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In the dynamic field of digital image technology, the imperative role of Image Quality 

Assessment (IQA) is increasingly recognized. Traditional methodologies, designed to echo 

human visual processing, frequently encounter challenges in diverse application landscapes, 

primarily due to their singular focus on limited scale and level analysis. This shortcoming 

curtails their efficacy in practical scenarios. The incorporation of deep learning paradigms 

into IQA has notably enhanced evaluation capabilities. Yet, there remains a scope for 

refinement, especially in areas like integrating multi-scale data, fusing features at multiple 

levels, and optimizing computational resources. Addressing these gaps, this study proposes 

an advanced multi-level and multi-scale IQA strategy, harnessing the power of deep 

learning. A unique end-to-end multi-scale IQA module has been crafted, tailored to 

aggregate image quality data across a spectrum of scales comprehensively. Additionally, 

this research introduces an IQA model built upon the foundation of multi-level feature 

fusion. This innovative model stands out in its capacity to efficiently assess image quality, 

by adeptly extracting and amalgamating features from various levels. Beyond enhancing 

accuracy in quality scoring, this approach significantly bolsters the model's interpretability 

and operational efficiency, marking a stride forward in digital image processing research 

and applications. 
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1. INTRODUCTION

In today's rapidly evolving digital imaging landscape, IQA 

has emerged as a pivotal discipline at the intersection of 

technology and visual fidelity. Propelled by the swift advances 

in image acquisition and transmission technologies, coupled 

with an escalating demand for high-quality visual experiences, 

the evolution of IQA methods has gained considerable 

momentum [1-4]. Historically, IQA approaches have been 

rooted in emulating human visual perception, a strategy that 

has served well up to a point. Yet, the advent of deep learning 

has marked a transformative chapter in IQA's story. These 

modern, deep learning-infused models have revolutionized the 

field, bringing an unprecedented level of accuracy and a 

broader scope of application to IQA processes [5-9]. 

Nevertheless, as the spectrum of applications continues to 

diversify, the limitations of traditional single-scale or level-

based IQA become increasingly apparent, signaling a need for 

more sophisticated methods that embrace multi-level and 

multi-scale considerations. 

IQA's role extends far beyond refining image processing 

algorithms; it is integral to providing objective, high-precision 

quality feedback for automated systems. These evaluations are 

key in guiding pivotal processes like image optimization, 

compression, and transmission [10-14]. Multi-level and multi-

scale assessment strategies offer a more comprehensive 

emulation of the human visual system, thereby enhancing the 

sensitivity and adaptability of IQA. This breadth of application 

is particularly valuable in specialized areas such as medical 

imaging, satellite imagery, and the ever-expanding domain of 

internet multimedia content [15, 16]. 

Despite the significant advancements brought about by deep 

learning in the realm of IQA, there remains room for 

enhancement in current methodologies. Many of these 

methods are still confined to single-scale assessments, 

neglecting the complex interplay of quality variations across 

different scales and their collective impact on overall 

perception [17-20]. Furthermore, prevailing models often 

adopt a simplistic approach to feature fusion, failing to fully 

harness the synergistic potential inherent in multi-level 

features. This oversight often results in a compromised 

performance in more complex scenarios. Additionally, 

modern IQA models tend to rely on intricate post-processing 

steps, which not only increase the computational burden but 

also raise the barrier to their practical application [21-24]. 

This study introduces a novel, deep learning-based 

methodology for multi-level, multi-scale IQA. At its heart lies 

an ingeniously designed end-to-end multi-scale IQA module, 

comprising both a multi-scale image block encoding 

submodule and a multi-scale quality prediction submodule. 

This design ensures a thorough and comprehensive integration 

of image quality information across a wide range of scales. In 

parallel, the study has carefully pieced together an IQA model 

based on multi-level deep feature fusion. This model integrates 
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a feature extraction module, a multi-level feature aggregation 

module, a multi-scale IQA module, and a prediction head, all 

working in concert to harness and capitalize on features from 

various levels. The approach taken in this study not only 

guarantees enhanced accuracy in quality scoring but also 

significantly bolsters the model’s interpretability and 

computational efficiency. This advancement represents a 

significant leap forward, setting new standards for future 

research and practical applications in the vibrant and ever-

changing landscape of digital image processing. 

 

 

2. CONFIGURATION OF THE END-TO-END MULTI-

SCALE IQA MODULE 

 

The pursuit of multi-level and multi-scale IQA is not just an 

endeavor to refine the precision and adaptability of evaluations; 

it profoundly resonates with the nuanced demands for image 

quality across diverse application landscapes, solidifying its 

vital presence in the domain of image processing. Take, for 

instance, the realm of medical image analysis, where the 

fidelity of images is a linchpin for accurate diagnostics. 

Medical imagery, encompassing a spectrum of anatomical 

structures and pathologies, presents each imaging technique, 

such as computed tomography (CT), X-ray, or magnetic 

resonance imaging (MRI), with its distinct scale and 

complexity. Here, the adoption of multi-level and multi-scale 

assessment methodologies becomes paramount. Such nuanced 

evaluation not only faithfully captures the intricate details and 

textures of various tissues but also markedly heightens the 

precision and reliability of disease detection. Similarly, in the 

arena of remote sensing, the diversity of land cover and the 

myriad of observational conditions render images with a rich 

tapestry of scales and levels. A comprehensive, finely-tuned 

quality assessment framework becomes a cornerstone in this 

context. It significantly amplifies the efficiency of subsequent 

image processing stages, including denoising, enhancement, 

and classification. This is not just a technical accomplishment; 

it bears profound implications for applications spanning 

geographic information systems, environmental monitoring, 

and resource management, thereby intertwining technology 

with the tapestry of the planet's well-being. 

In the real-world milieu, image quality emerges not merely 

from pixel-level distortions but also from the elaborate 

interplay of structural information and content layers. 

Traditional single-scale assessment approaches, often myopic 

in their scope, stumble in capturing the full gamut of quality 

variations across different scales. Consequently, this study 

meticulously addresses the complex and different 

requirements for image quality in real-world applications, 

leading to the conceptualization of an end-to-end multi-scale 

IQA module. 

This proposed module comprises two fundamental 

submodules: the multi-scale image block encoding submodule 

and the multi-scale quality prediction submodule. The 

function of the multi-scale image block encoding submodule 

is the simultaneous extraction of features across various levels, 

ensuring comprehensive capture of all elements influencing 

image quality. The multi-scale quality prediction submodule, 

tasked with quality scoring, relies on features derived from the 

multi-scale image block encoding submodule for independent 

assessment of image quality at each scale. Additionally, a 

multi-scale quality score fusion submodule amalgamates 

quality predictions across different scales to derive an overall 

image quality score, thereby guaranteeing that the final score 

encapsulates quality information pertinent to all relevant 

scales. 

 

 
 

Figure 1. Schematic of the multi-scale image block encoding 

submodule 

 

Figure 1 delineates the structure of the multi-scale image 

block encoding submodule, which utilizes convolutional 

encoding for direct image processing. In the field of deep 

learning, especially within Convolutional Neural Networks 

(CNNs), convolutional layers have been recognized as 

efficient feature extractors, autonomously discerning image 

features across a spectrum from basic to advanced levels. 

Unlike traditional methods that encode image blocks of 

uniform size, convolutional operations obviate the necessity 

for manually determining the dimensions and configurations 

of feature vectors, thereby adapting to optimally represent 

data-derived features. As convolutional layers become more 

profound within the network, there is an extraction of 

increasingly higher-level semantic information, coupled with 

the ability to encode images at various scales through differing 

receptive field sizes. Specifically, the image encoding process 

commences with the first four layers of a pretrained Residual 

Neural Network (ResNet) 50 for initial feature extraction. This 

is succeeded by a projection of the channel numbers of the 

feature map through convolutional layers equipped with 1x1 

kernels. The framework of this multi-scale image block 

encoding submodule is thus presented in Figure 1, with the 

process encapsulated as follows: 

 

( )( )1 1 50RestNetURD Conv A=  (1) 

 

In practical IQA contexts, diverse application environments 

may exhibit distinct sensitivities and requirements concerning 

attributes such as texture detail, edge sharpness, and local 

image contrast. By implementing spatial pooling layers of 

varying dimensions, the model is endowed with the capability 

to discern image features across different resolution levels. 

The output feature map of each pooling layer represents a 

unique local area size, essentially corresponding to image 

blocks at varying scales. Thus, in order to detect subtle 

disparities in image quality and to conduct a thorough 

assessment of overall quality through multi-scale information, 

this study incorporates multiple spatial pooling layers in 

parallel. Assuming the image block encoding feature map 
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subsequent to the u-th spatial pooling operation is denoted by 

Eu∈EF*Gu*Qu, where Eu corresponds to the quantity Gu*Qu of 

image blocks, the ensuing expression is articulated: 

 

( )u u URE Spacepooling D=  (2) 

 

In real-world IQA scenarios, understanding the spatial 

interplay between localized regions (i.e., image blocks) of an 

image is imperative for comprehending the integrity of image 

content and for assessing its quality. To develop a model 

capable of precise IQA, it is essential not only to encode image 

blocks at the feature level but also at the positional level. 

Accordingly, in the multi-scale quality prediction submodule 

formulated in this study, positional encoding is implemented, 

and a learnable positional encoding matrix L∈EH*H is 

established. The incorporation of positional encoding to each 

image block aids in preserving the spatial relationships 

inherent in the original image, a critical factor for maintaining 

structural information and comprehending the spatial context 

of the image. The establishment of a learnable positional 

encoding matrix facilitates the model's autonomous learning 

of the optimal representation of positional information during 

the training phase. Such a representation further refines the 

utilization of positional information tailored to specific IQA 

tasks. Assuming the original position of each image block is 

denoted as (u,k), and the corresponding position in the 

positional encoding matrix L as (lu,lk), it is postulated that the 

feature map Eu∈EF*Gu*Qu of image blocks at the u-th scale is 

proportionally projected to (lu,lk), delineated by the following 

expression: 

 

,u k

u u

l lu k

G H Q H
= =  (3) 

 

 
 

Figure 2. Schematic introduction of positional encoding and 

scale encoding 

 

In the field of IQA, diverse scales provide insights into 

varying aspects of an image's quality. For instance, finer scales 

are adept at capturing sharp edges and intricate textures, 

whereas coarser scales predominantly focus on overarching 

structure and regional contrast. Consequently, to achieve 

accurate IQA, it is imperative to harness information from 

these various scales comprehensively. In this study's multi-

scale quality prediction submodule, scale encoding has been 

integrated, enabling the model to discern and exploit features 

from distinct scales effectively. Figure 2 illustrates this 

integration of positional and scale encoding. The multi-scale 

quality prediction submodule is comprised of two key 

components: B parallel Swin-Transformer blocks and B 

parallel regression layers. The Swin-Transformer's parallel 

configuration facilitates simultaneous processing of image 

blocks across multiple scales, capturing the unique features 

pertinent to each scale independently. Subsequent to the Swin-

Transformer blocks are the parallel regression layers, tasked 

with transposing the extracted features onto a quality score. 

Each regression layer is tailored to a specific scale, focusing 

on processing features of that scale and independently 

producing a quality prediction. Figures 3 and 4 respectively 

depict the framework of the multi-scale quality prediction 

submodule and the interconnection schematic of two Swin-

Transformer blocks. 

 

 
 

Figure 3. Framework of multi-scale quality prediction 

submodule 

 

 
 

Figure 4. Connection schematic of two Swin-Transformer 

blocks 

 

The conventional self-attention mechanism in image 

processing is employed to compute relationships between 

pixels or features on a global scale, effectively capturing the 

overarching dependencies within an image. However, this 

approach is frequently accompanied by substantial 

computational demands. The Swin-Transformer, an 

innovation in this domain, enhances efficiency by localizing 

self-attention computations within small windows. Despite 

this, such a design may potentially restrict the global 

perceptual capabilities of the features. To mitigate this, the 

Swin-Transformer adopts a shifting window strategy. This 

strategy involves alternating the positions of windows across 

different layers, enabling each window to encompass 

information from its adjacent counterparts and thus promoting 

the flow of information between local windows. Such a 

methodology empowers the model to grasp a more extensive 

contextual scope while preserving computational efficiency, 

focusing on the global features of the image. In mathematical 

terms, let (W,J,N)=U(QW,QJ,QN), where QW, QJ, QN Rf*f, and 

the learnable relative position bias be denoted as YEv*v. For 

an input URv*f, the self-attention mechanism within the 

Swin-Transformer is articulated as follows: 

 

( ), , Softmax
SWJ

TX W J N Y N
f

 
= + 

 
 

 (4) 
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Let HEu=TX(Wu, Ju, Nu), where HE signifies the head, and 

the concatenation of j heads is accomplished using the 

Concant function, with QZR3f*f. The corresponding multi-

head self-attention mechanism is thus represented by: 

 

( ) ( )1, , j ZLGTX U Concant HE HE Q=  (5) 

 

The layer normalization is denoted by LN, with MHSA 

characterizing the multi-head self-attention mechanism within 

regular windows, indicated by the subscript WIN, and the 

multi-layer perceptron is symbolized as MLP. For an input A1, 

the Swin-Transformer process, predicated on regular window 

division, is expressed through the following equations: 

 

( )( )1 1 1WINB A LGTX LN A= +  (6) 

 

( )( )1 1 1C B MLP LN B= +  (7) 

 

Furthermore, the Swin-Transformer process, predicated on 

shifting window division, is represented by: 

 

( )( )2 2 2C B MLP LN B= +  (8) 

 

 

3. CONSTRUCTION OF THE IQA MODEL BASED ON 

MULTI-LEVEL DEEP FEATURE FUSION 

 

In this research, an IQA model predicated on multi-level 

deep feature fusion has been further developed. The model has 

four principal components: a feature extraction module, a 

multi-level feature aggregation module, a multi-scale IQA 

module, and a prediction head. The feature extraction module 

extracts useful visual features from the input images. The 

multi-level feature aggregation module weaves features from 

disparate levels, which are extracted by the feature extraction 

module. Utilizing the features extracted and amalgamated by 

the previous two modules, the multi-scale IQA module 

predicts the quality of image blocks across various scales. The 

prediction head is the output layer of the model, and integrates 

all information obtained from the antecedent modules, 

generating the final image quality score. 

Underpinning this entire process is the Vision Transformer 

network, distinguished by its shared weights and a self-

attention mechanism. This mechanism is vital for unearthing 

high-level, semantically-rich features. It's this innovative 

approach that enables the model to process long-distance pixel 

dependencies. Simultaneously, it is adept at discerning lower-

level features such as color, shape, and texture. The network 

makes a global comparison of image blocks through self-

attention, synthesizing information across the entire image 

rather than being confined to local regions. This global 

overview is very important for a comprehensive assessment of 

an image's overall visual quality. For practical implementation, 

assume the reference image is denoted by UREF∈RG*Q*Z, and 

the distorted image by UDIS∈RG*Q*Z, where G and Q represent 

the image's length and width, respectively, and Z its channel 

number. Both UREF and UDIS are fed into a dual-path Vision 

Transformer network, from which feature representations are 

extracted from the u-th layer, designated as dDIS
3, dDIS

5, dDIS
7, 

dDIS
9, dDIS

11, dDIS
3, dDIS

5, dDIS
7, dDIS

9, and dDIS
11. Figure 5 

illustrates the framework of the feature extraction module. 
In the proposed methodology, it is posited that the feature 

maps extracted are denoted by dDIS
u and dDIS

u. To ascertain the 

perceptual disparity between pairs of these feature maps, a 

process involving residual operations is employed, leading to 

the derivation of the difference map, referred to as dDIFF
u.  

 
DIFF ERF DIS

u u ud d d= −  (9) 

 

The multi-level feature aggregation module is composed of 

an attention aggregator, a concatenation module, and a fusion 

module. The attention aggregator selects the most informative 

elements from the plethora of features extracted. This 

precision in selection is followed by the concatenation module, 

which amalgamate features from diverse levels and scales 

effectively. The fusion module merges the outputs from both 

the attention aggregator and the concatenation module. 

The initiation of the attention aggregator’s operation is 

marked by the implementation of a batch normalization layer. 

This layer ensures that the input features are standardized. This 

standardization is particularly crucial in the domain of IQA, 

enhancing the model's competence to generalize across 

various datasets and different levels of image quality. 

Following this preparatory step are the two 1×1 convolution 

layers. These layers modify the depth of the feature maps, 

facilitating cross-channel information integration while 

maintaining the spatial dimensions. This approach not only 

trims down the number of parameters but also boosts 

computational efficiency, allowing the model to delve into the 

complex interplay of features. Such a sophisticated 

arrangement proves instrumental in the realm of IQA, where 

the model is endowed with the capability to grasp and utilize 

an array of distortion features, thereby crafting feature 

representations that are not only rich but also distinct in 

character.  

The process then leads to the 5×5 depth convolution layer, 

where a wider receptive field is covered, allowing for the 

capture of expansive contextual information. The culmination 

of this process is the introduction of a dropout layer, aimed at 

preventing overfitting. This involves a randomized exclusion 

of certain neuron outputs during training, compelling the 

model to develop more robust feature representations, a 

necessity for generalization across a variety of image types and 

distortion categories. 

In the IQA model's multi-level feature aggregation module, 

the fusion module's design is constituted by three layers of 3×3 

convolution layers and two layers of Rectified Linear Unit 

(ReLU) activation layers. The 3×3 convolution layer, a 

standard element in convolutional neural networks, is 

primarily utilized for capturing local features. As image 

quality is often influenced not just by original pixel values but 

also by higher-level visual patterns, the stacking of multiple 

convolution layers facilitates the gradual amalgamation of 

low-level features into more complex feature representations. 

The alternation between convolution and ReLU activation 

layers enables more effective learning and integration of 

features at various levels. This strategy of interlayer fusion 

contributes to the formation of a comprehensive feature 

representation, essential for precise IQA. Figure 6 illustrates 

the structure of both the attention aggregator and the fusion 

module. 
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Figure 5. Framework of the feature extraction module 

 

 
 

Figure 6. Structure of the attention aggregator and fusion module 
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It is assumed that the output of the attention aggregator, 

concatenated along the channel dimension, is denoted as D~
ALL, 

while DFU represents the output of the multi-level feature 

aggregation module. The entire process of the multi-level 

feature aggregation module is encapsulated as follows: 

 

( )DIFF DIFF

u ud BN d=  (10) 

 
* 2( ( 1( )))DIFF DIFF

u ud Conv FQConv Conv d=  (11) 

 
*( )diff diff

i i iF Dropout f f= +  (12) 

 

( )*DIFF DIFF

u u uD Dropout d d= +  (13) 

 

3 5 7 9 11, , , ,ALLD Concat D D D D D =    (14) 

 

( )( )( )( )( )ReLU 5 4 ReLU 3FU ALLD Conv Conv Conv D=  (15) 

 

The feature maps extracted via the Vision Transformer are 

replete with information, each pixel corresponding to a 

specific partition of the input image and containing unique 

visual data. Simple max pooling or average pooling operations, 

while reducing dimensions, might lead to the loss of vital 

information, especially in tasks requiring detailed perception 

like IQA. Consequently, this study implements a dual-branch 

prediction head strategy for predicting visual quality scores. In 

this structure, one branch predicts quality scores for each pixel 

of the feature map, and the other calculates the weight of each 

pixel. The final visual quality score of the image is obtained 

by combining pixel-level scores with their respective weights, 

thereby amalgamating local and global information and 

minimizing potential information loss inherent in single 

pooling strategies. 

For enhanced accuracy in prediction scores, the IQA model 

employs a joint loss function comprising mean squared error 

(MSE) loss, ordinal loss, and Kullback-Leibler (KL) 

divergence loss. The MSE loss LOSSLTR is employed as a 

fundamental metric for gauging the difference between 

predicted and actual values, serving as the primary loss 

function for regression tasks within IQA. The minimization of 

the MSE between predicted quality scores and actual quality 

scores aids in aligning the model's output with standard quality 

scores, pivotal for the precision of point estimations. 

Supposing the predicted score and MOS value for the u-th 

image are represented by Lu and Lu
^, respectively, the standard 

MSE function by MSE( ), and the quantity of images by V, the 

loss function is defined thus: 
 

( )1

ˆ,
V

LTR u uu
LOSS MSE L L

=
=  (16) 

 

In the methodological framework of IQA, the KL 

divergence loss, designated as LOSSJM, is employed to 

quantify the discrepancy between the distribution predicted by 

the model and the target distribution. Particularly in IQA 

contexts, where quality scores are interpreted as probability 

distributions, KL divergence is instrumental in ensuring that 

the model effectively captures the probabilistic attributes of 

data, such as the subjective scoring distribution of users 

evaluating image quality. This approach facilitates the model's 

proficiency in predicting image quality scores that align with 

human perception. It is posited that the outputs of the Softmax 

regression are symbolized by W and W^, leading to the 

definition of LOSSJM as: 

 

( ) 1

ˆ|| log
ˆ

V

JM u

W
LOSS KL W W W

W=
= =   (17) 

 

The expressions for W and W^ are delineated as: 

 
ˆ

ˆ

1

ˆ
u

u

L

V L

u

e
W

e
=

=


 (18) 

 

1

u

u

L

V L

u

e
W

e
=

=


 (19) 

 

The IQA model incorporates ordinal loss, referred to as 

LOSSRA, to guarantee that the predicted rankings adhere to the 

inherent order of quality scores. This aspect is particularly 

crucial in IQA tasks since quality scores inherently possess an 

orderliness, with higher quality images expected to garner 

higher scores. Ordinal loss steers the model towards 

understanding the relative differences in image quality, thus 

augmenting the precision of rankings. In scenarios involving 

distorted images Uu and Uk, a minor stabilizing term is denoted 

by γ, and a penalty term by ω. The pairwise ordinal loss 

LOSSe(Uu,Ulk) is formulated to evaluate their ranking order: 

 

( )
( )( )ˆ ˆ

, 0,
ˆ ˆ| |

u k u k

u ke

u k

L L L L
LOSS U U MAX

L L




 − − −
 = 
 − +
 

 (20) 

 

( ) ( )
2 2

ˆ ˆ
u u u uL L L L = − + −  (21) 

 

The comprehensive ordinal loss LOSSRA is articulated in the 

following equation: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2 1 3 1

2 3 2 4 2

1 2

1

, , ... ,

, , ... ,

...

, , ... ,

...

,

RA e e e V

e e e V

e u u e u u e u V

e V V

LOSS M U U M U U M U U

M U U M U U M U U

M U U M U U M U U

M U U

+ +

−

= + + +

+ + + +

+

+ + + +

+

+

 (22) 

 

Assuming that the hyperparameters for weight adjustment 

are represented by β, α, and ε, the joint loss function is 

constructed as the weighted sum of three components: 

LOSSLTR, LOSSJM, and LOSSRA, as indicated: 

 

( ) ( )ˆ ˆ, ,TA LTR JM RALOSS M L L M W W M  = + +  (23) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1 illustrates the datasets employed for training and 

evaluating the performance of the IQA model. These datasets 

encompass a diverse range of image types, distortion types, 

and levels, along with corresponding subjective score 

categories. Included are natural scene images, artificial scene 
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images, medical images, remote sensing images, and synthetic 

images. This variety ensures comprehensive coverage of 

application scenarios, thereby aiding in the enhancement of the 

model's generalizability. Notably, the datasets exhibit a wide 

range of distortion levels, from 27 to 38, indicating that the 

model is required to discern and categorize a spectrum of 

image quality degradations, from minor to severe. The 

abundance of distorted images, substantially outnumbering the 

reference images, is due to the generation of multiple distorted 

variants from each reference image. These variants, each 

featuring distinct types and levels of distortion, provide a rich 

repository for learning. The multi-level feature extraction and 

fusion mechanisms incorporated into the model equip it to 

effectively manage the varied IQA tasks outlined in Table 1. 

Table 2 elucidates the variability in the performance of the 

IQA model under diverse parameter configurations. The 

efficacy of the model is appraised via two statistical indices: 

the Spearman Rank Order Correlation Coefficient (SROCC) 

and the Pearson Linear Correlation Coefficient (PLCC). These 

metrics respectively gauge the consistency in ranking and the 

linear correlation between outputs of the model and human 

subjective assessments. The model’s performance is 

scrutinized by varying the depth of the Swin-Transformer 

blocks and the number of multi-head self-attention heads, 

while also considering the impact of the distorted image ratio 

within the dataset. The data presented in the table reveal 

comparable performances across different parameter sets, with 

the configuration consisting of deeper Swin-Transformer 

blocks ([4,4,4,4]) exhibiting a slight advantage over the 

[2,4,4,2] combination at distorted image ratios of 50% and 

70%. This outcome suggests that increasing the depth of the 

Swin-Transformer module can marginally enhance the 

model's performance within the tested parameter range. A 

notable observation is the decline in both SROCC and PLCC 

values as the ratio of distorted images escalates from 50% to 

70%, indicating that the model's performance is adversely 

affected by the heightened complexity of assessment due to a 

larger proportion of distorted images. The SROCC values, in 

particular, experience a marked decrease with the increase in 

distorted image ratio, especially pronounced in the first 

parameter configuration. In contrast, the PLCC values, while 

also exhibiting a decreasing trend, remain comparatively 

stable in the second parameter configuration. This pattern 

indicates a higher sensitivity of the model to distortions in 

terms of rank consistency. The incorporation of parallel Swin-

Transformer blocks within the multi-scale quality prediction 

submodule has demonstrated significant efficacy, especially at 

lower ratios of distorted images. In such scenarios, the SROCC 

and PLCC values approach unity, signaling a high degree of 

alignment between the model's predictions and human 

perceptual judgments. It can, therefore, be concluded that the 

integration of parallel Swin-Transformer blocks in the multi-

scale quality prediction submodule of the multi-scale IQA 

module is effective. This effectiveness is maintained across 

various ratios of distorted images, showcasing the module's 

robust capability in handling different degrees of image 

distortions and providing potent feature representations for the 

purpose of IQA. 

Table 3 provides a performance comparison of various IQA 

models across different ratios of distorted images. The 

evaluation is based on PLCC and SROCC, which respectively 

gauge the linear correlation and rank consistency between 

predicted quality scores of the models and human subjective 

ratings. Scores approaching 1 in these metrics indicate a high 

degree of concordance with human perception. The analysis 

reveals that traditional IQA algorithms, such as Peak Signal-

to-Noise Ratio (PSNR) and Structural Similarity Index 

Measure (SSIM), experience a marked decrease in 

performance as the proportion of distorted images in the 

dataset increases. Conversely, models based on deep learning 

methodologies, including CNN, Deep Belief Networks 

(DBNs), Deep Autoencoders, and Generative Adversarial 

Networks (GANs), demonstrate superior robustness, 

particularly at higher ratios of distorted images. The model 

introduced in this study, distinguished by its multi-level deep 

feature fusion approach, consistently exhibits high PLCC and 

SROCC values across varying degrees of distorted image 

ratios. Notably, this model surpasses most other models in 

performance, especially at a 70% distorted image ratio, 

underscoring its capability to maintain accurate assessment 

under various levels of distortion. 

The findings indicate that the proposed model, 

characterized by its integration of multi-scale and multi-level 

feature extraction along with an effective feature fusion 

mechanism, excels in accurately capturing and evaluating 

image quality. This performance is particularly evident in 

scenarios with high proportions of distorted images, where the 

model's advanced capabilities enable it to outperform 

traditional IQA methods and other deep learning-based 

approaches. 

Table 4 provides SROCC results from a cross-database 

validation study of different IQA models. This analysis 

evaluates the performance of each model when trained and 

tested on varying datasets. An effective IQA model is 

characterized by its ability to generalize across diverse 

datasets, which may differ in content and types of distortions. 

The performance of deep learning models, including CNN, 

DBNs, GANs, and Deep Autoencoders, is observed to vary in 

cross-database validation. This variance is attributable to their 

feature extraction capabilities and the extent to which these 

capabilities have been influenced by the characteristics of their 

training data. In contrast, the model developed in this study 

exhibits consistently higher SROCC values in all cross-

database testing scenarios. Notably, this model demonstrates 

superior performance in scenarios where natural scene images 

or medical images are used for training, followed by testing on 

remote sensing images. These results underscore the model's 

outstanding ability to generalize effectively across different 

image types and distortion levels. 

Figure 7 provides scatter plots that delineate the correlation 

between actual quality scores and objective predicted scores 

across various IQA models. On these plots, the vertical axis 

denotes the real quality score, while the horizontal axis 

represents the objective predicted score, illustrating their 

interrelationship. In an optimal scenario, accurate model 

predictions would result in scatter points congregating near a 

linear trajectory, typically along a diagonal, reflecting a high 

degree of consistency. Observations from Figure 7(a) reveal a 

dispersion in the scatter points, indicating a lack of strong 

alignment along a definitive linear path. This pattern suggests 

considerable inconsistencies between the predicted and actual 

scores in the model relying on manual features. Notably, the 

density of points is more pronounced in the median score 

range but becomes sparse in regions representing lower or 

higher scores. Furthermore, the points do not form a distinct, 

narrowly focused trend but display a more expansive 

distribution. 
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Table 1. Datasets for training and performance evaluation of the IQA model 

 

Dataset Type 
Number of Reference 

Images 

Number of Distorted 

Images 
Distortion Types 

Distortion 

Levels 

Subjective Score 

Type 

Natural Scene 

Images 
82 12,312 Traditional distortions 27 DMOS 

Artificial Scene 

Images 
28 789 Traditional distortions 12 DMOS 

Medical Images 31 856 Traditional distortions 4 DMOS 

Remote Sensing 

Images 
26 3,421 Traditional distortions 18 MOS 

Synthetic images 245 24,545 
Traditional and special 

distortions 
38 MOS 

 

Table 2. Impact of different parameter combinations on the IQA model performance 

 

Depth of the Swin-

Transformer block 

Number of Multi-Head 

Self-Attention Heads 

Distorted Image Ratio 

50% 

Distorted Image Ratio 

60% 

Distorted Image Ratio 

70% 

SROCC PLCC SROCC PLCC SROCC PLCC 

[2,4,4,2] [3,6,6,3] 0.956 0.963 0.934 0.935 0.846 0.888 

[4,4,4,4] [6,6,6,6] 0.957 0.968 0.941 0.931 0.848 0.879 

 

Table 3. Comparison of IQA model performance at different distorted image ratios 

 

Model 
Distorted Image Ratio 50% Distorted Image Ratio 60% Distorted Image Ratio 70% 

PLCC SROCC PLCC SROCC PLCC SROCC 

PSNR 0.856 0.887 0.821 0.811 0.667 0.678 

SSIM 0.923 0.936 0.845 0.856 0.784 0.715 

VDP 0.937 0.945 0.879 0.912 0.823 0.785 

FSIM 0.958 0.956 0.921 0.923 0.865 0.846 

MS-SSIM 0.938 0.948 0.915 0.935 0.911 0.889 

CNN 0.956 0.953 0.946 0.936 0.812 0.778 

DBNs 0.954 0.958 0.923 0.921 0.784 0.678 

GANs 0.923 0.928 0.917 0.924 0.823 0.812 

Deep Autoencoders 0.948 0.936 0.935 0.948 0.845 0.814 

The proposed model in this study 0.958 0.967 0.947 0.9356 0.926 0.912 

 

Table 4. Cross-database validation results for IQA models (SROCC) 

 
Training Natural Scene Images Medical Images Synthetic Images 

Testing 
Artificial Scene 

Images 

Synthetic 

Images 

Remote sensing 

Images 

Synthetic 

Images 

Artificial scene 

Images 

Remote Sensing 

Images 

CNN 0.638 0.439 0.847 0.389 0.578 0.438 

DBNs 0.614 0.217 0.789 0.178 0.058 0.112 

GANs 0.589 0.459 0.762 0.283 0.524 0.326 

Deep Autoencoders 0.712 0.412 0.869 0.256 0.639 0.589 

The proposed model in 

this study 
0.748 0.526 0.913 0.369 0.689 0.614 

 

  
(a) Based on manual features (b) Based on the proposed model 

  

Figure 7. Scatter plots of real quality score vs. objective predicted score for different IQA models 
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In stark contrast, Figure 7(b)'s scatter distribution exhibits 

the objective predicted scores of the newly proposed model 

maintaining a high consistency level with the actual quality 

scores across the spectrum. This pattern infers that the 

proposed model can accurately and effectively predict image 

quality, maintaining a high precision degree across diverse 

scoring ranges. Such scatter plots lead to several key 

conclusions. The IQA model rooted in manual features reveals 

noticeable discrepancies in mirroring real quality scores. This 

discrepancy between the predicted and actual scores is 

observable across various scoring tiers. The newly proposed 

model accurately mirrors the real quality scores, underscoring 

its proficiency in IQA. Faced with complex image distortions, 

such as variations in color saturation, multiple Gaussian 

distortions, noise distortions, compression artifacts, and 

chromatic aberrations, the manual feature-based model lacks 

sufficient discriminatory power. This is because manual 

features cannot comprehensively capture all the details and 

dynamic changes affecting human visual perception. The 

model based on manual features fails to achieve more precise 

predictions of visual quality scores due to its limited 

adaptability to complex and varied types of distortions, which 

are common in real-world image processing. The proposed 

model, employing multi-level deep feature fusion, excels in 

capturing key features in image quality, particularly in 

processing details, textures, colors, and structural information 

of images. The proposed model demonstrates good 

discriminatory power for different degrees of image quality 

issues, attributed to its effective use of deep learning 

technology to extract and fuse multi-level features, a 

significant improvement over traditional models based on 

manual features. 

 

 

5. CONCLUSIONS 

 

The model structure proposed in this study, through its end-

to-end multi-scale IQA module and design based on multi-

level deep feature fusion, has been demonstrated to effectively 

extract and integrate features across various scales and levels. 

Experimental results indicate that the model achieves notable 

performance across all datasets, particularly in multi-scale 

image block encoding and quality prediction. This is achieved 

by harnessing information from various scales to refine the 

accuracy of evaluations. 

The model's generalization capability has been rigorously 

tested through cross-validation across a spectrum of image 

datasets, encompassing natural and artificial scenes, medical, 

remote sensing, and synthetic images. In various training and 

testing combinations, the model consistently predicts image 

quality, maintaining robust performance even in scenarios 

with high distortion ratios. Compared to existing IQA methods, 

including traditional algorithms like PSNR and SSIM, as well 

as other deep learning-based models such as CNNs, DBNs, 

GANs, and Deep Autoencoders, the model presented in this 

study achieves superior results on multiple evaluation metrics. 

Particularly in terms of SROCC and PLCC indices, the model 

demonstrates higher correlation and predictive precision. The 

dual-branch prediction head strategy proposed in this study, 

which combines the quality score of each pixel with its 

corresponding weight, provides an effective method for 

comprehensive assessment of overall image quality. Such a 

strategy enables meticulous processing of local quality 

variations and facilitates accurate global-level predictions. 

The model employs a joint loss function that includes MSE 

loss, KL divergence loss, and ordinal loss. This design assists 

the model in considering various aspects of IQA during the 

learning process, thereby enhancing overall evaluation 

performance. 

In conclusion, the IQA method based on multi-level deep 

feature fusion proposed in this paper demonstrates significant 

advantages in both theoretical and practical applications. 

Capable of effectively adapting to various types of images and 

distortion conditions, this method provides a powerful and 

reliable tool for automated IQA. 
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