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The ability to accurately and swiftly detect grape leaf diseases is paramount in preventing 

and managing grapevine afflictions. A delay in the identification and treatment of these 

infections can lead to substantial economic losses owing to reduced grape yields and 

compromised quality. Conventional deep learning models, such as ResNeXt and Capsule 

Networks, though effective, are resource-intensive and require extensive training time. Their 

application on resource-constrained devices or in remote vineyards can, therefore, be 

challenging. Capsule Networks hold significant promise in grape leaf disease identification 

due to their ability to preserve hierarchical relationships and spatial hierarchies of grape 

leaves. This study presents an innovative approach to grape leaf disease detection by 

constructing a lightweight Capsule Network that utilizes depth-wise separable convolutions. 

This modification from traditional convolutions, used in ResNeXt and conventional Capsule 

Networks, enhances the reception of the convolution field and facilitates the extraction of 

deep-level features from infected leaf images, while minimizing computational cost and 

improving training results. A comprehensive disease severity index, calculated from the 

entirety of the leaf images, is incorporated to assess the stages of plant disease by considering 

all leaf infections. Experimental results obtained from the Plant Village public dataset 

demonstrate the efficacy of the proposed method in diagnosing grape leaf diseases. The 

method exhibits a marked reduction in computational complexity compared to the existing 

deep learning model, ResNeXt, and traditional Capsule Neural Networks. In addition to 

disease detection, the severity index also allows for quantifying the stage of the disease. The 

findings of this study underscore the potential of the proposed depth-wise separable 

convolution-based lightweight Capsule Network in facilitating efficient and comprehensive 

grape leaf disease detection and assessment. 
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1. INTRODUCTION

Convolutional Neural Networks (CNNs) possess the ability 

to recognize features irrespective of their position in an image 

due to their property of translation invariance. However, they 

can grapple with complex transformations that extend beyond 

fundamental translations. Capsule Neural Networks 

(CapsNets), with their ability to capture hierarchical spatial 

relationships, could potentially address more intricate changes 

associated with grape leaf diseases. While pooling layers in 

CNNs extract hierarchical features, they may inadvertently 

lose information. In contrast, CapsNets inherently manage 

hierarchical characteristics by design, which could be 

beneficial for diseases with complex structures in grape leaves. 

Capsule Neural Networks, a distinct form of neural network 

architecture, are designed to better manage the spatial and 

hierarchical relations among features in images or other types 

of data [1, 2]. Each layer in a CapsNet contains multiple 

"capsules" or groups of neurons that represent varied visual 

aspects or attributes of the input data. The interaction between 

these capsules forms a hierarchical representation of the data. 

The primary innovation in CapsNet is the implementation of 

"dynamic routing," which allows capsules in one layer to 

interact preferentially with capsules in the following layer, 

based on their prediction consensus [3]. This direct 

representation of feature relationships by CapsNets helps 

overcome some limitations of traditional CNNs. CapsNet 

shows promise in enhancing the robustness and 

interpretability of deep learning networks, particularly for 

image and video data. Despite being a relatively new field of 

study, it is anticipated that more advancements and 

modifications are on the horizon. 

A capsule network is primarily composed of two essential 

components: encoders and decoders [4, 5]. With a total of six 

layers, the first three layers constitute the encoder, responsible 

for transforming the input image into a vector. The initial layer 

of the encoder, a convolutional neural network, extracts the 

fundamental features of the image. The second layer, the 

PrimaryCaps Network, uses these basic elements to discern 

more complex patterns. The third layer, the DigitCaps 

Network, comprises a variable number of capsules. After these 

stages, the encoder produces a vector that proceeds to the 
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decoder. The decoder, consisting of three interconnected 

layers, uses this vector as a starting point to attempt to 

reconstruct the original image. This ability to predict events 

based on its experience strengthens the network. 

The matrix between the first layer and the second layer is 

multiplied to encode spatial relationship information, and the 

encoded information represents the probability of label 

classifications. During the computation step, the lower-level 

capsules adjust their weights in accordance with the weights 

of the higher-level capsules. They do this to align with the 

weights of the superior capsules. The higher-level capsules 

map the weight distribution and permit the majority to pass. 

Through dynamic routing, they can all communicate with each 

other. During dynamic routing, the lower capsules transmit 

their data to the parent capsule. The capsule that receives the 

majority of data is designated as the parent capsule. All 

capsules send their data to the capsule they deem most 

appropriate. The parent capsules distribute the weights 

according to the agreement.  

Dynamic routing can encounter difficulties when 

identifying disease spots on grape leaves when these images 

are presented as input. The capsules focus their attention on 

the image, particularly its invariant aspects, aligning the frame 

of the leaf with respect to its borders. After determining 

whether the object is a leaf, they relay their predictions to the 

higher-level capsules. If the projections of the leaf's edges 

correspond with the predictions of other lower-level capsules, 

the object is classified as a leaf. This process exemplifies 

routing by agreement. 

Dynamic routing plays a crucial role in Capsule Neural 

Networks by orchestrating how lower-level information is 

amalgamated to form higher-level features. Initially, the input 

image of the grape leaf is processed through convolutional 

layers to identify basic attributes, such as edges and corners. 

Each discerned feature prompts the activation of a primary 

capsule. The activation vector linked to a primary capsule 

denotes the properties of the specified feature, including 

aspects like orientation, location, and various visual qualities. 

For each primary capsule, a transformation matrix is obtained. 

This matrix embodies a means of encoding how lower-level 

features transform to contribute to the formation of higher-

level features. The transformation matrix symbolizes the 

relationships between the activations of primary capsules and 

their collective representation of more complex patterns. 

Prediction vectors in higher-level capsules are formulated by 

calculating the weighted sum of primary capsule activations, 

which are then transformed using their respective 

transformation matrices. These prediction vectors denote the 

existence and attributes of features on a higher level. Within 

the scope of grape leaf disease identification, these 

characteristics could correspond to different disease symptoms 

or patterns. 

Following the generation of transformation matrices and 

prediction vectors, the initialization of routing weights is 

performed. This involves assigning initial values to the routing 

weights that connect primary and higher-level capsules, a 

process known as weight initialization. The routing weights 

dictate the degree to which primary capsules contribute to the 

prediction vectors of higher-level capsules. 

During each iteration of dynamic routing, the following 

steps occur: 

Prediction Aggregation: The transformation matrices of 

primary capsules are multiplied by activations to generate 

"transformed prediction vectors". These transformed vectors 

from all primary capsules are then summed to feed into higher-

level capsules. 

Routing Update: A softmax operation is applied to the input 

to yield routing weights that represent the agreement between 

primary and higher-level capsules. These routing weights 

determine the extent to which each primary capsule's 

information impacts the prediction vectors of higher-level 

capsules. 

Weighted Sum: The weighted contributions of primary 

capsules are combined to form the output prediction vectors of 

higher-level capsules. 

The final layer of the CapsNet comprises output capsules, 

each representing a distinct illness category or pattern. The 

prediction vectors produced by these output capsules are based 

on the inputs from higher-level capsules, with each prediction 

vector being unique to a specific class. 

Capsule neural networks address the limitations associated 

with spatial and hierarchical relationships between features in 

traditional convolutional neural networks [6, 7]. However, 

CapsNets also present challenges and constraints, including 

high computational cost and the need for more scalability [8]. 

Due to their increased processing demands, training and 

predicting with CapsNets may be challenging for devices with 

limited resources [9, 10]. Additionally, the cost and 

complexity of computation can escalate significantly when 

more layers and capsules are added, making CapsNets difficult 

to scale. 

To address these drawbacks, a new advancement called 

lightweight capsule neural networks (LWCNs) has been 

introduced [11]. LWCNs aim to reduce the computational cost 

and training time associated with CapsNets. Compared to 

CapsNets, LWCNs offer several benefits: 

Reduced Computational Cost: LWCNs are designed to be 

compact and efficient, making them suitable for deployment 

on resource-constrained devices, including smartphones and 

embedded systems. 

Improved Scalability: Depending on the complexity of the 

task and the available resources, LWCNs can be scaled up or 

down. 

Enhanced Performance: LWCNs have shown promising 

results in various computer vision applications, such as object 

recognition and image classification, sometimes 

outperforming traditional CNNs and CapsNets. 

A variant of CapsNet, known as a lightweight capsule 

neural network (LWCN), has been developed to be 

computationally efficient and suitable for deployment on 

systems with limited computing resources, such as mobile 

devices, IoT devices, and embedded devices [12]. The primary 

goal of a lightweight CapsNet is to reduce the number of input 

parameters and computations while maintaining high accuracy. 

Several strategies are employed to achieve this, including 

compression, pruning, quantization, factorization, and 

knowledge distillation. Compression involves reducing the 

number of capsules, neurons, and convolutional filters in each 

layer to minimize the number of parameters [13]. Pruning 

involves removing redundant connections or neurons that do 

not significantly contribute to the output. Quantization 

involves representing weights and activations with lower 

precision to conserve memory and accelerate inference. 

Factorization techniques like low-rank approximation are used 

to minimize the number of parameters in convolutional layers 

[14]. Knowledge distillation involves training the smaller 

network to mimic the larger one, thereby transferring 

knowledge from a larger CapsNet to a smaller one. 
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The task of identifying grape leaf diseases using deep 

learning models, including capsule neural networks, presents 

several challenges, such as imbalanced datasets, fine-grained 

discrimination, complexity, and CPU resources. For effective 

learning, deep learning models require a large and well-

balanced dataset. If the dataset is limited in size or exhibits 

uneven distribution across various disease classifications, the 

model might struggle to effectively adapt to new, unseen data. 

Grape diseases often cause subtle changes in the texture, 

color, and structure of leaves. To distinguish between different 

disease categories, deep learning models need to capture this 

fine-grained information. Standard convolutional neural 

networks might struggle with this task unless they are 

sufficiently complex and deep. 

Deep learning models like ResneXt [15] and Capsule 

networks demand substantial computational resources for 

training and inference processes. Limited access to powerful 

hardware can pose a challenge for researchers. Additionally, 

detecting disease on a single leaf doesn't provide a 

comprehensive picture of the overall health of the grape plant. 

Therefore, this study focuses on determining the disease 

severity index to assess the overall disease status and to 

identify whether the diseases are in their initial or advanced 

stages. 

The aforementioned issues with existing grape leaf disease 

detection systems have led to the proposal of a new network 

called lightweight capsule networks. The main contributions 

of this paper are: 

⚫ The development of a lightweight capsule neural 

network. 

⚫ A comparison of computational times, trainable 

parameters, and accuracies between the proposed 

model and existing models. 

⚫ The calculation of the disease severity index. 

 

 

2. PROPOSED METHOD 

 

Before sending features to the capsule layers for spatial 

relationship analysis, extracting features from an input picture 

using depth-wise convolution as part of a capsule network 

design is feasible. While it provides more effective and 

lightweight computing, depth-wise convolution is generally 

utilized in this context to replace classic convolutional layers. 

Unlike standard convolutional layers, which apply each filter 

to every input data channel simultaneously, depth-wise 

convolution applies each filter to just one channel 

simultaneously. This makes the model more effective by 

lowering the number of parameters that must be learned. 

Combining depth-wise convolution with capsule networks 

may produce an efficient and effective lightweight capsule 

neural network model for picture object recognition. The 

following capsule layers investigate the spatial correlations 

between the low-level data extracted by the depth-wise 

convolutional layer to recognize objects in the picture. 

The classic CapsNet ideas used to determine the illness of 

grape leaves are shown in Figure 1. The input layer receives a 

picture with the dimensions 128×128×3. The convolutional 

layer performs a typical convolution to extract information 

from the input picture. Usually, a non-linear activation 

function like ReLU is present in this layer [16]. The number 

of filters or the convolution stride may be changed to alter the 

output size of this layer, which is typically less than the input 

size. The output of the convolutional layer is transformed into 

capsules by the main capsule layer. Each of these capsules, 

which are 16-dimensional vectors, is placed in an 8x8 grid. A 

tensor of the dimensions 8×8×256, where 256 is the number 

of capsules, is the output of the principal capsule layer [17]. 

The output from the primary capsules layer is subjected to 

dynamic routing in the digit capsules layer, enabling the 

capsules to exchange information and coordinate their outputs. 

The layer of digit capsules produces a tensor of size 4x16, 

where 4 is the number of classes, and 16 is the dimension of 

each output capsule. 

The decoder network [18] recreates the input picture using 

the digit capsules layer's output. To do this, the output capsules 

are sent through several completely linked layers, each of 

which gradually converts the output capsules into a pixel-by-

pixel image reconstruction. The decoder network produces a 

tensor with the dimensions 128×128×3, representing the 

reconstructed picture. To determine the class of the input 

picture, the output layer employs the results from the digit 

capsules layer. A softmax function is applied to the output 

capsules, and the class with the highest probability is chosen 

[19]. The likelihood that the input picture belongs to each of 

the four categories is contained in a tensor of dimension four 

produced by the output layer. 

A tensor with the dimensions [batch size, height, width, 

channels] is the input to a CapsNet. The first layer of the 

network is commonly a convolutional layer that uses a kernel 

with the shape [kernel size, kernel size, channels, filters] to 

conduct conventional convolution on the input tensor. Filters 

are the number of output channels in this case. The 

convolutional layer is represented as: 

 

C = conv⁡(X, K) (1) 

 

where, C is the output shape [batch_size, height', width', 

filters], X is the input shape [batch_size, height, width, 

channels], and K is the convolutional kernel of shape 

[kernel_size, kernel_size, channels, filters] 

Convolutional layer output is transformed into a tensor of 

capsules by passing it via a non-linear activation function like 

ReLU. Assume that the convolutional layer's output is a tensor 

C with the following dimensions: batch size, height', width', 

and filters. It may be reshaped into a tensor P with the 

following dimensions: batch size, height * width * filters / 

caps_dim, caps _dim, where caps dim is the dimensionality of 

each capsule. The primary capsule layer is represented as: 

 

P = ⁡reshape⁡(⁡activation⁡(C)) (2) 

 

where, P is output tensor of shape [batch_size, height' * width' 

* filters / caps_dim, caps_dim], activation is an activation 

function, such as ReLU, and reshape is a reshape operation 

In CapsNets, the output of the primary capsule layer is 

routed to the appropriate higher-level capsule based on the 

agreement between the output and the capsule's prediction 

vector. This is done by computing the scalar product between 

the output and the weights of each capsule, squashing the 

result using a non-linear activation function, and so on. The 

capsule operations can be represented as: 

 

uhat = W@P (3) 

 

u = squas h(uhat) (4) 

 

v = ⁡route⁡(u, b) (5) 
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where, uhat is predicted output shape [batch_size, 

num_capsules_i, num_capsules_j, dim_j, 1], W is weight 

matrix shape [num_capsules_i, num_capsules_j, dim_i, 

dim_j], and P is input tensor of shape [batch_size, height' * 

width' * filters / caps_dim, caps_dim]. 

Without depth-wise separable convolution, CapsNets 

employ conventional convolutional layers that apply several 

filters to the input picture to extract features before passing 

those data through several fully connected layers to generate 

predictions. Then, capsules indicate the existence or absence 

of a specific characteristic in a picture. 

 

 
 

Figure 1. Traditional CapsNet 

 

Contrarily, the suggested method, LWCNs with depth-wise 

separable convolution, employs a unique convolutional layer 

that divides spatial filtering and channel filtering tasks [20]. 

This layer consists of two steps: pointwise convolution, which 

combines the filtered channels, and depth-wise convolution, 

which filters each channel of the input picture separately. By 

using fewer parameters, this method speeds up calculation 

without sacrificing precision. Figure 2 depicts the suggested 

depth-wise light-weight capsule neural network. 

 

 
 

Figure 2. Depth-wise light-weight capsule neural network 

 

Initially, a 128×128×3-pixel picture is loaded into the input 

layer (where 3 is the number of color channels - red, green, 

and blue). Subsequently, a depth-wise separable convolution 

layer is applied to the input data [21, 22]. Combining depth-

wise convolution, which uses a distinct filter for each input 

channel, with pointwise convolution [23], this convolutional 

layer is intended to be more computationally efficient than 

ordinary convolution [24] (which involves a 1×1 filter to 

combine the output of the depth-wise convolution across 

channels). 

This layer generates a 128×128×32 feature map. The feature 

map is then processed through two additional depth-wise 

separable convolution layers, each having twice as many 

channels as the feature map's spatial dimensions. These layers 

produce feature maps, the first of which is a 64x64x64 feature 

map and the second a 32×32×128 feature map. 

The primary capsule layer uses the output from the 

preceding layer. It transforms information into capsules, 

vectors representing an object's attributes in a picture, 

including its scale, orientation, and location. Each of these 

capsules, which are 16-dimensional vectors, is placed in an 

8×8 grid. A tensor of the dimensions 8×8×256, where 256 is 

the number of capsules, is the output of the principal capsule 

layer. The class capsules layer uses the output from the 

primary capsules layer. The mechanism it uses, known as 

dynamic routing, enables the capsules to interact with one 

another and coordinate their outputs. The layer of digit 

capsules produces a tensor of size 4×16, where 4 is the number 

of classes, and 16 is the dimension of each output capsule. 

The decoder network recreates the input picture using the 

class capsules layer's output. To do this, the output capsules 

are sent through several completely linked layers, each of 

which gradually converts the output capsules into a pixel-by-

pixel image reconstruction. The decoder network produces a 

tensor with the dimensions 128×128×3, representing the 

reconstructed picture. To determine the class of the input 

picture, the output layer employs the results from the digit 

capsules layer. A softmax function is applied to the output 

capsules, and the class with the highest probability is chosen. 

The probability that the input picture belongs to each of the 

four categories is contained in a tensor of dimension four 

produced by the output layer. 

The dynamic routing mechanism of LWCNs uses depthwise 

convolution and pointwise convolution to detect the features 

and relationships among the features with less trainable 

parameters. Those depthwise convolution and pointwise 

convolution are represented in Eq. (6) and Eq. (7). 

Convolution is carried out independently on each input 

channel when using depth-wise convolution. Assume we have 

a depth-wise K of shape [kernel size, kernel size, channels, 

depth multiplier] and an input tensor X of shape [batch size, 

height, width, channels]. Here, the hyperparameter depth 

multiplier regulates the output tensor's depth. The depthwise 

convolution operation is represented as: 

 

Y = ⁡depthwise_conv(X, K) (6) 

 

where, Y is the output shape [batch_size, height, width, 

channels * depth_multiplier], X is the input shape [batch_size, 

height, width, channels], and K is a depthwise kernel of shape 

[kernel_size, kernel_size, channels, depth_multiplier]. With a 

1x1 kernel, pointwise convolution entails applying 

convolution to the depthwise convolution's output. Suppose 

we have a pointwise kernel K with the shape [1, 1, channels * 

depth multiplier, filters] and an input tensor Y with the shape 

[batch size, height, width, channels * depth multiplier]. Filters 

are the number of output channels in this case. The pointwise 

convolution operation can be represented as: 

 

Z = ⁡pointwise_conv(Y, K) (7) 

 

where, Z is output shape [batch_size, height, width, filters], Y 

is input [batch_size, height, width, channels * 

depth_multiplier], and K is the pointwise kernel of shape [1, 1, 
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channels * depth_multiplier, filters]. 

In LWCNs, the output of the pointwise convolution is 

routed to the appropriate higher-level capsule based on the 

agreement between the output and the capsule's prediction 

vector. This is done by computing the scalar product between 

each capsule's production and weights, squashing the result 

using a non-linear activation function, and so on. The capsule 

operations can be represented mathematically as: 

 

uhat = W@Z (8) 

 

u = squas h(uhat) (9) 

 

v = ⁡route⁡(u, b) (10) 

 

where, uhat is predicted output of shape [batch_size, 

num_capsules_i, num_capsules_j, dim_j, 1], W is weight 

matrix of shape [num_capsules_i, num_capsules_j, dim_i, 

dim_j], and Z is input tensor of shape [batch_size, height, 

width, filters]. 

 

3.1 Depthwise light-weight capsule neural network 

Algorithm 

 

Input: Original Grape Leaf Images D 

Output: DT, BS, ES, and DS 

Where  DT denotes Disease Type, 

             DS denotes Disease Stage,  

             BS denotes the Beginning Stage, 

             ES denotes End Stage 

 

Step1: Start 

Step2: Apply depthwise convolution layers over the Images  

Step3: Extract the Basic Features from images and form them    

           as primary capsules SC, LC, and YP 

           Where SC denotes a Small circle 

                       LC denotes a Large circle 

                       YP denotes Yellow Patches 

Step4: Process the spatial information of basic features 

Step5: Based on the frequency and spatial information of  

           capsules, find the overall features of DT 

Step6: Repeat step2 to step5 for all grape leaf images 

Step7: Calculate the disease severity index (DSI) by the  

           Following the formula to find the DS 

       DSI = Number of diseased leaves / Total number of   

                                                                     leaves * 100 

Step8: If DSI < 30 then 

           return BS 

           else 

           return ES 

Step9: End 

 

The grape plant leaf disease detection algorithm using a 

depth-wise lightweight capsule neural network is given above. 

It shows how the disease types and stages are identified. 

Neuronal clusters called capsules hold information about the 

location, frequency, and possibility of an object being there. 

Each entity in an image has a capsule in a network of capsules 

that offers the probability that the entity exists as well as the 

spatial characteristics of that entity. Local entity features, such 

as tiny circles, large circles, and yellow patches, are 

discovered using the depth-wise convolution layers. The 

capsule layer gathers the overall feature illness kind using low-

level feature frequency and spatial data. Eq. (11) calculates the 

Disease Severity Index [25, 26], which gives the idea about the 

infection stage [27] of the overall grape plant. 

 

DSI⁡ =
Number⁡of⁡diseased⁡leaves

Total⁡number⁡of⁡leaves
∗ 100  (11) 

 

The experimental setup and results of the traditional capsule 

neural network, deep learning model, and depth-wise light-

weight capsule neural network are discussed in the following 

section. 

 

 

3. EXPERIMENTAL SETUP AND DATASET 

 

The machine with the 2.90 GHz processor, 12 GB RAM 

Memory, and 4 GB Nvidia GeForce GTX 1080Ti GPU card 

implements the suggested approach for depth-wise lightweight 

capsule network-based grape leaves disease detection and 

classification. The system above does all of the computations. 

Concerning testing accuracy, epochs range from 30 to 50. The 

learning rate ranges between 0.01 and 0.001. To accommodate 

the network in the GPU, several batch sizes are tested. The 

range of the batch size is 5 to 32. It is set to 32 to accommodate 

computer memory. Several training parameter volumes are 

considered in the dataset throughout the training process [28]. 

Tables 1 and 2 include the ideal set of hyper-parameters [29, 

30] for the ResNeXt model, conventional CapsNet model, and 

depth-wise lightweight-based CapsNet. The ResNeXt model 

uses the same hyperparameter values used for the classical 

CapsNet for batch sizes, epochs, learning rate, optimizer, and 

activation. 

 

Table 1. Hyper-parameter of ResNeXt and traditional 

capsule network 

 
Hyper-Parameter Value 

Convolution output channels 32 

Primary capsule convolution 

output channels 
32 

Primary capsule vector length 8 

Class capsule vector length 16 

Class capsule output classes 4 

Reconstruction loss weight 0.0005 

Activation ReLu 

Optimizer Adam 

Learning rate 0.001 

Batch size 32 

Number of epochs 50 

 

Table 2. Hyper-parameter of depth-wise lightweight capsule 

network 

 
Hyper-Parameter Value 

Depthwise separable 

convolution output channels 
32 

Primary capsule convolution 

output channels 
256 

Primary capsule vector length 16 

Class capsule vector length 16 

Class capsule output classes 4 

Reconstruction loss weight 0.0005 

Activation ReLu 

Optimizer Adam 

Learning rate 0.001 

Batch size 32 

Number of epochs 50 
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The grape leaf image dataset includes images from the 

public PlantVillage dataset [31]. We used 12,000 grape leaf 

images of four different types from this data set. The different 

types of leaves used in this experiment are black rot, black 

measles, leaf blight, and healthy leaves. 

The dataset is randomly divided into a training set and a test 

set, in which the training set is used for training parameters, 

and the test set is used to verify the model. The data 

distribution of all the four classes is shown in Table 3.  

 

Table 3. The dataset used for CapsNet-based grape leaf 

disease classification 

 
Class Total 

Black Rot 3000 

Black Measles 3000 

Leaf Blight 3000 

Healthy 3000 

Total 12000 

 

 

4. RESULTS AND DISCUSSIONS 

 

The depth-wise light-weight CapsNet model's accuracy for 

grape plant leaf infection is determined to be 95.04% based on 

the confusion matrix shown in Figure 3. The confusion matrix 

shows the success of the suggested technique for each class. 

This makes it possible to evaluate the classifier's effectiveness 

visually. Although the rows decide the output class, the 

columns provide the actual class. In contrast to diagonal cells, 

which indicate misclassified observations, non-diagonal cells 

reflect correctly classified data. The results were calculated 

and presented as a percentage using the suggested 

methodology and the test data. It is evident from Figure 4 and 

Figure 5 that all classes are identified using the ResNeXt 

model and the conventional capsNet model but with additional 

trainable parameters. As per Table 4, The ResNeXt model 

accuracy is less than the other two CapsNets Models. Also, All 

the metrics like precision, recall, f1-score, and accuracy show 

that there is only a very slight difference between the 

recommended depth-wise light-weight capsule neural network 

classification accuracy and traditional capsule neural network 

classification accuracy but with significant differences in 

trainable parameters. 

Table 5 displays the training time and trainable parameters 

for all three models. Traditional CapsNet took more training 

time than ResNeXt and LWCN as the trainable parameters of 

CapsNet are very high compared to others. We used the 

convolution layer in the ResNeXt and conventional CapsNet 

model with 50 epochs. Nevertheless, we employed depth-wise 

separable convolution layers with 50 epochs in the second 

lightweight CapsNet model. Both depth-wise convolution and 

pointwise convolution are used in the depth-wise convolution 

layers. Pointwise convolution combines the filtered channels 

after depth-wise convolution applies a different filter to each 

channel of the input picture. By using fewer parameters, this 

method speeds up calculation without sacrificing precision. As 

a result, the depth-wise lightweight CapsNet has 90% fewer 

trainable parameters and training time than the original 

CapsNet model. The traditional first CapsNet model's total 

trainable parameters were 558,761,188, ResNeXt's total 

parameters were 257,864,288, and the depth-wise lightweight 

CapsNet model's total parameters were 51,092,559. 

The accuracy of the depth-wise lightweight CapsNet model 

with fewer trainable parameters was 95.04%, compared to 

95.37% for the initial standard CapsNet model with more 

trainable parameters. Figure 6 to Figure 11 depict this 

accuracy accomplishment and trainable parameters using 50 

epochs for all three models. Because there are fewer 

parameters and calculations, the depthwise lightweight 

CapsNet takes less time to train than the conventional CapsNet 

and ResNeXt. The 558,761,188 parameters of the traditional 

CapsNet were all trained. 51,092,559 parameters were trained 

out of the 51,093,519 parameters in the depth-wise lightweight 

CapsNet. Yet, there were only a few changes in the accuracy 

that both models provided. Compared to the conventional 

CapsNet and ResNeXt, the trainable parameters of depth-wise 

lightweight parameters are very low. It will shorten the 

computation time for the suggested technique. 

 

 
 

Figure 3. Confusion matrix of depth wise light-weight 

CapsNet 

 

 
 

Figure 4. Confusion matrix of traditional CapsNet 

 

 
 

Figure 5. Confusion matrix of ResNeXt 
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Table 4. Performance evaluation 

 

Model Precision Recall 
F1-

Score 
Accuracy 

ResNeXt 89.64 88.72 89.17 91.64 

Traditional CapsNet 93.78 92.78 93.27 95.375 

Depthwise 

convolution-based 

lightweight 

CapsNet 

93.47 92.89 93.17 95.041 

 

Table 5. Training time and trainable parameters comparison 

 
Model Training 

Time 

Trainable 

Parameters 

ResNeXt 4 Hours 23 

Minutes 
257,864,288 

Traditional CapsNet 11 Hours 45 

Minutes 
558,761,188 

Depthwise convolution-

based lightweight CapsNet 

2 Hours 11 

Minutes 
51,092,559 

  

 
 

Figure 6. ResNext performance 

 

 
 

Figure 7. ResNeXt parameters 

 

A non-linear activation function, a routing mechanism, and 

finally, a matrix multiplication operation is used by each 

capsule in a typical CapsNet to calculate the output of the 

capsule. The need for extra weights and a dynamic routing 

process increases the computational cost of this routing 

strategy. In contrast, the classic convolution procedure is 

divided into a depth-wise convolution and a pointwise 

convolution by the depth-wise lightweight CapsNet. Whereas 

the pointwise convolution mixes the outputs of the depth-wise 

convolution over all channels, the depth-wise convolution 

conducts a separate convolution for each channel in the input. 

The CapsNet needs fewer parameters and calculations as a 

result of this split. Since it utilizes different weight matrices 

for each channel in the input, the depth-wise separable 

CapsNet has explicitly fewer parameters than other types of 

neural networks. Also, since depth-wise convolution only 

convolves each channel with a smaller filter, lowering the 

overall calculations, the depth-wise lightweight CapsNet 

needs fewer computations. 

Finally, the disease severity index was computed using 

LWCN disease classification performance for the whole 

leaves. The disease severity index is calculated by Eq. (11), 

which uses the number of diseased leaves and the total number 

of leaves. In this work, 9124 leaves got infected among the 

12000 leaves. As more than 70% of leaves are affected, i.e., 

the disease severity index was found to be 76.04%, it is 

considered the end stage of the disease. If less than 30% of 

leaves were infected, the disease would have been considered 

a beginning stage. Calculating this disease severity index helps 

the farmer get an overall idea about their grape plant. 

 

 
 

Figure 8. Traditional CapsNet performance 

 

 
 

Figure 9. Traditional CapsNet parameters 
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Figure 10. Proposed model performance 

 

 
 

Figure 11. Proposed model parameters 

 

 

5. CONCLUSIONS 

 

In this work, we suggest using depth-wise lightweight 

CapsNet instead of the standard architecture of capsule 

networks and ResNeXt. The advanced Capsule networks are 

then empirically compared to the conventional CapsNet and 

ResNeXt models. The findings demonstrate that the proposed 

depth-wise lightweight Capsule network significantly reduces 

the models' size. These overall parameters and training time 

were much less than the ResNeXt and conventional CapsNet. 

With much fewer parameters, depth-wise lightweight CapsNet 

performs on par with traditional capsule models in terms of 

accuracy. We also used the proposed capsule networks to find 

the disease severity index of grape leaves. In the future, the 

disease severity index calculation can be compared with other 

metrics to see the overall health of the grape plant. Also, the 

LCWNs can be used with other crops with real-time datasets. 
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