
Enhancing Movie Recommendations: An Ensemble-Based Deep Collaborative Filtering

Approach Utilizing AdaMVRGO Optimization

V Lakshmi Chetana1* , Hari Seetha2

1 School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, Andhra Pradesh, India
2 Center of Excellence, AI and Robotics, VIT-AP University, Amaravati 522237, Andhra Pradesh, India

Corresponding Author Email: seetha.hari@vitap.ac.in

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.400602 ABSTRACT

Received: 20 March 2023

Revised: 31 July 2023

Accepted: 1 November 2023

Available online: 30 December 2023

Collaborative filtering, while a powerful tool in movie recommendation systems, encounters

substantial challenges such as sparsity, scalability, diversity, and interpretability, which

influence recommendation fidelity. Although the sparsity issue can be tackled through

traditional model-based collaborative filtering algorithms like matrix factorization, these

models often fail to capture the full depth of user-movie interactions due to their reliance on

a simple dot product for rating prediction. Recently, research has leaned towards the

application of deep learning to harness the complex and non-linear relationships between

users and movies. However, these deep learning methods, despite their non-linear attributes,

are susceptible to high variance and overfitting, potentially compromising their capacity for

generalization. In the present study, an ensemble of neural networks has been implemented

to diminish variance and generalization error by amalgamating the predictions from multiple

models. This approach enhances overall performance and tackles the inherent limitations of

deep learning approaches. A novel ensemble-based deep collaborative filtering model (Deep

CF), in concert with a unique optimizer (AdaMVRGO), has been introduced to address

sparsity and to exploit the non-linear, complex relationships between users and movies. It

also aims to minimize the variance and generalization error of the neural network. The

proposed architecture, termed Deep CF-AdaMVRGO, employs an ensemble of multi-layer

perceptrons (MLP) to augment prediction accuracy. A pioneering optimizer, the adaptive

moment variance reduced gradient optimization (AdaMVRGO), has been developed,

drawing upon the ADAM and SVRG optimizers. This optimizer eliminates noise by

calculating the first and second moments of predicted ratings using a variance-reduced

gradient, similar to the SVRG algorithm, thereby expediting algorithm convergence. It is

employed to fine-tune the parameters of the MLP and decrease the reconstruction error.

Deep CF-AdaMVRGO has been evaluated against six existing models using the RMSE

metric on the M-1M and M-10M datasets. The simulation results demonstrated that the

proposed framework outperformed state-of-the-art deep learning-based collaborative

filtering approaches on both datasets in terms of lower RMSE values. Further, the

performance of the proposed AdaMVRGO optimizer within the ensemble framework was

compared to existing optimizers such as Adagrad, RMSProp, ADAM, and SVRG on M-

100K, M-1M, and M-10M datasets using RMSE, MAE, and MSE metrics. Experimental

results affirmed that AdaMVRGO converged more rapidly to the optimum compared to

other optimizers.

Keywords:

adaptive moment variance reduced gradient

optimization, matrix factorization, movie

recommendation, ensemble deep neural

networks and recommendation systems

1. INTRODUCTION

Over several decades, recommendation systems have

emerged as a promising research field, harnessing user

preferences to curate effective recommendations [1-3]. The

algorithms underpinning these systems are widely employed

across diverse domains ranging from movie and music

recommendations to product suggestions, crop selection, and

e-book recommendations [4]. The primary objective of a

recommendation system is to predict users' preferences for

movies, music, products, crops, books, and news based on

their historical preferences [5-8].

Broadly, recommendation systems can be categorised into

three primary types: collaborative filtering, content-based

filtering, and hybrid filtering. Among these, collaborative

filtering has been acknowledged as the most effective and

widely utilised method for generating recommendations [9].

This technique predicts user ratings by leveraging historical

ratings and ratings from similar users [10-12]. Collaborative

filtering can be further divided into two subcategories:

memory-based and model-based methods [13-15]. The former,

also termed a "neighbourhood-based approach," employs

statistical techniques to identify similar users and items, with

unknown ratings predicted based on these similarities. The

latter, on the other hand, uses machine learning techniques to

learn the rating matrix and predict unknown ratings. However,

Traitement du Signal
Vol. 40, No. 6, December, 2023, pp. 2337-2351

Journal homepage: http://iieta.org/journals/ts

2337

mailto:seetha.hari@vitap.ac.in
https://orcid.org/0000-0001-6226-187X
https://orcid.org/0000-0001-9822-0009
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400602&domain=pdf

collaborative filtering techniques face significant challenges,

including data sparsity, scalability, cold start, and shilling

attacks [16], all of which can negatively impact the accuracy

and performance of recommendations.

Data sparsity, referring to the paucity of data in the rating

matrix due to unknown ratings, is a particular challenge.

Matrix factorization, an efficient model-based collaborative

filtering strategy, has been used to tackle this problem [17]. It

decomposes the rating matrix into a pair of low-dimensional

rectangular matrices and predicts unknown ratings using a

simple dot product [11, 15, 18]. However, this linear dot

product may not fully encapsulate the complex interactions

between users and movies. Hence, current research efforts are

directed towards the application of deep learning algorithms to

address the limitations of traditional recommendation systems

[19]. Deep learning-based latent factor models are adept at

capturing the hidden, non-linear, and crucial interactions

between users and movies, thereby enhancing prediction

accuracy [17].

Ensemble learning is a powerful strategy renowned for

enhancing the accuracy, resilience, and diversity of learning

algorithms. Recently, recommendation systems that leverage

ensemble learning have gained considerable attention [20].

Deep ensemble models amalgamate the benefits of both deep

and ensemble learning, thereby improving the overall

performance of recommendation systems [20, 21]. Ensemble-

based deep collaborative filtering holds several advantages

over deep collaborative filtering, such as: 1) superior

performance over individual models, particularly in the

presence of noisy data; 2) the ability to generate more diverse

recommendations compared to individual models; and 3)

robustness against overfitting by virtue of reduced model

variance.

In this paper, we propose a deep collaborative filtering

framework, termed Deep CF-AdaMVRGO, for movie

recommendation systems to effectively handle sparsity issues

[22]. This framework is underpinned by an optimizer known

as the Adaptive Moment Variance Reduced Gradient

Optimizer, as proposed in the study [11]. The deep

collaborative filtering framework employs an ensemble of

multilayer perceptrons to augment prediction performance.

Each sub-model is fine-tuned using the proposed

AdaMVRGO optimizer to minimize the reconstruction error.

The final predicted rating is obtained by averaging the

predicted values derived from the sub-models within the

ensemble [11].

Typically, optimization algorithms like SGD, Adagrad,

RMSPROP, ADAM, and SVRG are harnessed for parameter

tuning. While ADAM is often considered the preferred

optimization algorithm in deep learning applications, it is

known to suffer from slow convergence and generalization

issues [23]. Convergence problems persist with ADAM due to

high variance. The proposed AdaMVRGO algorithm is

conceived by combining the strengths of the ADAM and

SVRG optimizers [11]. One key advantage of the proposed

algorithm is that it manages to reduce variance during the

gradient calculation itself. The first and second moments are

computed based on these variance-reduced gradients. The

proposed framework, when trained with AdaMVRGO,

demonstrated superior performance compared to Adagrad,

RMSPROP, ADAM, and SVRG.

In the experimental section, the proposed model was

appraised using metrics such as mean square error (MSE),

mean absolute error (MAE), and root mean square error

(RMSE) on the M-100K, M-1M, and M-10M datasets [11].

Additionally, the proposed model was benchmarked against

state-of-the-art deep learning-based collaborative filtering

techniques [24-29] using the M-1M and M-10M datasets [30].

The remainder of this paper is organized as follows: Section

2 presents a literature review on "movie recommendation

systems". Section 3 discusses the prerequisite groundwork for

the proposed framework. The proposed framework and its

pseudocode are presented in Section 4. Section 5 provides a

comprehensive discussion of the findings and interpretation of

the results. Finally, Section 6 concludes the paper and outlines

potential future enhancements.

2. LITERATURE STUDY

Huang et al. [31] introduced a technique known as Neural

Embedding Collaborative Filtering (NECF) matrix

factorization. This method utilizes a probabilistic autoencoder

to generate neural embedding vectors from user-item input.

These vectors are subsequently used to represent the user's

hidden features via a regression equation employing single-

point negative sampling [24, 31]. The method was tested on

the M-1M and Pinterest datasets, and the results revealed that

this strategy outperformed its baseline counterparts. However,

it still grapples with the issue of data sparsity.

Sun et al. [24] developed an innovative framework that

amalgamates plot texts and movie ratings to enhance

prediction accuracy. They designed and tested a deep plot-

aware generalized matrix factorization on the Movielens

datasets [24, 31]. Even though the integration of additional

knowledge improved the model, it led to increased

computational complexity.

Feng et al. [32] proposed a unique similarity approach that

considers both linear and non-linear correlations. To bolster

prediction accuracy and resilience, this method combined

multifactor similarity with global rating information. However,

the approach was found lacking in terms of scalability.

Taking into account the historical data of users and items,

Fu et al. [25] devised a novel deep learning technique for

movie recommendations. Initially, user and item vectors were

trained to incorporate semantic information, reflecting the

relationships between items and users [11]. A multi-view feed-

forward neural network was then employed to predict ratings

from these embedded vectors. The proposed model was

evaluated on the MovieLens 1M and MovieLens 10M datasets

[25]. Despite its promising performance, the model was

computationally intensive and encountered issues with

generalization.

Xue et al. [33] proposed an item-based collaborative

filtering model using deep learning, dubbed Deep-ICF, to

decipher the nonlinear and intricate relationships between

items. Deep-ICF employs a simple average to calculate the

predicted rating. An extension to this model, termed Deep-

ICF+a, employs adaptive pooling with attention to discern

higher-order interactions between items. While promising,

these models are computationally demanding and are more

susceptible to overfitting.

It is noteworthy that previous works often necessitate

extended computational time to converge and frequently

encounter generalization issues. More recent research has

concentrated on developing sophisticated models that

incorporate deep learning techniques. These models utilize

neural networks to capture complex user-item relationships

2338

and accommodate a better representation of intricate

interactions. Moreover, optimization algorithms such as

stochastic gradient descent have been deployed to diminish

computational time and promote convergence. These

advancements have significantly ameliorated the accuracy and

scalability of recommendation systems, thereby addressing the

limitations of prior works.

The key contributions of this paper are as follows:

1. We have established a deep collaborative filtering

framework to capture the hidden, nonlinear, and

pivotal relationships between users and movies.

2. The framework employs an ensemble of multilayer

perceptrons to train the rating matrix and predict

unknown ratings. This ensemble improves

generalization by training each MLP within the

ensemble with a unique set of latent factors.

3. Each sub-model within the ensemble is trained using

a novel optimizer known as AdaMVRGO, with the

aim to reduce the reconstruction error.

4. Experiments were conducted on the M-100K, M-1M,

and M-10M datasets. The results demonstrate that the

proposed framework outshines existing methods.

3. PRELIMINARIES

3.1 Data representation

Let ′𝑚′, ′𝑛′ represent the number of users and movies in a

movie recommendation system, respectively [34, 35], so 𝑚x𝑛

represents the rating matrix's size, which is defined as R =

{
𝑟𝑖𝑗

𝑖𝜖𝑚,𝑗𝜖𝑛𝑎𝑛𝑑 1≤𝑖≤𝑚,1≤𝑗≤𝑛
 }, ratings given by the user for a movie

[6]. For our work, we used explicit ratings, i.e., ratings given

explicitly by the user. An explicit rating is quantifiable

feedback given by the user for a specific movie. It determines

the extent to which a user prefers the movie. Most of the time,

users may not be interested in giving their feedback explicitly,

resulting in a sparse rating matrix. This data sparsity hinders

the recommendation system's precision and performance [35].

3.2 Matrix factorization

It is a latent factor model to address sparsity issue [36, 37].

It predicts the unknown ratings by splitting the rating matrix

'R' into two latent matrices called user matrix 'P' and movie

matrix 'Q' of order ‘𝑚 x 𝑘’ and ‘𝑛 x 𝑘’, respectively [38]. The

user matrix ‘P’ depicts the associations across the users and ′𝑘′
latent features. Similarly, the movie matrix ‘Q’ depicts the

associations between the movies and the ′𝑘′ latent features.

Eqs. (1) and (2) indicate the rating matrix 'R' as well as the

latent matrices 'P' and 'Q' [39]. The predicted rating matrix is

generated using Eq. (3).

𝑅: 𝑈𝑚 → 𝑀𝑛 (1)

𝑃: 𝑈𝑚 → 𝐿𝑘 and Q: 𝑀𝑛 → 𝐿𝑘 (2)

�̂� = 𝑃 𝑋 𝑄𝑇 ≅ 𝑅 (3)

The dot product of user and movie vectors, as shown in Eq.

(4) predicts the unknown rating.

�̂�𝑖𝑗 = 𝑝𝑖 ∗ 𝑞𝑗
𝑇 (4)

where, �̂�𝑖𝑗is the predicted rating of user 'i' in the user vector 𝑝𝑖

and movie 'j' in the movie vector 𝑞𝑗 [24]. Eq. (5) shows the

deviation between the actual and expected ratings [40].

min
𝑝𝑖,𝑞𝑗

∑ (𝑟𝑖𝑗 − �̂�𝑖𝑗)𝑖,𝑗𝜖𝑈,𝑉 (5)

To avoid overfitting, the model is redefined in Eq. (6).

𝑚𝑖𝑛
𝑝𝑖,𝑞𝑗

∑ (𝑟𝑖𝑗 − �̂�𝑖𝑗)𝑖,𝑗𝜖𝑈,𝑉 + 𝛾 (‖𝑝𝑖‖
2 + ‖𝑞𝑗‖

2
) (6)

where, 𝛾 is a regularisation parameter, ‖𝑝𝑖‖2 and ‖𝑞𝑗‖2 are

the l2-norms of the user vector 𝑝𝑖 and the movie vector 𝑞𝑗 ,

respectively [41]. However, the problem with traditional

matrix factorization is that the dot product is linear, and it

cannot capture user-movie interactions completely. Many

studies have shown that deep neural networks, rather than a

simple dot product, can capture user-item interactions

nonlinearly well.

3.3 Neural network ensemble

Ensemble learning is the process of combining the different

models’ predictions to enhance their accuracy [42, 43]. Neural

networks are non-linear, can learn complex patterns in the data,

but suffer from high variance. Ensemble modelling of neural

networks helps to reduce the variance by building different

models as opposed to just one and combining their predictions

to enhance the overall performance. The benefits of this

ensemble are: First, it can help reduce the variance of the

predictions, thereby improving the model's generalisation

performance [44]. Second, it helps to increase the precision of

the predictions by combining the strengths of multiple neural

networks [45]. Third, it can help the model handle noise and

errors in the data better. The various ways to combine the

predictions in ensemble learning in movie recommendations

include:

• Voting: This is the simplest method, and it simply

takes the most common prediction among the individual

models. For example, if three models predict that a user will

like a movie and two models predict that the user will not, then

the ensemble model will predict that the user will like the

movie.

• Averaging: This method takes the average of the

individual predictions. This helps to reduce the variance in

predictions, thereby improving the model's generalisation

performance [44].

• Weighted averaging: This method weights the

individual predictions according to their accuracy. It helps

enhance prediction accuracy by assigning more weight to the

more accurate models.

• Stacking: This method uses a meta-model approach

to make the final predictions. The meta-model uses the

predictions of each model to make final predictions. This helps

improve prediction accuracy by combining the strengths of

each model [46].

The selection of ensemble methods is application-

dependent. If the objective is to improve prediction accuracy,

for instance, then a voting or weighted averaging scheme may

be a better choice. However, if the objective is to develop a

model more robust to noise, then an averaging scheme may be

2339

a better choice [6].

3.4 Optimization

The optimization algorithm has become essential for

training a deep learning architecture. It starts with defining the

loss function and ends with minimizing it using any gradient

optimizer. Gradient-based optimization algorithms are

extensively employed in latent factor-based collaborative

filtering algorithms to learn explicit rating-based

recommendation models [18, 47]. There are various

optimizers to serve this purpose. The major problem with

gradient-based optimisation algorithms is determining the

learning rate, as model convergence depends on the learning

rate. Lower learning rates need more time for convergence,

while higher learning rates may skip the optimal solution.

The ADAM optimizer is a widely used stochastic

optimization algorithm for deep learning models [23]. Even

though it is considered the best adaptive learning optimization

algorithm, it still suffers from convergence problems due to its

inherent variance. Variance makes convergence harder,

especially when parameters are close to their optimal values.

According to conventional research, a declining learning rate

can help reduce variance [48, 49]. When the learning rate is

low, however, the training loss converges slowly [50]. We use

a stochastic variance-reduced gradient in this paper to reduce

variance during the ADAM process. This paper involves

generating AdaMVRGO by reducing the variance of ADAM

using SVRG optimizers to learn the recommendation model.

ADAM [51], a variant of the stochastic gradient algorithm

[52]. ADAM combines the benefits of the AdaGrad [53] and

RMSProp [54] algorithms. ADAM works well with both

sparse and noisy data. The first moment uses an exponential

weighted average of past gradients to converge to the minima

faster, which is given in Eq. (7).

𝑢𝑡 = 𝛽1𝑢𝑡−1 + (1 − 𝛽1)𝑔𝑡 (7)

The second moment, which is given in Eq. (8), employs

exponential moving averages (i.e., the cumulative sum of the

gradients, uncentered variance).

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 (8)

where, 𝑢𝑡: sum of the gradients at time ‘t’, 𝑢𝑡−1: sum of the

gradients at time t-1, 𝑔𝑡
2: sum of squares of gradients at time t,

𝑣𝑡−1: sum of squares of gradients at time t-1,𝑔𝑡: gradient of the

loss function L w.r.t, 𝜔, 𝛿𝑡: learning rate at time t, 𝛽1 and 𝛽2

are the moving average parameters (0.9), 𝜔𝑡+1 represents

weights at time t+1 and 𝜔𝑡 represents weights at time t [55].

As the first and second moment vectors are initialized to

zero in the algorithm [56], it is observed that the algorithm is

biased towards zero. Hence, these vectors are corrected, as

shown in Eqs. (9) and (10).

𝑢�̂� =
𝑢𝑡

1−𝛽1
𝑡 (9)

𝑣�̂� =
𝑣𝑡

1−𝛽2
𝑡 (10)

Finally, the ADAM update rule is given as shown in Eq.

(11).

𝜔𝑡+1 = 𝜔𝑡 −
𝛿

√𝑣�̂�+𝜀
𝑢�̂� (11)

Although ADAM is considered the best optimization

algorithm for deep learning applications, it still suffers from

slow convergence and generalization issues. Wilson et al. [57]

proved that adaptive algorithms are less generalizable than

SGD [58]. Liu et al. [23] used adaptive gradient methods as

opposed to nonadaptive gradient methods to address the issues

of poor convergence for specific objective functions, no

advantage from utilising moving averages, and the lowest

generalisation performance. This may be due to the presence

of large variance in the early epochs of training a model.

Lower variance improves the convergence rate without any

change to the learning rate [59]. Variance reduction methods

are used to reduce the variance and achieve better

generalization and a fast convergence rate.

4. METHODOLOGY

4.1 Proposed framework

As matrix factorization cannot completely capture the latent

features, we employed neural networks to predict the sparse

ratings [60]. Neural networks are usually non-linear and can

capture trivial or complex relationships between the user and

movies. But neural networks suffer from high variance. So, in

this paper, an ensemble of multilayer perceptrons is used for a

movie recommendation system. An ensemble of neural

networks is considered to reduce variance and generalization

error. The proposed Deep-CF framework is presented in

Figure 1.

Deep collaborative filtering (Deep CF) uses an ensemble of

multilayer perceptrons to train the model by capturing the

nonlinear interactions between the user and movies. The

proposed framework uses three multi-layer perceptrons (MLP):

- M1, M2 and M3. M1 uses one hidden layer, M2 uses two

hidden layers, and M3 uses three hidden layers with dropout.

The predicted rating from each MLP is optimized using a

novel optimizer called AdaMVRGO to reduce the

reconstruction error. The novel optimizer cuts down on noise

by figuring out the first and second moments using the SVRG

algorithm's variance-reduced gradient. This leads to fast

convergence. The final rating is obtained from averaging the

predicted ratings of the three models (M1, M2, and M3). The

structure of an MLP used in the ensemble framework is

presented in Figure 2.

In this layer, the rating matrix is split into user and movie

embeddings, which are considered latent features embeddings

[11]. In the merge/concatenation layer, the latent features are

given to a simple dot product [11]. This result is sent to an

ensemble of MLPs to anticipate the sparse rating. The formula

for predicting the rating [7] of each MLP is shown in Eq. (12).

�̂�𝑖𝑗 = 𝑓(𝑃, 𝑄𝑇 , 𝜔𝑓) (12)

where, 𝑃 ∈ 𝑅𝑚×𝑘 and 𝑄 ∈ 𝑅𝑛×𝑘 represent the latent matrices

of users and movies, respectively [61]. �̂�𝑖𝑗 represent the

predicted score given by the user 𝑝𝑖 and the movie 𝑞𝑗 . 𝜔𝑓

indicate the parameters of the function f. The objective

functions for M1, M2, and M3 are given in Eqs. (13), (14), and

(15).

2340

𝑓𝑀1
(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ1
(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), 𝜔ℎ1

), 𝜔𝑜𝑢𝑡)
(13)

𝑓𝑀2
(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ2
(∅ℎ1

(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), 𝜔ℎ1
), 𝜔ℎ2

), 𝜔𝑜𝑢𝑡)
(14)

𝑓𝑀3

(𝑃, 𝑄𝑇) =

∅𝑜𝑢𝑡(∅ℎ3
(∅ℎ2

(∅ℎ1
(∅𝑖𝑛(𝑃, 𝑄𝑇 , 𝜔𝑖𝑛), δ, 𝜔ℎ1

), δ, 𝜔ℎ2
), δ, 𝜔ℎ3

), 𝜔𝑜𝑢𝑡) (15)

where, 𝜔𝑥 represents the model parameters of layer x of a

multilayer perceptron. We used the MSE and the ReLU in our

model [62]. The MSE determines the average squared

difference between the target and predicted ratings, allowing

us to optimize our model's performance. On the other hand,

the ReLU introduces non-linearity to our model. The first two

models (M1 and M2) of the ensemble use one hidden layer and

two hidden layers without dropout, and the third model, M3,

uses three hidden layers and a dropout rate (δ=0.5) to avoid

overfitting [63]. In sub-model M3, certain nodes of the hidden

layers are deactivated with the probability ‘p’ from the

Bernoulli distribution. The output of each MLP is trained

using a novel optimization technique called AdaMVRGO. The

final predicted rating is the mean of the individual predictions

of the models M1, M2, and M3. The objective function of each

sub-model in the ensembled architecture is given in Eqs. (16),

(17), and (18), respectively.

Figure 1. Deep CF framework

Figure 2. The basic structure of an MLP used in the ensemble

2341

𝐿𝑀1
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁(𝜔𝑓) (16)

𝐿𝑀2
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁(𝜔𝑓) (17)

𝐿𝑀3
= min

𝜔𝑓

∑ 𝑙((𝑝𝑖,𝑞𝑗)𝜖𝑅 𝑟𝑖𝑗 , �̂�𝑖𝑗) + 𝛾∁𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝜔𝑓) (18)

where, l(.) represents the loss function, 𝛾 > 0 represents the

step size, and ∁(𝜔𝑓) is the regularizer. The dropout is

determined by using the Bernoulli distribution. The final rating

is computed using Eq. (19).

�̂�𝑖𝑗 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝑀1
+ 𝐿𝑀2

 +𝐿𝑀3
) (19)

4.2 Learning using AdaMVRGO

Although ADAM is considered the best optimization

algorithm for deep learning applications, it still suffers from

slow convergence and generalization issues. Variance

reduction methods are used to reduce the variance and achieve

better generalization and a fast convergence rate. Variance

reduction methods have recently become popular and are the

best alternative to nonadaptive gradient methods such as SGD.

These methods typically reduce the variance of stochastic

gradients by taking a snapshot of the gradients for each 'm'

optimization step. This snapshot’s gradient information can be

used to reduce the variance of subsequent smaller batch

gradients [59]. SAG [64], SAGA [65], and SVRG [66] are the

most standard variance reduction methods. The stochastic

gradient variance is cancelled by SVRG with the control

variate (the average of gradients computed at different

snapshots), which has a zero exception. The proposed

algorithm, AdaMVRGO, is developed using the ADAM and

SVRG optimizers [11]. Algorithm 1 depicts the pseudocode

for AdaMVRGO. Similar to SVRG, AdaMVRGO uses a

nested looping construct. The outer loop consists of 'K'

iterations, and the inner loop consists of 'm' iterations. The

outermost loop determines the complete gradient at a random

snapshot. This snapshot is updated after every 'm' step of

parameter updating. In the inner loop, uniformly select a

random data point and find the gradient gt using the SVRG

principle. This gradient is the variance-reduced gradient as

shown in Eq. (20), which assists in approaching the optimal

value with a constant step size δ [67]. The weight update rule

is shown in Eq. (21).

𝑔𝑡 = 𝛻𝐿𝑖𝑡
(𝑥𝑡) − 𝛻𝐿𝑖𝑡

(𝜔𝑘) + 𝛻𝐿(𝜔𝑘) (20)

𝜔𝑡+1 = 𝜔𝑡 − 𝛿𝑔𝑡 (21)

Typically, the next snapshot point is set to the inner loop's

final iteration value at the end of the inner loop [67], 𝜔𝑘+1=
1

𝑚
∑ 𝑥𝑡

𝑚
𝑡=1 . Adaptive optimization algorithms such as ADAM

still suffer from convergence issues due to the presence of high

variance. The proposed algorithm's change is that it reduces

variance while calculating the gradient itself. The first and

second moments are computed on these variance-reduced

gradients.

The advantages of the AdaMVRGO algorithm compared to

others are listed as follows:

• Experimentally, our proposed optimizer is robust

compared to previous optimization approaches.

• Variance-reduced gradients are computed initially before

smoothing them.

• The first and second moments are computed based on the

variance-reduced gradients.

• The overall variance is reduced after some epochs, which

results in fast convergence.

Algorithm 1: Pseudocode of AdaMVRGO algorithm

Initialize

ω0(starting point), K (outer loop), m(inner loop)

for s = 0 to K-1, do

Determine the total gradient of the objective function,

∇L(ωs)

Initialization: Initialize the first and second moment vectors

u0 = 0 and v0 = 0, respectively, and the exponential decay

rates for the first and second moments are β1 =
0.9 and β2 = 0.999, respectively, decay = 0, learning rate

δ = 0.001 and x0 = ωs

 for t = 1 to m do

 Randomly select a pointit

gt = ∇Lit
(xt) − ∇Lit

(ωs) + ∇L(ωs)

ut = β1ut−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)gt
2

xt+1 = xt − δgt

 end

 ωs+1 =
1

m
∑ xt

m
t=1

end

return 𝜔�̃� =
1

𝐾
∑ 𝜔𝑠

𝐾−1
𝑠=0

The significance of the proposed framework over existing

ones is given as follows:

1) In the proposed method, the ensemble of MLPs reduces

the variance by taking the average of the prediction

results of each MLP. This makes the model more

generalized. It helps generate diversified

recommendations.

2) In the novel optimizer, AdaMVRGO, variance-reduced

gradients are used to compute the first and second

moments. This helps in reducing the variance, which

helps in fast convergence.

5. RESULTS AND DISCUSSION

The research concerns addressed in this section are [68]:

• RQ1: Does the proposed framework perform better than

the baseline algorithms?

• RQ2: Does the proposed optimizer perform well

compared to the other existing optimizers?

5.1 Data description

This paper evaluated the proposed framework using three

standard datasets: M-100K, M-1M, and M-10M, taken from

Movielen’s website [11]. The M-100K dataset has 100,000

ratings from 943 users and 1682 movies [69, 70]. The rating

values range from 1 to 5. The information was gathered from

19th September 1997 to 22nd April 1998. This dataset

contains basic demographic information about the user, like

age, gender, occupation, etc. Every user in this collection has

reviewed a minimum of 20 movies, and the users who had

fewer than 20 ratings are not considered in the dataset. Also,

users whose demographic information is not present are

2342

excluded from this collection. The movies present in the

dataset belong to any of the 19 genres: unknown, action,

adventure, animation, children's, comedy, crime, documentary,

drama, fantasy, film noir, horror, musical, mystery, romance,

sci-fi, thriller, war, and western.

The M-1M dataset has 1,000,209 ratings for 3900 movies

submitted by 6040 users collected during the year 2000 [11,

71]. Every user has reviewed at least 20 movies. The dataset

consists of demographic information about the user, like

gender, age, and occupation. The movies in the dataset fall

under different genres like action, adventure, animation,

children's, comedy, etc. [72].

The M-10M dataset has 1,00,00,054 ratings for 10,681

movies submitted by 71,567 users [11]. This dataset uses a 5-

star scale with an increment of half a star. Unlike the previous

datasets, no demographic information about the user is

provided. The movies in the dataset fall under different genres

like action, adventure, animation, children's, comedy, etc. [72].

Each user rates at least 20 movies [56]. Table 1 shows the

statistical analysis of all three datasets.

Table 1. MovieLens dataset statistics [73]

 ML - 100K

[73]

ML - 1M

[73]

ML - 10M

[73]

Users 943 6040 71,567

#Movies 1682 3900 10,681

Total #

Ratings

1,00,000 10,00,209 1,00,00,054

Sparsity 93.70% 93.53% 98.66%

Mean 3.54 3.58 3.52

Standard

Deviation

1.06 1.11 1.05

Minimum

Rating

0.5 1 0.5

Maximum

Rating

5 5 5

25% of

Ratings

3 3 3

50% of

Ratings

4 4 4

75% of

Ratings

4 4 4

5.2 Experimental setup

The following system requirements are used to implement

the proposed framework: Language: Python 3.7, OS:

Windows 11 (64-bit), RAM: 16 GB, graphics card: NVIDIA

GeForce GTX 1650, and processor: AMD Ryzen 5 4600H

with Radeon Graphics [72, 74]. The proposed framework is

implemented based on TensorFlow 1.14 and the Keras 2.3.1

framework. Experiments were carried out with 10-fold cross-

validation [75]. The following hyperparameters are used

during experimentation: number of latent factors: [8, 16, 32,

64], batch size: [64, 128, 256], number of epochs: [50, 100],

learning rate: 0.001, decay rate: 0.01, dropout: 0.5.

5.3 Evaluation metrics

The metrics used to evaluate the proposed model are MSE,

RMSE, and MAE. MSE is the mean squared error obtained

from the difference between the predicted and actual ratings,

and RMSE is the square root of MSE [11]. The formulae for

MSE and RMSE are given in Eqs. (22) and (23).

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1 (22)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1 (23)

MAE is the mean absolute difference between the predicted

and actual ratings. The formula for MAE is shown in Eq. (24).

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|𝑛

𝑖=1 (24)

where, �̂�𝑖 is the predicted rating and 𝑌𝑖 is the actual rating, 𝑛

represent some observations. Smaller values of Eqs. (22), (23),

and (24) mean higher accuracy.

5.4 Experiments and discussion

5.4.1 Comparative analysis with the existing techniques (RQ1)

Using the M-1M and M-10M datasets, this section

compares the proposed framework Deep CF-AdaMVRGO to

six existing models [24-29] in terms of RMSE. The research

findings proved that the proposed model performed better than

the existing models with different hyperparameters [76], like

epochs and batch size. To prove the proposed model is

statistically significant, a paired t-test with a 0.05 level of

significance is used, as shown in Section 5.4.3. The

quantitative comparison results are depicted in Tables 2 and 3.

The existing models for comparison are:

• Multiviews NN [25] initially learned the low-dimensional

user and item vectors separately. A feed-forward neural

network (FFNN) is used to learn the nonlinear interactions

between users and items for rating prediction [77].

• NCF [26] implemented a neural network-based matrix

factorization model [78], and the loss was adjusted to a

squared loss for rating prediction.

• SemRe-DCF [27] combines a rating matrix with movie

plot text, and a denoising autoencoder is used for predicting

the ratings.

• DPGMF [24] fused plot texts into ratings and proposed a

deep-plot-aware generalised matrix factorization to predict

missing ratings.

• DELCR [28] uses a DNN to train the user and item

embeddings separately to make a latent factor model for

collaborative filtering that is based on deep learning.

• DLFCF [29] uses a two-level deep learning model to learn

about the rating matrix's hidden features.

From Tables 2 and 3, it is evident that the proposed model

has given a considerably reduced RMSE when compared with

the existing methods using M-1M and M-10M datasets. While

experimenting, it was also noted that the proposed algorithm

showed better results on the M-1M dataset with 100 epochs

and 128 batch size. Similarly, it showed better results on the

M-10M dataset with 50 epochs and 256 batch size.

The significant benefit of the proposed model over the

existing models [24-29] is that it allows the model to make

accurate predictions even for new movies that have limited or

no information available. Additionally, the proposed

framework outperforms the existing models in terms of

reducing biases and variances in the ensemble, which results

in more reliable and accurate predictions.

5.4.2 Comparative analysis with the existing optimizers (RQ2)

This section evaluates the performance of the proposed

2343

optimizer AdaMVRGO on the ensemble framework with

current optimizers such as Adagrad, RMSProp, ADAM, and

SVRG on M-100K, M-1M, and M-10M datasets in terms of

RMSE, MAE, and MSE metrics [11].

Table 2. Quantitative comparison results in terms of RMSE using the M-1M dataset

(A lower RMSE value is better.)

Parameters
Multiviews NN

[25]

NCF

[26]

SemRe-DCF

[27]

DPGMF

[24]

DELCR

[28]

DLFCF

[29]

Proposed

Model

#Epochs 50
0.857 0.971 0.867 0.861 0.884 0.877 0.852

Batch Size 64

% decrease in RMSE when compared

with the proposed model
0.583 12.255 1.730 1.045 3.619 2.850

#Epochs 50
0.841 0.967 0.858 0.849 0.879 0.876 0.837

Batch Size 128

% decrease in RMSE when compared

with the proposed model
0.475 13.444 2.447 1.413 4.778 4.452

#Epochs 50
0.849 0.946 0.853 0.857 0.854 0.871 0.833

Batch Size 256

% decrease in RMSE when compared

with the proposed model
1.884 11.945 2.344 2.8 2.459 4.362

#Epochs 100
0.834 0.942 0.851 0.849 0.842 0.868 0.829

Batch Size 64

% decrease in RMSE when compared

with the proposed model
0.599 11.996 2.585 2.355 1.543 4.493

#Epochs 100
0.833 0.938 0.845 0.821 0.818 0.866 0.816

Batch Size 128

% decrease in RMSE when compared

with the proposed model
2.040 13.006 3.432 0.609 0.244 5.773

#Epochs 100
0.831 0.941 0.844 0.834 0.837 0.875 0.824

Batch Size 256

% decrease in RMSE when compared

with the proposed model
1.787 12.434 2.369 1.199 1.553 5.828

Table 3. Quantitative comparison results in terms of RMSE using the M-10M dataset

(A lower RMSE value is better.)

Parameters
Multiviews NN

[25]

NCF

[26]

SemRe-DCF

[27]

DPGMF

[24]

DELCR

[28]

DLFCF

[29]

Proposed

Model

#Epochs 50
0.819 0.912 0.832 0.783 0.787 0.799 0.781

Batch Size 64

% decrease in RMSE when compared

with the proposed model
4.639 14.364 6.129 0.255 0.762 2.252

#Epochs 50
0.779 0.903 0.812 0.798 0.779 0.804 0.777

Batch Size 128

% decrease in RMSE when compared

with the proposed model
0.256 13.953 4.310 2.631 0.256 3.358

#Epochs 50
0.776 0.899 0.773 0.765 0.774 0.798 0.761

Batch Size 256

% decrease in RMSE when compared

with the proposed model
1.933 15.35 1.552 0.522 1.679 4.636

#Epochs 100
0.777 0.910 0.798 0.768 0.777 0.819 0.765

Batch Size 64

% decrease in RMSE when compared

with the proposed model
1.544 15.934 4.135 0.390 1.544 6.593

#Epochs 100
0.778 0.921 0.829 0.769 0.821 0.818 0.768

Batch Size 128

% decrease in RMSE when compared

with the proposed model
1.285 16.612 7.358 0.130 6.455 6.112

#Epochs 100
0.779 0.928 0.867 0.771 0.837 0.820 0.770

Batch Size 256

% decrease in RMSE when compared

with the proposed model
1.155 17.026 11.188 0.129 8.004 6.097

2344

(A)

(B)

(C)

(D)

Figure 3. Performance of the Deep CF-AdaMVRGO

algorithm using M-100K (A to D from top to bottom)

Analysis of the M-100K dataset: Using 10-fold cross-

validation on the M-100K dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics

[78, 79]. Experiments were carried out with various settings

[78, 79]. Experiments were carried out with various settings,

such as a learning rate of 0.001, a batch size of 256, 100 epochs,

and latent factors [8, 16, 32, 64]. Figure 3 depicts the

performance of the Deep CF-AdaMVRGO method over the

other methods on the M-100K dataset with MAE, MSE, and

RMSE for different latent factors. [3(A) compares the

evaluation metric values of different optimizers when the

latent factors are 8; 3(B) compares the evaluation metric

values of different optimizers when the latent factors are 16;

3(C) compares the evaluation metric values of different

optimizers when the latent factors are 32; 3(D) compares the

evaluation metric values of different optimizers when the

latent factors are 64].

The total number of computations is represented in floating

point operations (FLOPs), and it is observed that the proposed

algorithm took fewer FLOPs to reach the optimum when

compared with other algorithms, as shown graphically in

Figure 4.

Figure 4. Comparison of MFLOPs using the M-100K dataset

Analysis of the M-1M dataset: Using 10-fold cross-

validation on the M-1M dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics

[78, 79]. Experiments were carried out with various settings,

such as a learning rate of 0.001, a batch size of 256, 100 epochs,

and latent factors [8, 16, 32, 64]. Figure 5 depicts the

performance of the Deep CF-AdaMVRGO method over the

other methods on the M-1M dataset with MAE, MSE, and

RMSE for different latent factors. [5(A) compares the

evaluation metric values of different optimizers when the

latent factors are 8, 5(B) compares the evaluation metric

values of different optimizers when the latent factors are 16,

5(C) compares the evaluation metric values of different

optimizers when the latent factors are 32, 5(D) compares the

evaluation metric values of different optimizers when the

latent factors are 64]. The total number of computations is

represented in FLOPs, and it is observed that the proposed

algorithm took fewer FLOPs to reach the optimum when

compared with other algorithms, as shown graphically in

Figure 6.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 8

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 16

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.5

1

1.5

2

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 32

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 64

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

10

20

30

40

50

8 16 32 64

M
L

O
P

s

Number of Latent Factors

Comparison of FLOPs

Deep CF-

Adagrad

Deep CF-

RMSProp

Deep CF-

ADAM

Deep CF-

SVRG

Deep CF-

AdaMVRGO

2345

(A)

(B)

(C)

(D)

Figure 5. Performance of the Deep CF-AdaMVRGO

algorithm using M-1M dataset (A to D from top to bottom)

Figure 6. Comparison of MFLOPs using the M-1M dataset

Analysis of the M-10M dataset: Using 10-fold cross-

validation on the M-10M dataset, the proposed Deep CF-

AdaMVRGO method is compared with other methods like

Deep CF-Adagrad, Deep CF-RMSProp, Deep CF-Adam, and

Deep CF-SVRG in terms of RMSE, MSE, and MAE metrics

[78, 79]. Experiments were carried out with various settings,

such as a learning rate of 0.001, a batch size of 256, 100 epochs,

and latent factors [8, 16, 32, 64]. Figure 7 depicts the

performance of the Deep CF-AdaMVRGO method over the

other methods on the ML 10M dataset with MAE, MSE, and

RMSE for different latent factors. [7(A) compares the

evaluation metric values of different optimizers when the

latent factors are 8, 7(B) compares the evaluation metric

values of different optimizers when the latent factors are 16,

7(C) compares the evaluation metric values of different

optimizers when the latent factors are 32, and 7(D) compares

the evaluation metric values of different optimizers when the

latent factors are 64].

(A)

(B)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 8

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 16

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 32

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 64

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

10

20

30

40

50

8 16 32 64

M
L

O
P

s

Number of Latent Factors

Comparison of FLOPs

Deep CF-

Adagrad

Deep CF-

RMSProp

Deep CF-

ADAM

Deep CF-

SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 8

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.2

0.4

0.6

0.8

1

1.2

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 16

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

2346

(C)

(D)

Figure 7. Performance of the deep CF-AdaMVRGO

algorithm using M-10M dataset (A to D from top to bottom)

The total number of computations is represented in FLOPs,

and it is observed that the proposed algorithm took fewer

FLOPs to reach the optimum when compared with other

algorithms, as shown graphically in Figure 8.

Figure 8. Comparison of MFLOPs using the M-10M dataset

From Figures 3, 5, and 7, it is proven that the proposed novel

optimizer, AdaMVRGO, outperformed the existing

optimisation techniques on the ensemble framework in terms

of all evaluation metrics [80]. From Figures 4, 6, and 8, it can

be observed that AdaMVRGO converged significantly faster

than the existing optimization techniques. This suggests that

AdaMVRGO not only produces superior results in terms of

accuracy metrics but also does so in a more efficient manner.

These findings highlight the effectiveness of AdaMVRGO in

improving the performance of the ensemble framework and

make it a promising choice for future applications.

5.4.3 Statistical significance and discussions

To verify the results of the proposed model over the existing

models, statistical analysis was performed on the experimental

results using a paired t-test for the M-1M and M-10M datasets.

The statistical analysis is performed at a 0.05 (95%) level of

significance, and the results are analysed in terms of a t-value.

The proposed model is considered robust when the p-value is

less than the significance level [81]. From Table 4, we can

conclude that the proposed model is significantly stronger with

a low p-value compared to the existing models at 9 degrees of

freedom. These findings suggest that the proposed model is

highly reliable and provides a significant improvement over

the existing models in predicting the observed data. Moreover,

the low p-value indicates that the results are unlikely to occur

by chance alone, further validating the proposed models’

robustness [75]. Overall, these findings offer compelling proof

of the proposed model's efficacy and demonstrate that it

outperforms existing models in terms of statistical strength and

accuracy [82].

Table 4. Statistical significance on M-1M &M-10M datasets

[83]

 M-1M M-10M

MultiviewsNN [25] 0.015924019 0.011271812

NCF [26] 0.000003159 0.000014055

SemRe-DCF [27] 0.000187744 0.031027946

DPGMF [24] 0.014531813 0.189003658

DELCR [28] 0.052601661 0.083751047

DLFCF [29] 0.00001175 0.000986522

Proposed Model 0.000001579 0.000007028

6. CONCLUSION

Deep collaborative filtering has proven to be one of the best

recommendation techniques over the other latent factor

models to capture hidden, nonlinear, and complex

relationships between users and movies. To handle the sparsity

issue and enhance movie recommendation accuracy, we

developed an ensemble framework called Deep CF-

AdaMVRGO, which uses three sub-models: M1, M2, and M3.

The first two models (M1 and M2) of the ensemble use one

hidden layer and two hidden layers without dropout, and the

third model, M3, uses three hidden layers and a dropout rate

taken from the Bernoulli distribution to avoid overfitting. The

output of each MLP is trained using a novel optimization

technique called AdaMVRGO. Taking the average of the

individual predictions made by the models M1, M2, and M3

yields the final rating.

Experiments were conducted using the M-100K, M-1M,

and M-10M datasets in terms of evaluation metrics like MSE,

RMSE, and MAE. Simulation results showed that the new

optimizer AdaMVRGO had a low error value in

recommending movies, compared to optimizers like Adagrad,

RMSProp, ADAM, and SVRG on the proposed ensemble

architecture. Also, the proposed optimizer achieved the

optimum with fewer FLOPs. The experimental results showed

that the Deep CF-AdaMVRGO performed well over the

benchmark algorithms on both the M-1M and M-10M datasets

in terms of the RMSE value. Experiments were done with

different parameters, and the results showed that the proposed

model is better than the existing models on the M-1M dataset

when the number of epochs was 100 and the batch size was

128. Also, the proposed model showed a 2.040%, 13.006%,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 32

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

0.5

1

1.5

2

MAE MSE RMSE

E
rr

o
r

V
al

u
e

Evaluation metric

Latent Factors = 64

Deep CF-Adagrad

Deep CF-RMSProp

Deep CF-ADAM

Deep CF-SVRG

Deep CF-

AdaMVRGO

0

10

20

30

40

50

60

70

8 16 32 64

M
L

O
P

s

Number of Latent Factors

Comparison of FLOPs

Deep CF-

Adagrad

Deep CF-

RMSProp

Deep CF-

ADAM

Deep CF-

SVRG

Deep CF-

AdaMVRGO

2347

3.432%, 0.609%, 0.244%, and 5.773% decrease in terms of

RMSE value over the baseline models. In the same way, it did

better on the M-10M dataset when the number of epochs was

50 and the batch size was 256. The proposed algorithm did

better than the baseline models in terms of RMSE value by

1.933%, 15.35%, 1.552%, 0.522%, 1.679%, and 4.636%.

From the simulations, we infer that the ensemble-based model

can generate more accurate recommendations than the

individual methods.

In this paper, the final prediction is the mean of the

predictions obtained from the three MLPs, which may not be

the best all the time. Future enhancements may include the use

of stacking ensembles to construct models with low bias and

variance; the addition of side information to the movies like

their genres, user reviews, implicit feedback, etc. to enhance

the recommendation accuracy; and the use of an attribute

selection algorithm to improve movie recommendation

performance even further.

DECLARATION

CRediT authorship contribution statement: V. Lakshmi

Chetana: Conceptualization, Methodology, and Writing—

Original Draft

Hari Seetha: supervision, writing (review and editing).

Funding: This research received no external funding. This

work is carried out as part of my doctoral committee.

Conflict of Interest: The authors declare no conflicts of

interest.

Data Availability:

[https://grouplens.org/datasets/movielens/].

REFERENCES

[1] Deldjoo, Y., Dacrema, M.F., Constantin, M.G., Eghbal-

Zadeh, H., Cereda, S., Schedl, M., Ionescu, B.,

Cremonesi, P. (2019). Movie genome: Alleviating new

item cold start in movie recommendation. User Modeling

and User-Adapted Interaction, 29: 291-343.

https://doi.org/10.1007/s11257-019-09221-y

[2] Chen, G., Jing, W., Wen, X., Lu, Z., Zhao, S. (2021). An

edge caching strategy based on separated learning of user

preference and content popularity. In 2021 IEEE/CIC

International Conference on Communications in China

(ICCC), Xiamen, China, pp. 1018-1023.

https://doi.org/10.1109/ICCC52777.2021.9580288

[3] Shahbazi, Z., Hazra, D., Park, S., Byun, Y.C. (2020).

Toward improving the prediction accuracy of product

recommendation system using extreme gradient boosting

and encoding approaches. Symmetry, 12(9): 1566.

https://doi.org/10.3390/sym12091566

[4] Tahmasebi, H., Ravanmehr, R., Mohamadrezaei, R.

(2021). Social movie recommender system based on

deep autoencoder network using Twitter data. Neural

Computing and Applications, 33: 1607-1623.

https://doi.org/10.1007/s00521-020-05085-1

[5] Qu, W., Song, K.S., Zhang, Y.F., Feng, S., Wang, D.L.,

Yu, G. (2013). A novel approach based on multi-view

content analysis and semi-supervised enrichment for

movie recommendation. Journal of Computer Science

and Technology, 28(5): 776-787.

https://doi.org/10.1007/s11390-013-1376-7

[6] Ricci, F., Rokach, L., Shapira, B. (2015). Recommender

Systems Handbook. Springer.

[7] Widiyaningtyas, T., Hidayah, I., Adji, T.B. (2021). User

profile correlation-based similarity (UPCSim) algorithm

in movie recommendation system. Journal of Big Data,

8: 1-21. https://doi.org/10.1186/s40537-021-00425-x

[8] Ricci, F., Rokach, L., Shapira, B. (Eds.). (2022).

Recommender Systems Handbook. Springer New York,

NY. https://doi.org/10.1007/978-1-0716-2197-4

[9] Al-Shamri, M.Y.H., Bharadwaj, K.K. (2008). Fuzzy-

genetic approach to recommender systems based on a

novel hybrid user model. Expert systems with

applications, 35(3): 1386-1399.

https://doi.org/10.1016/j.eswa.2007.08.016

[10] Christou, I.T., Amolochitis, E., Tan, Z.H. (2016).

AMORE: Design and implementation of a commercial-

strength parallel hybrid movie recommendation engine.

Knowledge and Information Systems, 47: 671-696.

https://doi.org/10.1007/s10115-015-0866-z

[11] Lakshmi Chetana, V., Seetha, H. (2022). CF-AMVRGO:

Collaborative filtering based adaptive moment variance

reduction gradient optimizer for movie recommendations.

International Journal of Computers and Applications,

44(11): 1015-1023.

https://doi.org/10.1080/1206212X.2022.2097769

[12] Chetana, V.L., Batchu, R.K., Devarasetty, P., Voddelli,

S., Dalli, V.P. (2023). Effective movie recommendation

based on improved densenet model. Multiagent and Grid

Systems, 19(2): 133-147. https://doi.org/10.3233/mgs-

230012

[13] Vellino, A., Zeber, D. (2007). A hybrid, multi-

dimensional recommender for journal articles in a

scientific digital library. In 2007 IEEE/WIC/ACM

International Conferences on Web Intelligence and

Intelligent Agent Technology-Workshops, Silicon

Valley, CA, USA, pp. 111-114.

https://doi.org/10.1109/WI-IATW.2007.29

[14] Weng, L.T., Xu, Y., Li, Y., Nayak, R. (2005). An

improvement to collaborative filtering for recommender

systems. In International Conference on Computational

Intelligence for Modelling, Control and Automation and

International Conference on Intelligent Agents, Web

Technologies and Internet Commerce (CIMCA-

IAWTIC'06), Vienna, pp. 792-795.

https://doi.org/10.1109/CIMCA.2005.1631361

[15] Rawat, R.M., Tomar, V., Kumar, V. (2020). An

embedding-based deep learning approach for movie

recommendation. In 2020 5th International Conference

on Communication and Electronics Systems (ICCES),

Coimbatore, India, pp. 1145-1150.

https://doi.org/10.1109/ICCES48766.2020.9137998

[16] Choi, S.M., Ko, S.K., Han, Y.S. (2012). A movie

recommendation algorithm based on genre correlations.

Expert Systems with Applications, 39(9): 8079-8085.

https://doi.org/10.1016/j.eswa.2012.01.132

[17] Bi, Y., Williams, M.A. (2010). Knowledge Science,

Engineering and Management. Lecture Notes in

Computer Science, 6291. https://doi.org/10.1007/978-3-

642-15280-1

[18] Zhang, Y., Zhang, M., Liu, Y., Ma, S., Feng, S. (2013).

Localized matrix factorization for recommendation

based on matrix block diagonal forms. In Proceedings of

the 22nd International Conference on World Wide Web,

pp. 1511-1520.

2348

https://doi.org/10.1145/2488388.2488520

[19] Li, L., Huang, H., Li, Q., Man, J. (2023). Personalized

movie recommendations based on deep representation

learning. PeerJ Computer Science, 9: e1448.

https://doi.org/10.7717/peerj-cs.1448

[20] Motahhir, S., Bossoufi, B. (2023). Digital Technologies

and Applications. SpringerLink.

https://doi.org/10.1007/978-3-031-29860-8

[21] Fu, Z., Niu, X., Maher, M.L. (2023). Deep learning

models for serendipity recommendations: A survey and

new perspectives. ACM Computing Surveys, 56(1): 1-26.

https://doi.org/10.1145/3605145

[22] What Is an AI-Generated Artwork?

https://pure.rug.nl/ws/files/622700064/ROBO_AI_Con2

023_Abstract_Book.pdf.

[23] Liu, M., Zhang, W., Orabona, F., Yang, T. (2020).

Adam+: A stochastic method with adaptive variance

reduction. arXiv preprint arXiv:2011.11985.

https://doi.org/10.48550/arXiv.2011.11985

[24] Sun, X., Zhang, H., Wang, M., Yu, M., Yin, M., Zhang,

B. (2020). Deep plot-aware generalized matrix

factorization for collaborative filtering. Neural

Processing Letters, 52: 1983-1995.

https://doi.org/10.1007/s11063-020-10333-5

[25] Fu, M., Qu, H., Yi, Z., Lu, L., Liu, Y. (2018). A novel

deep learning-based collaborative filtering model for

recommendation system. IEEE Transactions on

Cybernetics, 49(3): 1084-1096.

https://doi.org/10.1109/TCYB.2018.2795041

[26] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.

(2017). Neural collaborative filtering. In Proceedings of

the 26th International Conference on World Wide Web,

pp. 173-182. https://doi.org/10.1145/3038912.3052569

[27] Yue, L., Sun, X.X., Gao, W.Z., Feng, G.Z., Zhang, B.Z.

(2018). Multiple auxiliary information based deep model

for collaborative filtering. Journal of Computer Science

and Technology, 33l: 668-681.

https://doi.org/10.1007/s11390-018-1848-x

[28] Tegene, A., Liu, Q., Gan, Y., Dai, T., Leka, H., Ayenew,

M. (2023). Deep learning and embedding based latent

factor model for collaborative recommender systems.

Applied Sciences, 13(2): 726.

https://doi.org/10.3390/app13020726

[29] Mongia, A., Jhamb, N., Chouzenoux, E., Majumdar, A.

(2020). Deep latent factor model for collaborative

filtering. Signal Processing, 169: 107366.

https://doi.org/10.1016/j.sigpro.2019.107366

[30] Fu, M., Agrawal, A., Irissappane, A.A., Zhang, J., Huang,

L., Qu, H. (2021). Deep reinforcement learning

framework for category-based item recommendation.

IEEE Transactions on Cybernetics, 52(11): 12028-12041.

https://doi.org/10.1109/TCYB.2021.3089941

[31] Huang, T., Zhang, D., Bi, L. (2020). Neural embedding

collaborative filtering for recommender systems. Neural

Computing and Applications, 32: 17043-17057.

https://doi.org/10.1007/s00521-020-04920-9

[32] Feng, C., Liang, J., Song, P., Wang, Z. (2020). A fusion

collaborative filtering method for sparse data in

recommender systems. Information Sciences, 521: 365-

379. https://doi.org/10.1016/j.ins.2020.02.052

[33] Xue, F., He, X., Wang, X., Xu, J., Liu, K., Hong, R.

(2018). Deep item-based collaborative filtering for Top-

N recommendation. arXiv preprint arXiv:1811.04392.

https://doi.org/10.48550/arXiv.1811.04392

[34] Sun, X., Zhang, L., Wang, Y., Yu, M., Yin, M., Zhang,

B. (2021). Attribute-aware deep attentive

recommendation. The Journal of Supercomputing, 77:

5510-5527. https://doi.org/10.1007/s11227-020-03459-9

[35] Mu, R., Zeng, X. (2018). Collaborative filtering

recommendation algorithm based on knowledge graph.

Mathematical Problems in Engineering, 2018: 9617410.

https://doi.org/10.1155/2018/9617410

[36] Ji, K., Shen, H. (2015). Making recommendations from

top-N user-item subgroups. Neurocomputing, 165: 228-

237. https://doi.org/10.1016/j.neucom.2015.03.013

[37] Ji, K., Yuan, Y., Ma, K., Sun, R., Chen, Z., Wu, J. (2019).

Context-aware recommendations via a tree-based

ensemble framework. In Proceedings of the ACM Turing

Celebration Conference-China, pp. 1-5.

https://doi.org/10.1145/3321408.3322839

[38] Neera, J., Chen, X., Aslam, N., Wang, K., Shu, Z. (2021).

Private and utility enhanced recommendations with local

differential privacy and gaussian mixture model. IEEE

Transactions on Knowledge and Data Engineering, 35(4):

4151-4163.

https://doi.org/10.1109/TKDE.2021.3126577

[39] Berlioz, A., Friedman, A., Kaafar, M.A., Boreli, R.,

Berkovsky, S. (2015). Applying differential privacy to

matrix factorization. In Proceedings of the 9th ACM

Conference on Recommender Systems, pp. 107-114.

https://doi.org/10.1145/2792838.2800173

[40] Duma, M., Twala, B. (2019). Sparseness reduction in

collaborative filtering using a nearest neighbour artificial

immune system with genetic algorithms. Expert Systems

with Applications, 132: 110-125.

https://doi.org/10.1016/j.eswa.2019.04.034

[41] Huang, H., Wei, Y., Yuan, X., Zheng, R. (2023).

Weighted matrix factorization with wilson lower bound

score. In Proceedings of the 2023 5th Asia Pacific

Information Technology Conference, pp. 33-37.

https://doi.org/10.1145/3588155.3588160

[42] Shen, X.J., Ni, C., Wang, L., Zha, Z.J. (2021). Sliker:

Sparse loss induced kernel ensemble regression. Pattern

Recognition, 109: 107587.

https://doi.org/10.1016/j.patcog.2020.107587

[43] Yang, L., Shami, A., Stevens, G., De Rusett, S. (2022).

LCCDE: A decision-based ensemble framework for

intrusion detection in the internet of vehicles. In

GLOBECOM 2022-2022 IEEE Global Communications

Conference, Rio de Janeiro, Brazil, pp. 3545-3550.

https://doi.org/10.1109/GLOBECOM48099.2022.10001

280

[44] Sharma, S., Gupta, V., Mudgal, D., Srivastava, V. (2023).

Predicting biomechanical properties of additively

manufactured polydopamine coated poly lactic acid bone

plates using deep learning. Engineering Applications of

Artificial Intelligence, 124: 106587.

https://doi.org/10.1016/j.engappai.2023.106587

[45] Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (Eds).

(2013). Machine learning and knowledge discovery in

databases. SpringerLink. https://doi.org/10.1007/978-3-

642-40988-2

[46] Monish, H., Pandey, A.C. (2020). A comparative

assessment of data mining algorithms to predict

fraudulent firms. In 2020 10th International Conference

on Cloud Computing, Data Science & Engineering

(Confluence), Noida, India, pp. 117-122.

https://doi.org/10.1109/Confluence47617.2020.9057968

2349

[47] Li, D., Chen, C., Lv, Q., Gu, H., Lu, T., Shang, L.,Gu, N.,

Chu, S.M. (2018). AdaError: An adaptive learning rate

method for matrix approximation-based collaborative

filtering. In Proceedings of the 2018 World Wide Web

Conference, pp. 741-751.

https://doi.org/10.1145/3178876.3186155

[48] Min, E., Long, J., Cui, J. (2018). Analysis of the variance

reduction in SVRG and a new acceleration method. IEEE

Access, 6: 16165-16175.

https://doi.org/10.1109/ACCESS.2018.2814212

[49] Ming, Y., Zhao, Y., Wu, C., Li, K., Yin, J. (2018).

Distributed and asynchronous stochastic gradient descent

with variance reduction. Neurocomputing, 281: 27-36.

https://doi.org/10.1016/j.neucom.2017.11.044

[50] Bottou, L. (2010). Large-scale machine learning with

stochastic gradient descent. In: Lechevallier, Y., Saporta,

G. (eds) Proceedings of COMPSTAT'2010. Physica-

Verlag HD. https://doi.org/10.1007/978-3-7908-2604-

3_16

[51] Kingma, D.P., Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

[52] Stephanidis, C., Antona, M., Ntoa, S. (Eds). (2021). HCI

International 2021 – Posters. SpringerLink.

https://doi.org/10.1007/978-3-030-78642-7

[53] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive

subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(7): 2121-2159.

[54] Tieleman, T., Hinton, G. (2012). Lecture 6.5-rmsprop:

Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural Networks for Machine

Learning, 4(2): 26-31.

[55] Muneer, A., Taib, S.M., Fati, S.M., Balogun, A.O., Aziz,

I.A. (2022). A hybrid deep learning-based unsupervised

anomaly detection in high dimensional data. Computers,

Materials & Continua, 70(3): 5363-5381.

https://doi.org/10.32604/cmc.2022.021113

[56] Dubey, S.R., Chakraborty, S., Roy, S.K., Mukherjee, S.,

Singh, S.K., Chaudhuri, B.B. (2019). diffGrad: An

optimization method for convolutional neural networks.

IEEE Transactions on Neural Networks and Learning

Systems, 31(11): 4500-4511.

https://doi.org/10.1109/TNNLS.2019.2955777

[57] Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht,

B. (2017). The marginal value of adaptive gradient

methods in machine learning. Advances in Neural

Information Processing Systems, 30.

[58] McVinish, R., Mengersen, K., Nur, D., Rousseau, J.,

Guihenneuc-Jouyaux, C. (2013). Recentered importance

sampling with applications to Bayesian model validation.

Journal of Computational and Graphical Statistics, 22(1):

215-228.

https://doi.org/10.1080/10618600.2012.681239

[59] Elibol, M., Lei, L., Jordan, M. I. (2020). Variance

reduction with sparse gradients. arXiv preprint

arXiv:2001.09623.

https://doi.org/10.48550/arXiv.2001.09623

[60] Li, J., Xu, W., Wan, W., Sun, J. (2018). Movie

recommendation based on bridging movie feature and

user interest. Journal of Computational Science, 26: 128-

134. https://doi.org/10.1016/j.jocs.2018.03.009

[61] Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B., Luo, X.

(2019). A context-aware user-item representation

learning for item recommendation. ACM Transactions

on Information Systems (TOIS), 37(2): 1-29.

https://doi.org/10.1145/3298988

[62] Salha-Galvan, Guillaume. (2022). Contributions to

Representation Learning with Graph Autoencoders and

Applications to Music Recommendation.

[63] Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V.,

Platos, J., Hassanien, A.E. (Eds.). (2019). International

conference on innovative computing and

communications. International Conference on Innovative

Computing and Communications. SpringerLink.

https://doi.org/10.1007/978-981-15-1286-5

[64] Schmidt, M., Le Roux, N., Bach, F. (2017). Minimizing

finite sums with the stochastic average gradient.

Mathematical Programming, 162: 83-112.

https://doi.org/10.1007/s10107-016-1030-6

[65] Defazio, A., Bach, F., Lacoste-Julien, S. (2014). SAGA:

A fast incremental gradient method with support for non-

strongly convex composite objectives. Advances in

Neural Information Processing Systems, 27.

[66] Johnson, R., Zhang, T. (2013). Accelerating stochastic

gradient descent using predictive variance reduction.

Advances in Neural Information Processing Systems, 1-

9.

[67] Dubois-Taine, B., Vaswani, S., Babanezhad, R., Schmidt,

M., Lacoste-Julien, S. (2022). SVRG meets adagrad:

Painless variance reduction. Machine Learning, 111(12):

4359-4409. https://doi.org/10.1007/s10994-022-06265-x

[68] Zhu, T., Li, G., Zhou, W., Yu, P.S. (Eds.). (2017).

Differential Privacy and Applications. SpringerLink.

https://doi.org/10.1007/978-3-319-62004-6

[69] Widiyaningtyas, T., Hidayah, I., Adji, T.B. (2022).

Comparing user rating-based similarity to user behavior-

based similarity in movie recommendation systems. In

2022 International Conference on Electrical and

Information Technology (IEIT), Malang, Indonesia, pp.

52-58. https://doi.org/10.1109/IEIT56384.2022.9967884

[70] Nguyen, L.V., Vo, Q.T., Nguyen, T.H. (2023). Adaptive

KNN-based extended collaborative filtering

recommendation services. Big Data and Cognitive

Computing, 7(2): 106.

https://doi.org/10.3390/bdcc7020106

[71] Cui, L., Huang, W., Yan, Q., Yu, F.R., Wen, Z., Lu, N.

(2018). A novel context-aware recommendation

algorithm with two-level SVD in social networks. Future

Generation Computer Systems, 86: 1459-1470.

https://doi.org/10.1016/j.future.2017.07.017

[72] Zhang, Z.P., Kudo, Y., Murai, T., Ren, Y.G. (2019).

Addressing complete new item cold-start

recommendation: A niche item-based collaborative

filtering via interrelationship mining. Applied Sciences,

9(9): 1894. https://doi.org/10.3390/app9091894

[73] Friedman, A., Berkovsky, S., Kaafar, M.A. (2016). A

differential privacy framework for matrix factorization

recommender systems. User Modeling and User-

Adapted Interaction, 26: 425-458.

https://doi.org/10.1007/s11257-016-9177-7

[74] Hu, L., Zhang, Y., Wang, Y., Ge, G., Wang, W. (2023).

Salient preprocessing: Robotic ICP pose estimation

based on SIFT features. Machines, 11(2): 157.

https://doi.org/10.3390/machines11020157

[75] Lee, M., Hirose, A., Hou, Z., Kil, R.M. (Eds). (2013).

Neural Information Processing. SpringerLink.

https://doi.org/10.1007/978-3-642-42042-9

2350

[76] Sun, Y., Lu, T., Yu, Z., Fan, H., Gao, L. (Eds.). (2019).

Computer supported cooperative work and social

computing. 14th CCF Conference, Chinese CSCW 2019,

Kunming, China, August 16–18, 2019, Revised Selected

Papers (Vol. 1042). Springer Nature.

[77] Bobadilla, J., González-Prieto, Á., Ortega, F., Lara-

Cabrera, R. (2021). Deep learning feature selection to

unhide demographic recommender systems factors.

Neural Computing and Applications, 33(12): 7291-7308.

https://doi.org/10.1007/s00521-020-05494-2

[78] “IOS Press Ebooks - ECAI 2020 - 24th European

Conference on Artificial Intelligence, 29 August–8

September 2020, Santiago de Compostela, Spain –

Including 10th Conference on Prestigious Applications

of Artificial Intelligence (PAIS 2020).”

https://ebooks.iospress.nl/doi/10.3233/FAIA325.

[79] Yuan, R., Wang, X., Xu, J., Meng, S. (2021). A

differential-privacy-based hybrid collaborative

recommendation method with factorization and

regression. In 2021 IEEE Intl Conf on Dependable,

Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), AB, Canada,

pp. 389-396. https://doi.org/10.1109/DASC-PICom-

CBDCom-CyberSciTech52372.2021.00073

[80] Saleem, F., Iltaf, N., Afzal, H., Shahzad, M. (2019).

Using trust in collaborative filtering for

recommendations. In 2019 IEEE 28th International

Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), Napoli, Italy, pp.

214-222. https://doi.org/10.1109/WETICE.2019.00053

[81] Hu, M., Liang, H. (2012). Noise-assisted instantaneous

coherence analysis of brain connectivity. Computational

Intelligence and Neuroscience, 2012: 1-1.

https://doi.org/10.1155/2012/275073.

[82] Xi, W.D., Huang, L., Wang, C.D., Zheng, Y.Y., Lai, J.H.

(2021). Deep rating and review neural network for item

recommendation. IEEE Transactions on Neural

Networks and Learning Systems, 33(11): 6726-6736.

https://doi.org/10.1109/TNNLS.2021.3083264

[83] Alexandridis, G., Siolas, G., Stafylopatis, A. (2012).

Applying k-separability to collaborative recommender

systems. International Journal on Artificial Intelligence

Tools, 21(1): 1250001.

https://doi.org/10.1142/S0218213012500017

2351

