
(10) yexihu 

 
(11) ruanhongchangzui 

 
(12) xiuxianxizhi 

 
(13) louwailou 

 
(14) xiuxian 

 

Figure 9. Actual images of various types of cigarette packs in our dataset 

 

The task of counting cigarette packs demands high precision 

in accuracy. By employing the MSE loss, the model is enabled 

to precisely learn the variations and subtle differences in the 

quantities of the target objects. This approach ensures that the 
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model is finely tuned to recognize and accurately count the 

number of cigarette packs, which is critical for achieving 

reliable and accurate results in practical applications. 

 

 
5. EXPERIMENTS 

 
5.1 Dataset 

 
The dataset utilized in this research is designated as the 

"Zhongyan cigarette pack dataset". This dataset categorizes 

cigarette packs into 14 distinct classes, named 

"xinban,""changzui,""honglaoban,""ruanhongchangzui,""xizi

yangguang,""ying,""ruanlan,""yangguang,""yexihu,""ruanch

angzui,""xiuxianxizhi,""xiuxian,""xihulian," and "louwailou." 

The dataset is characterized by a variation in the number of 

cigarette packs per image, ranging from 6 to 12, with an 

average of 10 packs per image. 

For the purpose of this experiment, 150 images from each 

cigarette pack category were selected, ensuring a balanced 

representation of target objects across all classes. The dataset 

is divided into a training set, comprising 1200 images, and a 

validation set, consisting of 450 images. Additionally, there is 

a test set which also includes 450 images. Each image in the 

dataset is accompanied by 3 support images, which are used to 

describe the target object in detail. 

The dataset's categorization for training, validation, and 

testing is distinct. The training set encompasses 8 classes, 

whereas the validation and test sets each contain 3 unique 

classes that are disjoint from each other, as shown in Figure 9. 

In the Zhongyan cigarette pack dataset as originally 

compiled, the dataset splits and the number of support images 

are predetermined. However, typical FSC tasks often 

incorporate multiple dataset splits and a variable number of 

support images. To address this and to provide a 

comprehensive evaluation of the model proposed in this study, 

the Zhongyan cigarette pack dataset was augmented using 

cross-validation techniques. For this purpose, the various 

categories within the Zhongyan cigarette pack dataset were 

sequentially numbered from 0 to 13. Subsequently, all the 

images were divided into three distinct groups, with careful 

consideration to ensure that the categories within these groups 

did not overlap. Table 2 in the paper details the class indices, 

class labels, and the number of images assigned to each group. 

In the experimental setup, when a particular fold, designated 

as fold-i (where i=0, 1, or 2), is selected as the test set, the other 

two groups are combined to form the training set. This 

approach allows for a thorough and varied testing of the 

model's performance. Furthermore, the proposed method was 

evaluated under two different scenarios: 1-shot and 3-shot. In 

the 3-shot scenario, the original three support images from the 

dataset were utilized as per the original dataset configuration. 

Conversely, in the 1-shot scenario, to mimic a more 

challenging few-shot learning environment, a single support 

image was randomly chosen from the three available support 

images for each instance in the original dataset.  

 
Table 2. Classification of datasets used for cross-validation 

experiments 

 
Fold Class Indices Classes Images 

0 0-4 5 750 

1 5-9 5 750 

2 10-13 4 600 

5.2 Metrics 

 

MAE and RMSE are selected as the primary evaluation 

metrics for the model, and are calculated as follows: 

 

𝑀𝐴𝐸 =
1

𝑁𝑄

∑  

𝑁𝑄

𝑖=1

|𝐶𝑖 − 𝐶𝐺𝑇
𝑖 | (16) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑄

∑  

𝑁𝑄

𝑖=1

(𝐶𝑖 − 𝐶𝐺𝑇
𝑖 )

2
 (17) 

 

where: 

-𝑁𝑄 is the number of query images. 

-𝐶𝑖 is the predicted count for the i-th query image, which is 

the sum of densities of all pixels in the predicted density map. 

-𝐶𝐺𝑇
𝑖  is the ground truth count for the i-th query image, 

which is the sum of densities of all pixels in the density map. 

 

5.3 Comparative experiments 

 

To further substantiate the efficacy of the proposed model 

in the context of cigarette pack counting tasks, a comparative 

experiment was conducted. This experiment juxtaposed our 

model against other established counting models, using the 

Zhongyan cigarette pack dataset as the testing ground. The 

results of various counting methods on this dataset are 

compiled in the following table: 

 

Table 3. Test results of different methods on Zhongyan 

cigarette pack dataset 

 
Method MAE RMSE 

HLCNN 1.92 2.36 

BMNet 2.15 3.08 

CounTR 2.03 2.59 

FamNet 3.15 4.71 

OurModule 1.71 1.95 

 

Upon examining Table 3, it becomes evident that the 

proposed counting model demonstrates superior performance 

overall. Notably, when compared to the current state-of-the-

art CNN-based object counting model, HLCNN, our model 

shows a marked improvement, with a decrease of 0.21 in MAE 

and 0.41 in RMSE. Furthermore, in comparison to the leading 

Transformer-based object counting model, CounTR, our 

model exhibits enhanced performance, with a reduction of 

0.32 in MAE and 0.64 in RMSE. Additionally, when pitted 

against the FamNet model, which also falls under the FSC 

(Feature Selection and Classification) category, our model 

achieves significant improvements, with reductions of 1.44 in 

MAE and 2.76 in RMSE. These results unequivocally 

demonstrate the robustness and accuracy of our proposed 

model, particularly in the challenging and complex task of 

counting cigarette packs. The improvements in both MAE and 

RMSE across different comparative models underscore the 

model's superior capability in handling intricate counting tasks 

under varied and complex environmental conditions. 

 

5.4 Cross-validation experiments 

 

To comprehensively evaluate the performance of the 
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proposed model in cigarette pack counting, cross-validation 

experiments were carried out using the Zhongyan cigarette 

pack dataset. These experiments incorporated three distinct 

data splits and two different quantities of support images. The 

model's performance was compared with that of the FamNet 

model, and the results are detailed in the following table: 

 

Table 4. Test results of cross-validation experiments 

 

Metric Method 
1-Shot 3-Shot 

Fold-0 Fold-1 Fold-2 Mean Fold-0 Fold-1 Fold-2 Mean 

MAE 

GMN 4.79 4.66 4.60 4.68 4.32 4.17 4.98 4.49 

FamNet 3.57 3.41 3.39 3.46 3.18 2.99 2.80 2.99 

Ours 2.13 2.29 2.41 2.28 1.84 1.47 1.35 1.55 

RMSE 

GMN 9.05 8.93 8.52 8.83 8.06 7.49 7.24 7.60 

FamNet 6.68 6.23 5.89 6.27 5.45 4.71 4.57 4.91 

Ours 2.44 2.86 3.27 2.86 2.27 2.09 1.93 2.10 

 

An analysis of Table 4 reveals that, across all dataset splits 

and irrespective of the number of support images used, the 

proposed model consistently outperforms FamNet. In the 1-

shot scenario, our model demonstrates an average 

improvement of 1.18 in MAE and 3.41 in RMSE when 

compared to FamNet. In the more challenging 3-shot scenario, 

the proposed model shows an even more pronounced 

improvement, with a 1.44 increase in MAE and a 2.81 increase 

in RMSE relative to FamNet. These results suggest that the 

proposed model is more adept at learning the similarity 

relationship between support and query features, thereby 

yielding superior counting accuracy. 

When comparing the 1-shot and 3-shot scenarios as outlined 

in the table, it is apparent that the proposed model attains more 

significant performance gains compared to the FamNet 

method. In the case of our model, the 3-shot scenario shows a 

32% enhancement in MAE and a 57% improvement in RMSE 

over the 1-shot scenario. Conversely, FamNet exhibits only a 

14% increase in MAE and a 22% increase in RMSE in the 3-

shot scenario compared to the 1-shot scenario. This disparity 

highlights the effectiveness of the proposed model in 

leveraging the advantages of multiple support images. The 

ability to utilize additional support images more efficiently 

translates into notably improved performance in practical 

cigarette pack counting tasks, emphasizing the robustness and 

adaptability of the proposed counting approach. 

 

5.5 Cross-validation experiments 

 

To substantiate the enhancements brought by the image 

enhancement module, along with the color and edge feature 

extraction modules in addressing cigarette pack counting 

challenges, ablation experiments were conducted on various 

components of our proposed approach. These included the 

denoising module, brightness enhancement module, 

deblurring module, and feature extraction module. The 

objective was to demonstrate the individual and collective 

impact of each module on the final detection outcomes. The 

results of these experiments are summarized in the 

accompanying table. "Baseline" in this context refers to the 

SAFECount model devoid of these enhancement modules. 

"M1,""M2," and "M3" correspond to the inclusion of the 

denoising module, deblurring module, and our specifically 

developed feature extraction module, respectively. "M4" 

indicates the combined application of the denoising and 

deblurring modules, "M5" denotes the integration of the 

denoising module with the feature extraction module, "M6" 

represents the combination of the deblurring module and the 

feature extraction module, and "M7" encapsulates the 

complete methodology as proposed in this paper. 

Table 5. The test results of the ablation experiments 

conducted on the Zhongyan cigarette pack dataset using our 

proposed method 

 

Method Denoise Deblur 
Feature 

Extractor 
MAE RMSE 

Baseline    1.90 2.41 

M1 √   1.81 2.19 

M2  √  1.84 2.24 

M3   √ 1.86 2.30 

M4 √ √  1.79 2.13 

M5 √  √ 1.79 2.15 

M6  √ √ 1.80 2.19 

M7 √ √ √ 1.71 1.95 

 

The analysis of Table 5 reveals notable improvements in 

performance metrics when comparing various model 

configurations with the baseline SAFECount model. M1, 

which incorporates the denoising module, demonstrates 

superior performance over the baseline, indicating its efficacy 

in enhancing the model's recognition of cigarette packs in 

noisy environments. This is quantified by a 4.7% increase in 

MAE and a 9.1% increase in RMSE. 

Similarly, M2, which includes the deblurring module, 

effectively counters the effects of image blurriness, leading to 

a 3.2% rise in MAE and a 7.1% rise in RMSE compared to the 

baseline. This underscores the module's contribution to 

improving the model's technical performance in complex 

environments. 

The comparison between M3 and the baseline further 

demonstrates the effectiveness of the proposed feature 

extraction module, particularly in extracting individual 

cigarette packs in complex scenarios, resulting in a 2.1% 

improvement in MAE and a 4.6% improvement in RMSE. 

When examining M4, which combines the denoising and 

deblurring modules, there is a more significant improvement 

across all performance metrics, with increases of 5.8% in 

MAE and 11.6% in RMSE over the baseline. Likewise, M5, 

which merges the denoising module with the feature extraction 

module, shows enhanced improvements, with a 5.8% rise in 

MAE and a 10.8% rise in RMSE. M6, combining the 

deblurring module and the feature extraction module, also 

shows superior performance, with a 5.3% increase in MAE 

and a 9.1% increase in RMSE. 

Notably, the results of M4, M5, and M6 surpass those of M1, 

M2, or M3 when used individually, suggesting that the 

combined usage of these two modules can further boost the 

model's performance. 

Finally, M7, which represents the full integration of the 

three modules as proposed in this paper, shows the most 

significant improvements. The MAE and RMSE values 
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increase by 10.0% and 19.1%, respectively, compared to the 

baseline. This comprehensive integration demonstrates that 

each module contributes uniquely and synergistically, greatly 

enhancing the overall model's performance in the precise task 

of cigarette pack counting. 

 

 

6. CONCLUSION 

 

The primary objective of this study was to enhance counting 

accuracy in cigarette pack counting tasks, particularly in 

complex environments, while addressing challenges such as 

noise reduction, deblurring, variations in cigarette pack 

appearance, and improving model scalability. To achieve this, 

we introduced a novel method named "cigarette pack counting 

based on various image enhancement techniques and 

improved SAFECount". This method encompasses three 

integral components: an image enhancement module, a feature 

extraction network, and a counting module. Each component 

is meticulously designed to effectively tackle specific issues—
noise reduction, image blurriness, changes in the appearance 

of cigarette packs, and limitations in model scalability. 

We conducted comprehensive comparative experiments to 

evaluate our proposed method against the state-of-the-art 

CNN-based object counting model HLCNN and the leading 

Transformer-based object counting model CounTR. In 

addition, we performed ablation studies to assess the impact of 

the image enhancement module and the feature extraction 

network developed in this study. The outcomes of these 

experiments unequivocally demonstrated that our proposed 

model excels in counting cigarette packs within complex 

environments, outperforming existing models in accuracy and 

robustness. Notably, it achieves a MAE of 1.71 and a RMSE 

of 1.95, validating its effectiveness in real-world cigarette 

warehouse scenarios. 

Looking ahead, our research will continue to concentrate on 

overcoming the challenges associated with counting cigarette 

boxes in intricate environments. The focus will be on further 

refining the model, exploring new techniques and approaches 

to enhance its accuracy and adaptability, and ensuring its 

applicability and efficiency in practical settings. The goal 

remains to develop a model that not only addresses current 

challenges but is also versatile enough to adapt to future 

advancements and changes in this field. 
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