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Breast cancer, responsible for 15% of cancer deaths among women, generally has a 

favorable prognosis when diagnosed early and treated appropriately. Although several 

standard methods for early detection are available, they present practical limitations 

including low sensitivity, difficulty identifying in denser breasts, radiation exposure, and 

cost. This study introduces a non-invasive method for breast cancer screening utilizing 

Electrical Impedance Tomography (EIT). Sixteen copper electrodes were strategically 

located evenly around the breast perimeter, and an adjacent electrode configuration was 

employed for current injection. The forward problem of EIT, which involves determining 

the electrical conductivity distribution by measuring voltages across electrodes, was 

addressed using finite element analysis with COMSOL Multiphysics software. The inverse 

problem was subsequently solved using EIDORS in MATLAB. This study considers the 

Gauss Newton (GN) one-step and Total Variation (TV) algorithms, and simulated outcomes 

were compared to identify the superior result. GN outperformed TV in anomaly detection. 

The results indicated that malignant tumors exhibited higher conductivity than benign ones. 

The segmentation technique was executed using K-means clustering, and the results pointed 

out the precise location and classification of small-sized tumors. The ill-posed nature of EIT 

was mitigated through the careful selection of appropriate electrode placement and 

configuration, which enhanced the stability and reliability of the results. These findings 

suggest that EIT could be a promising alternative for breast cancer screening, offering 

advantages such as high sensitivity, capability to identify tumors in denser breasts, absence 

of radiation exposure, and cost-effectiveness. 
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1. INTRODUCTION

Breast cancer (BC) is the second most common cancer in 

women worldwide. In fact, in 2020, it surpassed lung cancer 

to become the leading cause of global cancer incidence, with 

an estimated 2.3 million new cases, constituting 11.7% of all 

cancer cases. Epidemiological studies forecast that the global 

prevalence of BC is expected to exceed 2 million by 2030 [1]. 

High-income countries boast five-year survival rates for breast 

cancer nearing 90%, a stark contrast to middle- and low-

income countries (66% in India and 40% in South Africa) [2]. 

The exact cause of breast cancer remains elusive, but it is 

widely recognized that early detection enhances survival rates. 

By improving the rate of early detection, we can not only 

reduce mortality and improve treatment outcomes but also 

make a substantial impact on the overall combat against breast 

cancer. High-precision medical imaging modalities are 

imperative to discern tumors in the early stages of breast 

cancer. This will mitigate the need for unnecessary biopsies, 

refine cancer treatment strategies, and improve patient 

survival prospects [3]. Traditional imaging modalities for 

screening and detecting breast cancer include mammography, 

B-ultrasound imaging, and magnetic resonance imaging.

However, due to factors such as radiation exposure, low

resolution, and high costs, a variety of imaging modalities are

now being researched for breast cancer diagnostics [4-6]. The

need for cost-effective, efficient, and side-effect-free breast

cancer diagnostic and screening procedures has catalyzed the

development of novel techniques such as thermography, EIT,

infrared imaging, and optical imaging [7]. Electrical

Impedance Tomography (EIT), a unique imaging technology,

facilitates non-invasive, low-cost examination of biological

tissues [7]. It is a technique used to determine the conductivity,

permittivity, and impedance of a target [8]. By introducing a

safe current into a specific area of interest in the human body

and measuring the induced voltage at the boundary, one can

infer the conductivity distribution within the examined region

[9]. EIT leverages the distinct bioelectrical properties of

tissues for identification and differentiation [10]. A common

approach to achieve this is to fit data to the Cole-Cole model

to generate characteristic parameters.

Permittivity / conductivity is expressed as a function of 
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frequency by the Cole-Cole model which is given by 

 

Z∗ = 𝑅ℎ +
(𝑅𝑙−𝑅ℎ)

(1+(i
f

fr
)

(1−β)
)

  
(1) 

 

where, 𝑍∗  is the complex impedance 𝑅𝑙  and 𝑅ℎ  are the 

limiting resistance values at low and high frequencies, 

respectively; f is the frequency and 𝑓𝑟  is the characteristic 

relaxation frequency; and β is a dispersion constant fluctuating 

between 0 and 1. The impedance of a breast tissue is a complex 

number which is expressed in both, magnitude and phase [11]. 

The electrical properties and structure of tissues are 

considered when applying EIT in clinical scenarios [12]. A 

three-layered forward model was proposed, consisting of thin, 

low-admittance layers representing skin on the top and bottom, 

and a thicker, high-admittance layer representing breast tissue 

in the middle [13]. The amplitude of the current source 

remains within the safe range for human detection. The 

medical device standard 60601-1 is adhered to by early breast 

cancer EIT IC [14], brain function EIT systems [15], and brain 

health monitoring EIT systems [16]. In line with this standard, 

amplitudes in the µA range are limited at frequencies up to 1 

kHz, while frequencies exceeding 100 kHz are restricted to 

amplitudes of 10 mA [16]. A prior study proposed a 1 kHz, 0.9 

mA, in vitro and in vivo FPGA and LabVIEW-based model 

[17], where the resistance was calculated in both the right and 

left breast. If the resistance change exceeds the threshold value 

of 50, it is classified as a breast tumor. A 16-electrode, 45 kHz, 

1 mA model was proposed and utilized for experimentation 

with five different breast phantom shapes (in vitro), with the 

combined-shape approach providing improved tumor 

reconstruction [18]. A safe impedance measurement of the 

human body was conducted [19], where a current of 0.370 ± 

0.003 mA with frequencies ranging from 5 to 200 kHz was 

employed to solve the EIT forward problem. The results 

demonstrate that the proposed method achieves over 90% 

accuracy in tumor detection in the frequency range from 10 Hz 

to 100 kHz. EIT techniques are categorized into three groups: 

adjacent, opposite, and cross, depending on the stimulation 

and measurement modes. The sensitivity of adjacent 

excitations decreases from the periphery to the center of the 

target [20]. A preclinical site for a cancer simulator using 

breast agar phantoms was developed [21], and a novel 

Anomaly Tracking Circle algorithm was proposed that 

accurately pinpoints tumor locations. Simulations for a finite 

element model were performed at a frequency range of 2 to 3 

GHz. The percentage divergence of normal breast tissue from 

7 mm of malignant tissue for resistance and reactance was 

found to be 1.665% and 2.174%, respectively [22]. The 

performance of the voltage-controlled oscillator and voltage-

controlled current source used in the hardware setup was 

measured up to 2 MHz in the study [23]. Various resistor and 

capacitor combinations were tested to determine the system's 

accuracy. The relative error obtained was less than 0.55% 

across the entire range. The resulting surface potential was fed 

into the computer for image reconstruction using the NI USB-

6259, a 16-bit, 1.25 MS/s M Series High-speed DAQ. Optical 

imaging was incorporated into EIT to enhance image quality 

by utilizing a dual-modality reconstruction approach based on 

optical image-guided group sparsity [24]. In a study [25], the 

characteristics of 12 Mexican patients were classified into two 

groups: electrical conductivity (3) and medical records (9). 

The findings of the unsupervised method show that using only 

electrical conductivity (43%) outperforms all available 

features (38%), including medical records (33%). 

In EIT, surface electrodes are utilized to measure 

conductivity, permittivity, and impedance from various 

regions of the breast. By selecting suitable electrode materials 

and quantities, a tomographic image of the breast can be 

produced. Essentially, there are two types of EIT. The first is 

Absolute EIT, which operates based on the principle that 

conductivity varies among tissues. However, image 

reconstruction in this method is challenging due to the fact that 

the current traveling in the 3D path can yield multiple 

solutions. The second technique is Differential EIT, which is 

based on the movement of fluid and gas within tissues [26-28]. 

With multi-frequency EIT, a tomographic view of the 

identified parts can be obtained. EIT involves two fundamental 

steps: solving a forward and an inverse problem to derive 

specific tissue properties. The forward problem pertains to the 

measurement of voltage through the application of current, 

while the inverse problem involves the reconstruction of the 

original image [29]. 

This study addresses the ill-posed nature of EIT through the 

careful selection of electrode materials and configurations in 

solving the forward problem, with noise reduction considered. 

Sixteen electrodes and an adjacent pattern for current injection 

were used to collect the EIT data. The inverse problem was 

solved using a one-step Gauss-Newton method and total 

variation with a Noser prior. This study strives to enhance the 

quality of image reconstruction by effectively implementing a 

priori knowledge of medical imaging procedures. The 

structure of this paper is as follows: Section 2 provides a brief 

description of the analysis of the forward and inverse problem, 

along with simulation and experimental studies. Section 3 

discusses the image reconstruction results, comparing 

different reconstruction algorithms. Sections 4 and 5 present 

the Results and Conclusion, respectively. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Analytical approach to solve the forward problem 

 

EIT's forward problem is to determine the voltages on a 

breast tissue's surface given any current density distribution on 

the surface and conductivity distribution inside the breast. 

Maxwell’s equation governs the electromagnetic field created 

by applying a current density to the surface of a body. At low 

frequencies and low field strengths, they can be simplified to 

the generalised Laplace's equation [30]. There are numerous 

techniques for solving Laplace's equation. But for complex 

problems and complicated geometry, which is common in 

biomedical applications, the Finite element method is most 

widely used to implement the designed model under the 

boundary value condition for obtaining the electric potential 

as an output [31, 32]. 

The fundamental equation of EIT which is obtained from 

Maxwell equation is given by 

 

𝐽 = 𝜎 𝐸 (2) 

 

𝐸 = −∇𝑈 (3) 

 

where, 𝜎 denotes the conductivity distribution, E denotes the 

Electric field and U denotes the scalar voltage distribution 

within the field. 
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Combining the above two Eqs. (2) and (3): 

 

𝐽 = −𝜎 (∇𝑈) (4) 

 

Assuming there are no internal current sources then: 

 

∇. 𝐽 = 0 (5) 

 

Hence, 

 

∇. 𝜎( ∇U) = 0 (6) 

 

The above equation represents the Partial Differential 

Equation for EIT Forward Problem. 

Dirichlet boundary condition is given by: 

 

𝑈 =
Vl

El
  (7) 

 

Neumann boundary condition is given by: 

 

𝜎
∂u

∂v
=

Jl

El
  (8) 

 

The boundary condition for the complete electrode model 

used in this paper can be represented by: 

 

𝑢 + 𝑧1𝜎
𝜕𝑈

𝜕𝑉
= 𝑉1 on El, l = 1, 2, L (9) 

 

∫ σ
El

𝜕𝑈

𝜕𝑉
. 𝜕Ω = 𝐼𝑙  where Il=1, 2, L (10) 

 

σ
∂U

∂V
= 0 on Г

⋃ El
L
l=1

⁄      El=1, 2, L (11) 

 

Now, considering current density at the boundary as j then:  

 

𝑗 = [𝜎∇U]𝑛𝑜 (12) 

 

where, 𝑛𝑜 represents the outward normal to the boundary ∂Ω. 

By knowing the conductivity of the domain and electrodes, the 

potential distribution can be calculated. 

 

2.2 Analysis of forward problem using COMSOL 

Multiphysics 

 

The objective of this study is to identify tumour size, tumour 

location, and electrode position in terms of EIT parameters. 

Comsol Multiphysics software and a finite element model 

were used to accomplish this. It employs a mathematical 

model by separating the boundaries into smaller, simpler 

components. Under frequency domain analysis, an electrical 

current physics interface is employed to compute the electric 

field and potential distribution in a 2D model of the tissue. 

Table 1 shows the material properties used in the modelling of 

a common water tank model, and Figure 1 shows the geometry 

of the model. Here, 16 copper electrodes were chosen and 

positioned evenly around the breast perimeter. NaCl was taken 

as a homogenous medium representing breast tissue. An 

anomaly was inserted as a depiction of a tumour in the tissue. 

The equation for electric current interface is given by: 

 

∇. 𝐽 = 𝑄𝑗.𝑣 (13) 

 

𝐽 = 𝜎𝐸 + 𝑗𝜔𝐸 + 𝐽𝑒 (14) 

The dielectric model is expressed as: 

 

𝐷 =∈0∈𝑟 𝐸 (15) 

 

The boundary current source is governed by: 

 

𝑛. (𝐽1 − 𝐽2) = 𝑄𝑗.𝑠 (16) 
 

For frequency domain analysis:  
 

𝑛. 𝐽 = 0 (17) 

 

An adjacent electrode configuration is used by supplying an 

alternating current of 1 mA at 50 kHz frequency to electrode 

1 by using a boundary current source, and the ground is 

connected to the adjacent electrode (2). The voltage 

measurements were saved as a ".txt" file after they were 

recorded in the evaluation table. Now, a conducting material 

followed by a non-conducting material is inserted that 

represents a malignant and benign tumour. The experiment is 

repeated for both criteria, and the potential distribution is 

obtained. 

 

Table 1. Material properties used in COMSOL 

 

Parameters 
Conductivity 

σ(S𝒎−𝟏) 
Geometry 

Homogeneous medium 

(Nacl) 
1.6 7cm 

Malignant tumor 1.12 1cm 

Benign tumor 0.5 1cm 

Electrodes (Ag) 61.6 e6 
Height=0.2cm 

Width=1cm 

 

The electric potential distribution in the remaining electrode 

pair is measured, excluding the current-carrying electrode. By 

using the parametric sweep option in COMSOL, the 

simulation is repeated by switching the current among the 

remaining electrodes. 

 

 
 

Figure 1. Geometry representing the water tank model with 

electrodes and anomaly 

 

A distinct difference is observed in electric field distribution 

and electric potential distribution for homogenous and non-

homogenous media. All the readings were stored as a text file, 

which will be used for image reconstruction in solving the 

inverse problem of EIT. 

 

2.3 Analysis of forward problem using hardware setup 

 

Without ethical concerns, prototype development for 

biomedical applications cannot be directly implemented on 

humans. A breast-shaped plastic water tank model is taken for 
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experimentation. Initially, silver was used as a material for 

electrodes; later, 16 copper electrodes were chosen for 

effective measurement. They are placed equidistantly on the 

surface of the phantom. A length of 7 cm and a width of 0.2 

cm are taken as measurements of the electrode. For the study, 

a 0.9% w/v NaCl-saline injection is used as a homogeneous 

medium. A permissible current of 1 mA is applied to the first 

electrode, and electrode 2 is grounded. This process is repeated 

until all the electrodes are acting as current sources and the 

adjacent drive method is used for the experiment. This 

represents the homogeneous voltage distribution of breast 

tissue. A total of 256 measurements are recorded. But since the 

current-carrying electrode exhibits noise, readings from those 

electrodes were omitted, resulting in 208 measurements. An 

object made of plastic is inserted, and then a conducting metal 

is inserted, representing the benign and malignant tumours in 

the breast. The entire process is repeated, and the electric 

voltages are tabulated. From the readings obtained, the 

location of the tumour can be easily identified. This process is 

quite time-consuming due to the manual measurement of 

voltage and switching speeds of current electrodes.  

To overcome this, a design is proposed in this paper, as 

shown in Figure 2. Hardware components should be chosen 

with extreme care so that artefacts are kept to a minimum and 

negligible level during the design stage. 

 

 
 

Figure 2. Block diagram representation of EIT System 

Implementation 

 

A conventional function generator can be used, or the 

IC2206CP can be used to generate a sine waveform. The 

output of this is given to the Enhanced Howland current 

source, which is connected using an LM318 op-amp [33]. This 

gives a constant current of 1 mA to the phantom, as shown in 

Figure 3. 

 

 
 

Figure 3. Enhanced Howland current source 

The current of 1 mA is determined by using Ohm's law. 

 

𝑖𝐿 =
𝑉𝑖

𝑝.𝑅𝑠
  (18) 

 

where, 

 

𝑝 =
𝑅1

𝑅2
=

𝑅3

𝑅4
  (19) 

 

This circuit acts as a voltage-controlled current source for 

the entire circuit. The switching of current between electrodes 

is performed by using a 16-channel analog multiplexer, 

CD74HC4067. Two such multiplexers are needed for inducing 

current and measuring voltages. The resulting measurements 

from breast tissue are on the order of millivolts. Any external 

or DC-offset noise that interferes with the signal leads to an 

error. Hence, these signals are sent to a high-pass filter to 

remove the noise caused by electrodes. Because EIT operates 

by difference imaging, the differences between adjacent 

voltages are measured by rejecting common-mode signals. 

The instrumentation amplifier AD620, which is shown in 

Figure 4, does this operation and has a high CMRR [33]. The 

peak detector is designed using LF 356, which is a low-noise 

amplifier, as shown in Figure 5. The positive half of the signal 

is detected and stored in a capacitor, which is given as an input 

to the ADC [34]. MCP3008 is used for the conversion of an 

analog signal to a digital signal. It has 8 channels and a 

sampling frequency of 200 k samples per second, which is a 

successive approximation type. Thus, the voltage 

measurements from the breast tissue are given to the controller, 

which is an Arduino Uno in this paper. 

 

2.4 Analysis of the inverse problem of EIT for image 

reconstruction 

 

The Image Reconstruction Algorithm plays a vital role in 

obtaining the final conductivity distribution of the breast 

tissue. Improving EIT image quality requires conservation of 

the region of interest, conductivity differences, and reduction 

of noise and artefacts [24].  

Conductivity distribution and induced potential distribution 

are related by the following equation: 

 

V = F(σ) + ε (20) 

 

where, F is a function of non-linear mapping of EIT which is 

given by F ∶ Zn → Zm and ε is the noise in measurement. The 

boundary voltage is represented as V ∈ Zm and conductivity 

distribution as σ ∈ Zn. Electrical Impedance Tomography and 

Diffuse Optical Reconstruction Software (EIDORS) is a 

MATLAB-based open-source reconstruction package. We 

used for solving inverse problem as it is a versatile and user-

friendly platform to model, simulate, and reconstruct images 

of internal conductivity particularly in medical imaging and 

industrial processes. The inverse problem does not have a 

single solution but instead relies on the chosen parameters [35-

37]. The one-step Gauss-Newton (GN) algorithm, when 

chosen as a direct linear reconstruction method, gives a 

satisfactory reconstruction of real-time applications. Since this 

is a non-iterative method, the results are computed in a short 

period. GN is used in conjunction with a well-known prior 

probability function, the NOSER prior, for an effective 

solution. Although the results of the GN solver give a stable 

solution and has faster convergence rate, the appropriate 
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location of the tumour is not identified. Hence, we have 

switched to the Total Variation (TV) regularisation method, 

which is an iterative algorithm for solving the inverse problem 

of EIT. The TV regularization method is well-suited as it can 

provide superior reconstruction in the presence of strong 

inhomogeneities and noise while preserving sharp edges for 

accurate tumor localization. 

 

2.5 Image segmentation 

 

After image reconstruction, the next major operation is to 

find the region of interest (RoI). This is achieved by an 

important tool in medical image processing known as 

segmentation. There are five image segmentation techniques: 

threshold-based, region-based, edge-based, cluster-based, and 

watershed-based segmentation. The region-based analysis 

identifies regions that share a common homogeneous 

condition [32], whereas cluster-based analysis distinguishes 

clusters from the background. The K-means clustering 

algorithm is used in this paper as it provides promising results. 

It is used to segment images into clusters to locate benign and 

malignant tumour positions. First, it randomly selects K data 

points from the dataset as initial cluster centroids. Then, it 

assigns each data point to the nearest cluster centroid based on 

a chosen distance metric, such as Euclidean distance. After the 

assignment, the centroids of each cluster are recalculated by 

taking the mean of all data points assigned to that cluster. The 

algorithm iteratively repeats the assignment and centroid 

update steps until convergence or a set number of iterations. 

 

 

3. RESULTS  

 

The proposed method is evaluated by both numerical 

simulation and experimental set up.  

 

3.1 Simulation results of forward problem 

 

 
(a)                                       (b) 

 

Figure 4. (a) Geometry of homogenous medium (b) Electric 

potential distribution of homogenous medium 

 

The simulation of the forward problem was carried out 

using COMSOL Multiphysics software. A model was created 

that mimics the experimental setup to check the performance 

of the system. The parameters of the model were chosen as 

mentioned in Table 1. An adjacent electrode configuration was 

followed, where the excitation electrode was connected to the 

boundary current source and the adjacent electrode was 

connected to the ground. The potential distribution was 

obtained by measuring the voltages at the remaining electrodes 

in the model. At a frequency of 50 kHz, a current of 1 mA was 

injected. The geometry was created as shown in Figure 4 (a), 

and the potential distribution for homogenous medium is 

shown in Figure 4 (b). 

A 1-cm object was inserted to represent an abnormality 

within the medium, resulting in a heterogeneous medium. Fine 

meshing was done, and the conductivity of the object was 

chosen initially to represent a malignant tumour and then a 

benign tumour. Figures 5(a) and (b) represent the voltage 

distribution and electric field norm of a malignant tumour. 

 

 
(a)                                          (b) 

 

Figure 5. (a) Electric potential distribution showing 

malignant tumour (b) Electric field norm of malignant 

tumour 

 

 
(a)                                                   (b) 

 
(c)                                                           (d) 

 
(e) 

 

Figure 6. (a) Electric potential distribution showing benign 

tumour (b) Electric field norm of benign tumour (c) Electric 

potential distribution at excitation near malignant tumour (d) 

Electric potential distribution at excitation near benign 

tumour (e) Electric field norm near benign tumour 
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Now a non-conducting object is inserted, representing a 

benign tumour. The procedure is repeated, and the electric 

potential distribution and electric field norm of a benign 

tumour is represented as shown in Figures 6 (a) and (b). A 

condition is tested in which two anomalies are inserted, one 

benign and the other malignant. Figures 6 (c–e) depict the 

voltage and field distribution of the aforementioned model at 

two different excitations. The arrow plot indicated in Figures 

6 (c) and (d) indicates the current absorption is higher in 

cancerous cells than in benign cells, where resistivity is higher. 

 

3.2 Experimentation setup of forward problem 

 

A manual experimentation setup for solving the forward 

problem is shown in Figure 7(a-d). Here, a plastic container in 

the shape of a breast is used, and NaCl solution is used as the 

homogenous medium. As anomalies in the medium, 1 cm of 

metal and 1 cm of plastic rod are inserted to make it 

heterogeneous. The conductivity of a metal rod is high, 

representing a malignant tumour, and plastic represents a 

benign tumour. 1 mA, 50 kHz current is injected via 16 copper 

electrodes through the VCCS. The experiment was carried out 

with both copper and silver electrodes to test the influence of 

electrode material. An adjacent current injection pattern is 

followed, where electrode 1 is connected to the positive of the 

VCCS and electrode 2 is connected to the ground. The 

experiment is repeated by switching the current injection pair 

(2-3, 3-4, 16-1) between electrodes until all electrodes act as 

excitation electrodes. 

 

 
(a)                                                   (b) 

 
(c)                                                (d) 

 

Figure 7. (a) Geometry with electrodes (b) Voltage 

measurements of homogenous media using copper electrodes 

(c) Voltage measurements of a metal object inserted as an 

anomaly (d) Voltage measurements of a plastic object 

inserted as an anomaly 

 

3.3 Image reconstruction 

 

The nonlinear forward operator F (σ) defined in Eq. (20) is 

reversed in the EIT inverse problem in order to rebuild the 

conductivity σ within the body Ω from a limited number of 

measured voltages Vm on the boundary surface. The following 

non-linear regularised least squares problem is a simple 

approach to rebuilding the conductivity data. 

 

𝑓(𝜎) =
ℎ

2
∫(𝐹(𝜎) − 𝑉𝑚)2𝜕𝛺 + 𝑃(𝜎)  (21) 

 

where, h is the regularisation parameter and P(σ) is the 

regularisation term to acknowledge the priori information 

about the conductivity distribution. Figure 8 (a–c) shows the 

image reconstructed by the one-step Gauss-Newton algorithm, 

where the red colour indicates higher conductivity and the blue 

colour indicates lower conductivity. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. (a) Reconstructed image showing malignant 

tumour(left) by GN algorithm and its 3D view(right) (b) 

Reconstructed image showing benign tumour(left) 3D 

view(right) (c) Reconstructed image showing one malignant 

and one benign tumour by GN algorithm (left) 3D 

view(right) 

 

Figure 9 (a–c) shows the same image reconstructed using 

the total variance method for accurate reconstruction. Total 

variance reconstruction is an iterative process and more time-

consuming than the simple Gauss-Newton algorithm. But the 

results give information regarding the position of the tumour. 

Compared to traditional linear reconstruction methods, both 

the one-step Gauss-Newton and TV methods can handle 

nonlinear inverse problems, making them more suitable for 

breast cancer detection with complex tissue characteristics. 

The choice of the one-step Gauss-Newton and TV methods 

have been driven by their balance of computational efficiency, 

robustness to noise, and their ability to handle nonlinear 

inverse problems. 
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(a) 

 
(b) 

 
(c) 

 

Figure 9. (a) Reconstructed image showing malignant 

tumour(top) by TV algorithm for different iterations and its 

3D view(bottom) (b) Reconstructed image showing benign 

tumour(top) for different iterationsand its 3D view(bottom) 

(c) Reconstructed image showing one malignant and one 

benign tumour by TV algorithm(top) for different iterations 

and its 3D view(bottom) 

 

3.4 Image segmentation by K-means clustering algorithm 

 

K-means clustering is an unsupervised machine learning 

algorithm where there is no labelled data available. The 

reconstructed image is loaded in MATLAB, and the number 

of clusters has to be given as an input (k = 4). The data points 

are assigned closer to the centroid, and the variance is 

calculated. Based on this, a new centroid is placed in the 

cluster, and the process is repeated until the data points are 

grouped into clusters. Figure 10 shows the clustering of both 

malignant and benign tumours reconstructed via the one-step 

Gauss-Newton Approach. The total variance with the pdipm 

algorithm with TV priori gives the exact location of tumours, 

which are shown in Figure 11. 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 10. Segmentation showing four clusters using the K-

means clustering algorithm on the reconstructed image 

(obtained via the GN_one_step method) (a) Benign tumour 

(b) Malignant tumour (c) Both benign and malignant tumour 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. Segmentation using the K-means clustering 

algorithm showing four clusters on the reconstructed image 

(obtained via the TV_pdipm method) (a) Benign tumour (b) 

Malignant tumour (c) Both benign and malignant tumour 
 

 

4. DISCUSSIONS 

 

An important consideration of EIT research is modelling 

mistakes, which are typically brought on by a discrepancy 

between the forward model and the physical prototype. Errors 

are frequently caused by mismatched shapes and ambiguous 

electrode positions. In EIT-based medical imaging, where 

electrode placements and boundary shapes may not be fully 

understood and may vary over time, modelling mistakes are 

crucial. To address the EIT inverse problem, two different 

solvers were used, such as total variation (TV) and Gauss-

Newton one-step (GN): NOSER. The GN algorithm 

performed better for identifying anomalies than the TV 

algorithm, which was useful for identifying smaller tumours. 

It was observed that increasing the repetition enhanced TV 

reconstruction performance. Finally, GN methods were 

selected and used in various tests to attain the objectives. The 

solution to the forward problem, which is the electric potential 

distribution between malignant tumour, benign tumour and 

homogeneous conditions, is plotted as shown in Figure 12. 

Malignant tumours have a smaller voltage difference than 

normal tissues. The output of the proposed methodology 
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suggests that malignant tumour cells have a lower permittivity 

than normal cells, which the system can readily identify. Since 

the complexity of real breast tissue qualities cannot be fully 

captured by the forward problem-solving approach outlined, it 

is crucial to validate the suggested methodology using a larger 

and more varied clinical dataset. Total accuracy and specificity 

can be increased through comprehensive clinical validation 

and the use of hybrid imaging modalities. 

 

 
(a) 

 
(b) 

 

Figure 12. Comparison of voltage differences between (a) 

Malignant and normal breast tissue model (b) Benign and 

normal breast tissue model 
 

 

5. CONCLUSION 
 

In this paper, Electrical Impedance Tomography for breast 

cancer imaging is suggested. It is low-cost, has a simple 

hardware implementation, and employs a non-ionizing 

method. The study presented in this paper demonstrates that 

the single-frequency sinusoidal AC signal of 50 Hz can 

identify even a small breast anomoly of 1cm by choosing the 

proper electrode configuration. EIT simulation results show 

that the method has the capability to classify the tissue based 

on conductivity and permittivity. The data are smoother and 

have fewer artifacts, which helps to enhance the quality of the 

reconstructed images and makes them better suited for breast 

cancer conductivity tomography imaging systems. With a 

hyperparameter value of 0.022, the system works faster and 

more effectively when a simple reconstruction algorithm, 

namely the Gauss-Newton one-step algorithm, is used. The 

final step of the color-based k-means clustering algorithm 

efficiently segments the anomaly with tumor classification, 

enabling early detection and increasing the survival rate of 

breast cancer patients. 
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