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Traditional Chinese massage therapy is a very popular method to stay healthy, which 

regulates body balance, alleviates fatigue, and prevents diseases by massaging specific 

acupoints. Although computer vision has been increasingly applied in traditional Chinese 

medicine, related study of acupoint positioning is still insufficient. The existing acupoint 

positioning methods mainly rely on manual labeling and rule matching, which often require 

a large amount of manual intervention with limited accuracy. Therefore, this study proposed 

a massage acupoint positioning method of human body images based on transfer learning. 

The massage acupoint meridian and collateral positioning principle of human body images 

was presented. Using the integrated deep belief network model as a pre-trained model, a 

feasible transfer learning model was established through fine-tuning and feature mapping. 

The experimental results verified that the proposed method was effective. Relevant research 

results provide useful references for research in related fields.   
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1. INTRODUCTION

With the accelerated pace of life and the increasing life 

pressure, more and more people have started to pay attention 

to physical health and healthcare. Traditional Chinese massage 

therapy is a very popular healthcare method, which regulates 

body balance, alleviates fatigue, and prevents diseases by 

massaging specific acupoints [1]. However, the acupoint 

positioning accuracy is crucial for the massage effect, and 

acupoint positioning is a challenging task [2]. Therefore, it is 

of important practical application value to study an automatic 

acupoint positioning method of human body images based on 

computer vision [3-5]. 

In the past few years, significant progress has been made in 

the research field of computer vision, especially image 

recognition, segmentation, and processing. A major 

breakthrough has been made in deep learning technology, 

especially convolutional neural network (CNN) [6-9], in this 

regard. As an effective learning strategy, transfer learning 

allows a pre-trained model to be applied to new tasks, thus 

improving the generalization ability and accuracy of the model 

[10]. 

Computer vision and deep learning have made significant 

progress in many fields in the past few years, including object 

detection [11-14], face recognition [15-19], and pose 

estimation [20-23]. These successful applications provide 

insights for the research in other fields. Although computer 

vision has made some progress in the application of traditional 

Chinese medicine [24], the research on acupoint positioning is 

still insufficient. The acupoint positioning accuracy is crucial 

for the effect of massage therapy. Therefore, it is of great value 

to find an efficient and reliable computer vision method to 

solve this problem. 

The existing acupoint positioning methods mainly rely on 

manual labeling and rule matching [25], which often require a 

large amount of manual intervention with limited accuracy. In 

order to overcome these problems, a massage acupoint 

positioning method of human body images based on transfer 

learning was proposed in this study. Transfer learning allows 

to use pre-trained deep neural networks, such as VGG-16 [26], 

or deep residual network (ResNet) [27], to achieve high 

positioning precision on a limited labeled dataset. In addition, 

training time and consumption of computing resources can 

also be reduced by applying transfer learning to acupoint 

positioning tasks [28]. 

This study proposed a massage acupoint positioning method 

of human body images based on transfer learning. Relevant 

work was introduced in Section 2, including the massage 

acupoint meridian and collateral positioning principle of 

human body images. Using the integrated deep belief network 

(DBN) model as a pre-trained model, a feasible transfer 

learning model was established through fine-tuning and 

feature mapping. This process was described in detail in 

Section 3. Experimental results and analysis were reported in 

Section 4. Contributions of this study were summarized, and 

pertinent future research directions were discussed in Section 

5.
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2. MASSAGE ACUPOINT MERIDIAN AND 

COLLATERAL POSITIONING PRINCIPLE OF 

HUMAN BODY IMAGES 

 

The input unknown human back image was pre-processed 

first, such as adjusting the size, contrast, and brightness of the 

image, in order to adapt to the subsequent processing process. 

Human pose estimation was performed for the input image, 

which extracted the coordinates of key human body points, 

such as spine, shoulders, etc. These key points served as 

reference points to help identify the region of interest (ROI). 

Then the prior meridian and collateral model was mapped to 

the image to be detected, which was achieved by transforming 

and scaling the coordinates of key points. In the mapped 

meridian and collateral model, the positions of specific 

massage acupoints were found, and a ROI was created around 

them. This region was a rectangular box or circular region, and 

its size was adjusted according to the actual situation. It helped 

focus on the parts of the image related to specific acupoints, 

thus reducing computational complexity and improving 

accuracy. Specific massage acupoints were identified within 

the generated ROI. The model learned and recognized the 

acupoint features according to training data. Through the 

above steps, the prior meridian and collateral model was used 

to automatically establish the ROI for specific massage 

acupoints in the human back image to be detected, and identify 

the accurate acupoint positions. 

Based on the ROI establishment, the Dijkstra algorithm was 

further replaced with the Fast Marching Method (FMM) for 

massage acupoint meridian and collateral positioning. The 

FMM eigenfunction was adjusted based on prior information, 

which aimed to guide the algorithm in considering specific 

constraints and preferences when searching for the shortest 

path. For example, prior information of the meridian and 

collateral model was encoded into the eigenfunction to 

optimize the algorithm performance. Compared with Dijkstra 

algorithm, the FMM had significant advantages in 

computation speed, especially when processing large-scale 

image data. The FMM used numerical simulation methods to 

solve the eikonal equation, which found the shortest path more 

effectively. Therefore, massage acupoint meridian and 

collateral positioning of human images was effectively 

achieved by introducing the prior information provided by the 

prior model into the FMM eigenfunction. Figure 1 shows the 

FMM point set classification diagram. 

 

 
 

Figure 1. Classification diagram of the FMM point set 

 

The FMM is used to solve the eikonal equation, which has 

been widely used in application scenarios of medical image 

processing and linear feature positioning. The eikonal 

equation is a kind of nonlinear partial differential equation. Let 

s be the position, U(s) be the velocity function of wave 

propagation at the current position, G(s) be the time function 

to reach the current position, and ∇G be the gradient of the 

time function, then the formula was: 

( ) ( ) 1U s G s =  (1) 

 

To obtain the discrete solution of the eikonal equation, a 

discrete grid was used for spatial mapping in three-

dimensional space. Let a, b and c be the components of 

different coordinate axes of the 3D discrete grid; k(sa,rb,qc) be 

the corresponding point in the real world; ∆s, ∆r and ∆q be the 

distances on the coordinate axes x, y and z, respectively. The 

gradient ∇G(s) was discretized as follows: 
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Figure 2. FMM flow chart 

 

The FMM was used for massage acupoint meridian and 

collateral path positioning on the back of the human body. 

First, the ROI was automatically established in the unknown 

human back image to be detected, which was achieved by 

preprocessing images, estimating human poses, mapping prior 

models, and other methods, aiming to determine the 

approximate position range of specific massage acupoints. 

Second, the prior information provided by the meridians and 

collaterals of the prior model was added to the massage 

acupoint meridian and collateral features of the human back, 

which helped the FMM find the correct meridian and collateral 

path in the image more accurately. Third, prior information 

was introduced into the eikonal equation, which enabled the 

FMM to consider the prior information when searching for the 

shortest path. The eikonal equation described the cost function, 
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which represented the connection strength between points on 

the meridian and collateral path. The starting and ending 

points within the ROI were manually labeled. These two 

points represented the starting and ending positions of the 

meridian and collateral path, usually corresponding to specific 

massage acupoints. Finally, forward propagation was carried 

out throughout the entire ROI, which gradually progressed 

along the minimum cost path from the starting point to the 

ending point. Based on numerical simulation, the FMM was 

used to solve eikonal equation to effectively find the shortest 

path. Figure 2 shows the FMM flow chart. 

Energy model V was constructed. Let K be the feature of the 

current position. A constant ζ needed to be introduced to make 

the expression greater than 0, because the value of K near the 

massage acupoint meridian and collateral center was smaller. 

The path with the smallest integral in K=K +ζ was searched, 

which transformed the massage acupoint meridian and 

collateral positioning on the back of the human body into the 

problem of finding the global minimum value. Let X(g) be the 

curve on the massage acupoint meridian and collateral image, 

Ψ be the curve length, and [0,L][0,O] be the domain of 

definition, then there were: 

 

( ) ( )( )( )V X K X g dg


= +  (6) 

 

Let Ωs-e be the set of all paths between the starting and 

ending points of massage acupoint meridians and collaterals 

of the human back, and F be the energy integral value of the 

minimum path between the meridian and collateral starting 

point and any point in the ROI. To obtain the minimum path 

energy integral value for each point in the ROI, it was 

necessary to propagate forward from the starting point, with K 

always greater than 0 during the propagation process. Let Ks 

and Ke be the starting and ending points of the F-measure 

graph, respectively. It was considered that the unique local 

minimum value was obtained at Ks, satisfying F(ks)=0. To 

obtain the minimum integration path from Ks to Ke, the 

backpropagation from Ke to Ks on the F-measure graph was 

needed only. 
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Let (a,b,c) be each voxel in the back image of the human 

body, then the F-measure of (a,b,c) and its six surrounding 

neighboring voxels needed to meet the following formula: 
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For the model registration massage acupoint meridian and 

collateral positioning algorithm proposed in this study, it 

integrated prior information provided by the ROI of massage 

acupoint meridians and collaterals. Figure 3 shows the 

comparison of meridian and collateral positioning at 

interference points. For the massage acupoint meridians and 

collaterals, let l(c) be the inertia feature, s(c) be the voxel 

feature, and ϑ(c) be the enhancement, then the eigenfunction 

mainly included features in these three aspects. The parameter 

ο was set to prevent the denominator from being zero. Let δ, 

ϖ and λ be the indexes of l(c), s(c) and ϑ(c), respectively, then 

the definition equation of the eigenfunction was as follows: 

 

( )
( ) ( ) ( )

1
K c

l c s c c
  

 
=

  +
 (9) 

 

 
 

Figure 3. Meridian and collateral positioning comparison at 

interference points 

 

Inertia feature was used for guidance in the process of 

tracking meridians and collaterals in this study. After 

obtaining the inertia feature of the massage acupoint meridians 

and collaterals through the meridian and collateral model in 

the prior model, the meridian and collateral model and 

positioning results were divided into multiple segments with 

the same length for processing, which better adapted to 

meridians and collaterals with different lengths, and improved 

the positioning accuracy. The starting and ending points of the 

meridian and collateral model were defined as the points 

closest to the starting and ending points of the blood vessel to 

be positioned, which aimed to ensure that the positioning 

process always centered around the blood vessel. An 

eigenfunction without inertia feature was used for the first-

segment positioning of meridians and collaterals in the 

unknown image to be detected, because there was not enough 

information to introduce the inertia feature during the first-

segment positioning. At the same time, to fully utilize the 

inertia feature and improve the positioning effect, the 

corresponding meridian and collateral model was mapped to 

the previous-segment positioning results of the meridians and 

collaterals, and the same mapping was applied to the current-

segment meridian and collateral model. 

Let w(c) be the distance between the current position and 

the current-segment starting point during the massage acupoint 

meridian and collateral positioning process, αw be the distance 

between the guidance position of the mapped meridian and 

collateral model and the current-segment starting point, and 

βw be the distance standardization parameter, then there were:   
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Let j(c) be the current value of voxel grayscale at a given 

position, and αj be the average voxel grayscale in the entire 

ROI. Based on the gray value features of voxels at various 

positions in the ROI of the unknown human back image, the 

voxel feature s(c) of the massage acupoint meridians and 

collaterals was further defined as follows: 
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For the above model registration algorithm for massage 

acupoint meridian and collateral positioning of the human 

back, the meridian and collateral model from the prior model 

was introduced, which obtained prior knowledge about the 

structures and shapes of meridians and collaterals. This helped 

provide more accurate guidance during the positioning process, 

thus improving the accuracy of the positioning results. At the 

same time, the meridian and collateral model and positioning 

results were divided into multiple segments with the same 

length for processing, which better adapted to meridians and 

collaterals with different lengths, and improved the 

positioning accuracy. 

 

 

3. TRANSFER PLAN 

 

Existing models may perform well on training datasets, but 

did not adapt well to different individuals and scenarios in 

practical applications, because significant differences in the 

shapes and positions of massage acupoints on the back of the 

human body led to insufficient generalization ability of the 

models. At the same time, the training data for the human back 

massage acupoint positioning may be limited in quantity or 

unevenly distributed in practical applications, which resulted 

in the models not being able to fully learn the features of 

various samples during the training process, thus affecting 

their performance in actual scenarios. 

Transfer learning used the knowledge of pre-trained models, 

such as models obtained through training on large-scale 

datasets, to transfer the knowledge to new tasks, which 

avoided training the models from scratch, thus reducing 

training time and computational resource consumption. The 

integrated DBN model was used as the pre-trained model, and 

a feasible transfer learning model was established through 

fine-tuning and feature mapping. The DBN was a deep model 

that learned complex feature representations of data. When the 

DBN was used as a pre-trained model, its advantages in feature 

extraction were fully utilized, which provided richer feature 

representations for new tasks. A new network structure was 

built, by setting parameters of different layers in the network 

as "frozen", "fine-tuned" or not, or by adding the "adaptive 

layer" or not, to adapt to different task needs, which provided 

more possibilities to solve the difference problem of various 

scenarios and individuals. Figure 4 shows the model 

framework based on deep transfer learning. 

 

 
 

Figure 4. Model based on deep transfer learning 

In the transfer learning task, differences often exist in the 

data distributions between the source and target domains, 

leading to the problem of domain drift. Adding an adaptive 

layer and adopting the multiple kernel-maximum mean 

discrepancy (MK-MMD) method effectively measured the 

distribution differences between both domains, thus 

alleviating the domain shift problem. The MK-MMD 

combined the multi-kernel idea, which was used for a 

weighted combination of MMD under different kernel 

functions, enabling the MK-MMD to have stronger 

representation capabilities and capture more complex 

distribution differences between the source and target domains. 

The ω(·) function was introduced to calculate the maximum 

mean difference between data distributions h and f in two 

different domains based on the following formula: 
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Let Vxh~h[·] be the mathematical expectation of the data 

distribution in the source domain, |ω|s≤1 be a series of 

functions in the unit ball in the reproducing kernel Hilbert 

space (RKHS), and WH={Ch
i}n

i=1 and WF={Cf
i}n

i=1 be the 

sample sets in distributions h and f. The following equation 

provided the empirical estimation formula expression of the 

MMD: 
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Let ω(·) be the feature mapping concerning the kernel 

mapping p(ch,cf)=<ω(ch),ω(cf)>, then the convex combination 

of O basic cores po(ch,cf) was p(ch,cf): 
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To achieve better effect, this study optimized the main 

MMD method using a single-state kernel, i.e. adopted a 

strategy of multiple kernel linear combinations. 

In the RKHS Sp with the unique kernel p, let independent 

element γp(k) be the mean value of distribution k, then 

Vc~ku(c)=<u(c) and γp(k)>SP, with u∈(Sk). In Sk, let MK-MMD 

wp(k, j) be the mean distance of distributions k and j, then its 

square formula was as follows: 

 

( ) ( ) ( )
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S
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 (15) 

 

Same as the maximum mean difference, feature mapping ω 

was associated with the unique kernel, i.e., 

p(ch,cf)=<ω(ch),ω(cf)>. p(ch,cf) was defined as a convex 

combination of n PSD kernels {pu}: 

P∆={p=∑n
l=1γlkl:∑n

l=1γl=1,γl≥0,∀l}, with relevant constraints 

of coefficient cage {γl} guaranteeing to generate the unique 

multi-kernel pl=1. 

Figure 5 shows the improved network model structure 

diagram. Different kernel functions have different feature 

capture capabilities and scales. By combining multiple kernel 

functions, the MK-MMD better captured the feature 

differences between the source and target domains at different 

scales, thus improving the model’s performance in the transfer 
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learning task. Meanwhile, the diversity of kernel combination 

schemes enabled the MK-MMD to have stronger 

generalization ability. The optimal kernel selection scheme 

may vary under different tasks and data distributions. The 

model better adapted to different scenarios by finding the 

optimal kernel selection scheme. 

 

 
 

Figure 5. Structure diagram of improved network model 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Samples used for massage acupoint positioning of human 

body images were divided into three categories. The first 

category was the normal acupoint samples, including normal 

massage acupoint images of human bodies with clearly visible 

acupoints, which were used to train and validate the models, 

thus enabling them to learn to recognize and locate acupoints 

under normal conditions. The second category was the 

abnormal acupoint samples, including massage acupoint 

images with abnormal or pathological conditions, such as 

injuries, redness, swelling, and inflammation in the acupoints, 

which were used to train and validate the models, thus helping 

them identify and process abnormal acupoint situations in 

practical applications. The third category was the background 

interference samples, mainly including background areas 

unrelated to acupoints, such as clothing, skin texture, 

instruments, etc., which were used to train and validate the 

models, and help them learn to recognize and locate massage 

acupoints in complex backgrounds, thus improving the 

robustness of the models. 

Performance of different network models on normal 

acupoint samples could be analyzed according to Table 1. It 

can be seen from the table that the model in this study performs 

well in all indexes. Compared with random forest, ResNet, and 

U-Net models, the model in this study has the lowest median 

(1.251) and mean (1.625), and lower variance (0.539), 

indicating that the model’s prediction results have high 

precision and stability. At the same time, the model has the 

highest accuracy (102%), indicating that the model can 

accurately locate acupoints. In addition, the model has 4.11 

seconds of predicted time, which means a faster prediction 

speed compared with other models. The model is superior, 

mainly because it used MK-MMD as an adaptive 

measurement method, which effectively measured the 

distribution differences between the source and target domains, 

thus alleviating the domain shift problem and improving the 

model's adaptability. At the same time, the optimal kernel 

combination scheme was selected to enhance the effect of 

MK-MMD, which improved the model’s performance. 

Performance of different network models in evaluating 

abnormal acupoint samples could be analyzed according to 

Table 2. Similar to the previous conclusion, the model in this 

study performs well in various indexes. The model has 2.658 

median, 2.041 mean, and 0.629 variance, indicating that the 

model's prediction results have high precision and stability. 

Meanwhile, the model has a high accuracy (82.61%), 

indicating that the model can accurately locate abnormal 

acupoints. The predicted time is 2.46 seconds, which means 

that this model has a faster prediction speed compared with 

other models. The main reasons were that the model 

appropriately balanced and processed abnormal acupoint 

samples during the training process, and appropriate network 

structure and adaptive method were adopted. 

 

Table 1. Evaluation results of normal acupoint samples 

 
Network Models Median Mean Variance Accuracy (%) Predicted Time (s) 

Model in this study 1.251 1.625 0.539 102 4.11 

Random forest 2.958 2.958 1.041 85.62 5.69 

ResNet 5.041 5.037 1.958 11.96 4.38 

U-Net 2.574 2.114 0.579 35.82 5.13 

 

Table 2. Evaluation results of abnormal acupoint samples 

 
Network Models Median Mean Variance Accuracy (%) Predicted Time (s) 

Model in this study 2.658 2.041 0.629 82.61 2.46 

Random forest 2.15 3.629 1.352 53.48 6.18 

ResNet 5.614 6.528 1.748 15.92 4.35 

U-Net 3.592 3.417 0.821 42.58 5.02 

 

 

Table 3. Evaluation results of background interference samples 

 
Network Models Median Mean Variance Accuracy (%) Predicted Time (s) 

Model in this study 1.258 2.417 0.638 92.37 5.38 

Random forest 2.301 2.605 1.274 61.57 6.02 

ResNet 5.629 5.392 1.305 13.62 4.19 

U-Net 3.457 3.514 0.629 42.59 5.38 
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(a) 

 
(b) 

 

Figure 6. Comparison of accuracy curves and positioning 

effect in different regions 

 

Performance of different network models in evaluating 

background interference samples could be analyzed according 

to Table 3. The model in this study performs well in various 

indexes. The median, mean and variance are 1.258, 2.417, and 

0.638, respectively, indicating that the model's prediction 

results have high accuracy and stability. At the same time, the 

model has the highest accuracy (92.37%), indicating that the 

model can accurately locate acupoints in background 

interference samples. The predicted time is 5.38 seconds, 

which is the same as that of U-Net, but has better performance. 

The main reasons were that the model appropriately processed 

background interference samples during the training process, 

and appropriate network structure and adaptive method were 

adopted. 

Figure 6 shows the comparison of accuracy curves and 

positioning effect in different regions. According to Figure 

6(a), it can be seen that the positioning accuracy of the model 

before optimization increases with the increase of the standard. 

In the low standard (0-2mm) range, the accuracy is relatively 

low, ranging from 0 to 0.45. In the medium standard (3-5mm) 

range, there is a significant improvement in accuracy, ranging 

from 0.58 to 0.89. In the high standard (6mm and above) range, 

the accuracy further improves, reaching a range of 0.93 to 0.98. 

The optimized model has improved positioning accuracy 

under various standards. In the low standard (0-2mm) range, 

the accuracy increases from 0.2 to 0.58. In the medium 

standard (3-5mm) range, the accuracy improves to 0.72-0.93. 

In the high standard (6mm and above) range, the accuracy 

remains at a relatively high level, ranging from 0.95 to 0.98. 

By comparing the models before and after optimization, it can 

be seen that the positioning accuracy of the optimized model 

has improved under various standards, and the improvement is 

more significant especially in the low and medium standard 

ranges, indicating that the optimized model has better 

performance in terms of positioning precision and stability, 

mainly because more suitable network structure and parameter 

setting were adopted in this study to achieve better feature 

extraction and generalization capabilities. 

According to Figure 6(b), it can be observed that the 

positioning error range of the model at each acupoint before 

fine-tuning is between 1.5-2.4. Overall, the positioning 

precision of the model in all acupoints is acceptable, but there 

is still room for improvement. The positioning error range of 

the model before feature mapping is between 1.2-2.0. 

Compared with the model before fine-tuning, the positioning 

error of each acupoint has reduced, and the reduction is more 

significant especially in Acupoints 6, 7, and 8. After 

completing all optimization operations, the positioning error 

range of the model at each acupoint is between 1.1-1.9. 

Compared with the model before feature mapping, the 

positioning error of each acupoint is further reduced, and the 

reduction is more significant especially in Acupoints 1, 2, 3, 

and 6. The main reason why the optimized model had 

advantages was that the pre-trained model was fine-tuned, 

which better adapted to the characteristics of acupoint 

positioning tasks, thus improving the positioning precision. At 

the same time, the model may have adopted more effective 

feature extraction and fusion strategies in the feature mapping 

stage, which helped enhance the model's ability in recognizing 

acupoint features. 

 

 
 

Figure 7. Average error rate of acupoint positioning using 

different transfer methods 

 

According to Figure 7, the average error rates of acupoint 

positioning in different cascading stages using different 

transfer methods (direct transfer plan and the transfer plan in 

this study) can be observed. As shown in the figure, the 

average error rate of each cascading stage gradually decreases 

in the direct transfer plan, reducing from 10 in the first stage 

to 7.15 in the fifth stage. Overall, the positioning precision 

improves with the increase of cascading stage. In the transfer 

plan in this study, the average error rate of each cascading 

stage also shows a gradually decreasing trend, reducing from 

8.5 in the first stage to 6 in the fifth stage. Compared with the 

direct transfer plan, the average error rate of the transfer plan 

in this study is lower at all cascading stages. By comparing 

different transfer methods, it can be seen that the average error 

rate of acupoint positioning in the transfer plan in this study is 
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lower than that in the direct transfer plan at all cascading stages, 

indicating that the transfer plan in this study has certain 

advantages in improving the acupoint positioning precision 

and exhibits better performance. 

 

 

5. CONCLUSION 

 

A massage acupoint positioning method of human body 

images based on transfer learning was proposed in this study. 

The massage acupoint meridian and collateral positioning 

principle was presented. Using the integrated DBN model as a 

pre-trained model, a feasible transfer learning model was 

established through fine-tuning and feature mapping. This 

study aimed to improve the performance of the model in 

acupoint positioning tasks. The acupoint positioning precision 

was improved and the positioning error was reduced in this 

study successfully through fine-tuning and feature mapping of 

the model, optimization of cascading stages, and use of 

different transfer plans. Combined with the above analysis, the 

conclusions of this study were summarized in the following 

aspects: 

1. Model optimization. This study reduced the positioning 

error and improved the positioning precision at different 

acupoints through fine-tuning and feature mapping of the 

model, and optimization of the complete model, indicating that 

the optimization strategy adopted in this study was effective in 

improving the model’s performance. 

2. Positioning accuracy of different standards. The 

optimized model exhibited superior positioning accuracy in 

each standard, and the improvement was more significant 

especially in the low and medium standard ranges, indicating 

that the optimized model had better performance in terms of 

positioning precision and stability. 

3. Transfer plan. Compared with the direct transfer plan, the 

transfer plan proposed in this study had a lower average error 

rate and better performance in acupoint positioning tasks, 

indicating that the transfer plan proposed in this study had 

certain advantages and application value in improving the 

acupoint positioning precision. 

In summary, this study successfully improved the acupoint 

positioning precision and reduced the positioning error 

through model optimization, positioning accuracy analysis of 

different standards, and comparison of transfer plans. The 

method proposed in this study has certain advantages and 

application value in acupoint positioning tasks, providing 

useful references for research in related fields. 
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