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Background: Scanning electron microscopy (SEM) has been instrumental in elucidating 

material details, enabling the use of SEM images for machine learning applications. This 

study introduces a novel automated classification model employing deep learning 

techniques to classify materials using SEM imagery with high accuracy. Materials and 

Methods: A publicly accessible dataset comprising over 20,000 SEM images across 10 

classes was utilized. The dataset was bifurcated into training and testing subsets for model 

development. The advanced MobileSEMNet model was trained using a pre-trained 

MobileNetV2 architecture, wherein deep features were extracted via the global average 

pooling layer. Feature extraction proceeded with fixed-size patch division using the 

MobileNetV2 network. During feature selection, the neighborhood component analysis 

(NCA) was employed to distill the most informative 512 features from the feature vector. 

Subsequently, a classification toolkit determined the Support Vector Machine (SVM) as the 

optimal shallow classifier. The model was refined using 10-fold cross-validation. Results: 

The primary aim to surpass the classification accuracy of the standalone MobileNetV2 was 

achieved; the MobileNetV2 secured a 94.85% accuracy rate, whereas the proposed 

MobileSEMNet model attained a 96.87% accuracy rate on the test data. Conclusions: 

MobileSEMNet has proven to be highly effective in the classification of SEM images within 

a significant dataset, signaling its potential utility in material science. The results 

unequivocally underscore the model's capacity for automated material type detection, 

thereby enhancing analytical precision and automation in the field. This work underscores 

the advantages of deep learning methodologies in advancing material classification in 

various scientific domains. 
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1. INTRODUCTION

The burgeoning field of nanotechnology is rapidly 

expanding on a global scale, significantly influencing 

advancements in a multitude of disciplines [1]. Nanoscience 

explores phenomena and material behaviors that emerge 

distinctly at the atomic, molecular, and macromolecular scales, 

where materials exhibit unique properties. It is widely 

acknowledged that nanotechnology is central to the 

technological advancement and societal development of 

nations [2]. This significance is underpinned by the unique 

characteristics of matter and energy manifest at the nanoscale. 

As particles are reduced from macroscopic to nanoscale 

dimensions, their physical and chemical interactions are 

altered, often enhancing quantum mechanical properties. This 

transformation in geometric configurations can lead to 

substantial changes in material structure. Nanotechnology, 

therefore, can be defined as the precision engineering 

conducted within the scale of 0.1 nm to 100 nm [3], offering 

the capability for the versatile manipulation of materials. 

Scanning Electron Microscopes (SEMs) utilize focused 

electron beams to scan the surfaces of samples [4]. In SEM 

imaging, the generation of images is achieved by directing 

high-energy electrons toward the sample, detecting the 

resultant interactions between the electron beam and the 

sample atoms, and amplifying these signals for visualization 

on a cathode ray tube. These high-resolution images reveal the 

intricate details at nanometer scales, aiding the analysis of 

scalable surface structures. However, the manual 

interpretation of SEM images is inherently subjective and 

labor-intensive. The integration of machine learning models 

presents a promising avenue for the automation of SEM image 

classification, substantially enhancing the efficiency and 

objectivity of the analysis. Deep learning, with its capacity to 

analyze visual data through multi-layered neural networks, 

represents a paradigm shift in the classification of complex, 

high-dimensional SEM image datasets, which are pivotal in 

fields such as materials science, biology, and nanotechnology. 

The algorithms within these architectures can automatically 

discern and learn features inherent to the images for 

classification purposes. This article endeavors to contribute to 

this burgeoning field by examining various deep learning 

architectures for SEM image classification and elucidating 

their application in domains such as material characterization, 

biomedical research, and material design. This study aspires to 

be an instrumental guide for the more accurate and expedient 
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classification of SEM images, thus bolstering their application 

in scientific and industrial research avenues. 

Extensive studies utilizing deep learning and machine 

learning techniques have been conducted across various fields 

[5-9]. Dahy et al. [10] classified SEM images of 750 nano-

scaled materials using a VGG-19 network augmented with 

Gray Wolf Optimization, achieving an accuracy of 97.00% 

and an F1-score of 98.00%. Modarres et al. [11] explored the 

automatic classification of SEM images through transfer 

learning, manually categorizing 20,000 images into 10 classes 

and attaining an accuracy close to 90% on their test dataset. 

However, they noted a decrease in accuracy with images that 

featured elements from multiple categories. Aversa et al. [12] 

applied transfer learning with CNN architectures and adapted 

ImageNet features to an SEM dataset with fine-tuning, 

achieving a 73.00% accuracy using AlexNet across 7557 

images in 10 classes. Chou et al. [13] combined a decision tree 

with a neural network to classify defects in chip-scale package 

images, employing a preprocessing step to quantify various 

wafer surface features before classification. Dey et al. [14] 

leveraged VGGNet architectures to classify fractures and line 

collapses in SEM images. Imoto et al. [15], focusing on 

semiconductor manufacturing errors, utilized a 33-layer CNN 

with transfer learning on a dataset of 5388 images across 12 

classes, achieving a precision and recall of 88.40%. Cheon et 

al. [16] reported a 96.2% accuracy in classifying wafer surface 

defects with a bespoke CNN, despite misclassifying 12 out of 

319 defective test images. Barua et al. [17] achieved 99.53% 

accuracy for four classes and 97.09% for 10 classes using 

DenseNet201. Lastly, Chang et al. [18] employed a hybrid 

approach to classify defects, integrating morphological 

processes and thresholding techniques for high-density defects 

and developing a simple boundary defect detection algorithm 

for low-density defects, resulting in 92.80% training accuracy 

and 86.00% test accuracy. 

These literature examples highlight the diversity of deep 

learning approaches and their transferability to SEM image 

datasets. However, the optimal transfer of features from 

general datasets like ImageNet to specialized SEM images 

remains a challenge, warranting critical analysis to address 

potential domain gaps. Additionally, discussions on the effect 

of class imbalances on model performance and strategies to 

mitigate these effects are conspicuously sparse and warrant 

further exploration. 

 

1.1 Literature gaps 

 

The identified gaps in the literature, based on the preceding 

literature review, are articulated as follows: 

The majority of machine learning (ML) models surveyed 

have been applied to datasets with a limited number of classes. 

The significance of this gap rests in the models' restricted 

capability to address real-world scenarios that encompass a 

much broader array of materials. This limitation curtails the 

scope and practical application of these models, highlighting 

the need for research into ML models that can handle more 

complex and varied class scenarios. 

The classification performance of the models in question is 

relatively modest. This gap is of critical importance, as it 

directly affects the reliability and efficacy of ML models in 

practical applications. Exploring the underlying causes of this 

subdued performance and proposing actionable solutions are 

imperative steps towards bolstering model accuracy. 

Addressing this gap is essential to augment the credibility of 

ML models in material classification, thereby encouraging 

their broader integration across diverse industrial sectors. 

To the best of our knowledge, there is an absence of fixed-

size patch-based deep learning models tailored to SEM image 

classification. This gap highlights an innovative opportunity in 

model architecture that is specifically designed to cater to the 

distinct characteristics of SEM images. The development of a 

fixed-size patch-based deep learning model could potentially 

provide a novel approach to feature extraction and 

classification accuracy, revolutionizing SEM image 

classification. Such a model could offer a more potent and 

flexible solution to the challenges presented by varying image 

sizes and complexities. 

By addressing these gaps, researchers can substantially 

propel the field of SEM image classification forward. Such 

advancements would likely result in more sophisticated and 

versatile ML models, heightened classification performance, 

and the creation of specialized architectures that are finely 

attuned to the specificities of SEM images. These 

improvements would collectively enhance the practicality and 

impact of these models in the realm of material science and 

beyond. 

 

1.2 Motivation and our model 

 

Material science stands as a discipline with expansive 

applications, and an array of models have been proposed by 

researchers to tackle its inherent challenges. With machine 

learning models demonstrating notable adeptness in managing 

non-deterministic problems, their integration into various 

research fields has surged. The impetus of this study is to 

unveil a novel machine learning model specifically tailored for 

the classification of Scanning Electron Microscope (SEM) 

images. Our approach harnesses the capabilities of the mobile 

deep learning architecture, MobileNetV2, to train our dataset. 

Introducing MobileSEMNet, our model emerges as a deep 

feature engineering innovation. It is predicated on a patch-

based architecture deploying fixed-size patches, a concept 

inspired by the success of transformers like the Swin 

Transformer and Vision Transformer, which have shown 

remarkable prowess in classification through patch utilization. 

MobileSEMNet operates by engaging fixed-size patches to 

meticulously extract features from SEM images. In this dual-

input feature extraction process, patches and the overall image 

serve as the foundational inputs. Deep features are synthesized 

through the Global Average Pooling (GAP) layer intrinsic to 

MobileNetV2 and are subsequently combined to craft the final 

feature vector. The feature selection phase sees the application 

of Neighborhood Component Analysis (NCA) to distill the 

most informative features, which then serve as the input for 

the Support Vector Machine (SVM) classifier. 

The rationale behind selecting MobileNetV2 as the 

cornerstone for MobileSEMNet is anchored in its 

demonstrated efficiency and classification prowess within the 

realm of image classification, particularly in scenarios 

bounded by computational restrictions. With an architecture 

celebrated for its lightweight design-primarily due to 

depthwise separable convolutions-MobileNetV2 balances 

computational frugality with robust classification capabilities, 

rendering it an exemplary fit for processing voluminous SEM 

image datasets. 

The patch-based methodology integral to MobileSEMNet is 

an innovative leap from conventional, holistic image 

processing techniques. This method excels in delineating 
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localized patterns and variances within SEM images, 

culminating in enhanced precision in material classification 

tasks. The fusion of deep feature engineering and SVM 

classification further augments the model's facility to adeptly 

navigate the multifaceted landscape of material science 

challenges. 

In essence, our MobileSEMNet is a distinct and pioneering 

model that amalgamates the efficiency of MobileNetV2 with 

a sophisticated patch-based approach. By leveraging cutting-

edge deep learning methodologies, MobileSEMNet is adeptly 

positioned to fulfill the specialized requirements of SEM 

image classification within the domain of material science. 

 

1.3 Contributions 

 

This research has yielded several significant contributions: 

• We have pioneered a novel deep feature engineering 

model, which we have termed MobileSEMNet. This 

model has been conceived with the explicit intent of 

bridging the literature gaps identified in SEM image 

classification. It offers an advanced methodology for 

feature extraction and representation, tailored for the 

unique characteristics of SEM imagery. 

• MobileSEMNet has undergone extensive evaluation on 

a sizable dataset of SEM images, where it has attained 

an exemplary classification accuracy rate of 96.87%. 

This marked accomplishment underlines the 

effectiveness of our proposed model in bolstering the 

accuracy of SEM image classification. The high 

precision achieved by MobileSEMNet is a substantial 

stride forward, addressing the previously noted gap 

concerning the suboptimal classification performance 

of extant models. The practical import of this 

achievement is considerable: MobileSEMNet has been 

validated as a highly accurate tool for the categorization 

of materials based on SEM images. This contributes to 

more reliable and credible material analyses within the 

scope of material science, supporting the domain's 

progress through improved analytical precision. 

 

 

2. DATASET 

 

In this research, we have used a publicly available dataset 

and this dataset contains 21,272 images with 10 material 

categories [19]. The images in our used dataset were stored in 

the widely used JPG format, adopting the RGB color space. 

Each image uniformly adheres to a resolution of 1024×768 

pixels. To facilitate the development and evaluation of our 

proposed deep learning model, we meticulously curated two 

distinct datasets from this collection, aptly named 'test' and 

'train'. The delineation into training and testing datasets serves 

a fundamental purpose in the lifecycle of our deep learning 

model. 

The 'train' dataset plays a pivotal role as the foundation for 

constructing the pretrained network. This network, once 

trained on the 'train' dataset, becomes a robust and 

knowledgeable entity capable of capturing intricate patterns 

and features inherent in the SEM images. Subsequently, this 

pretrained network is employed to extract deep features from 

the 'test' dataset, contributing to the model's capacity for 

nuanced image analysis and classification. We have divided 

this dataset by using these rules. 

The specifics of our dataset, encompassing attributes such 

as image format, dimensions, and the creation of 'test' and 

'train' datasets, are meticulously detailed in Table 1. This 

tabulation serves as a comprehensive reference, providing a 

succinct overview of the key characteristics that underpin the 

structure and composition of our dataset. 

As stated from Table 1, we have divided the used public 

SEM image dataset to ~75:25 training and test ratio. 

 

Table 1. The characteristics of the used SEM image dataset 

 
No Class Train Test Total 

1 Biological 732 240 972 

2 Fibres 122 40 162 

3 Film-coated surface 246 80 326 

4 MEMS device and electrodes 3444 1146 4590 

5 Nanowires 2868 952 3820 

6 Particles 2945 980 3925 

7 Pattern surface 3567 1188 4755 

8 Porous sponge 137 44 181 

9 Powder 689 228 917 

10 Tips 1220 404 1624 

Total 15970 5302 21272 

 

 

3. THE PROPOSED MobileSEMNet 

 

The recommended MobileSEMNet is a MobileNetV2-

based deep feature engineering model. In the first phase of our 

model, we have trained the training dataset on the 

MobileNetV2 [20] and we have obtained a pretrained dataset. 

To extract deep features, GAP layer of the used MobileNetV2 

have been used. Fixed size patches have been used. 16 fixed 

size patches have been created for this model. We have 

extracted deep features from each patch and the whole SEM 

image. We have used the whole SEM image to extract global 

features. The fixed size patches have been used to generate 

local deep features. The generated 17 feature vectors have 

been concatenated to create the final feature vector. In the 

feature selection phase, we aimed to choose the most 

informative features from the created final feature vector. 

Therefore, we have used NCA feature selector and the most 

informative 512 out of the generated 21,760 features 

(=17×1280). In the last phase, we have classified the selected 

features using the SVM classifier with 10-fold cross-

validation (CV). 

The schematic explanation of the proposed MobileSEMNet 

is demonstrated in Figure 1. 

Herein, p is fixed size patch with a size of 56×56 and f is 

the feature vector with a length of 1280. 

To better explain the proposed MobileSEMNet, the steps of 

this model are: 

Step 1: Resize each image to 224×224 sized images. 

Step 2: Train the used training dataset using MobileNetV2 

and obtain a pretrained CNN. 

Step 3: Divide test images into 56×56 sized patches. In this 

step, 16 patches have been created. 

Step 4: Extract deep feature from each test image and 

patches of them by deploying GAP layer of the pretrained 

MobilNetV2 and create feature vectors. 

 

𝑓1 = 𝑀(𝐼𝑚, 𝐺𝐴𝑃) (1) 

 

𝑝𝑘 = 𝐼𝑚(56 × (𝑖 − 1) + 1: 56 × 𝑖, 56 × (𝑗 − 1) +
1: 56 × 𝑗, : ),  

𝑗 ∈ {1,2,3,4}, 𝑖 ∈ {1,2,3,4}, 𝑘 ∈ {1,2, … ,16} 
(2) 
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Figure 1. Graphical explanation of the proposed 

MobileSEMNet 

 

𝑓𝑘+1 = 𝑀(𝑝𝑘 , 𝐺𝐴𝑃) (3) 

 

Herein, 𝑓 is the generated feature vector by the GAP layer 

of the pretrained MobileNetV2 (𝑀(. , . )). In Eq. (2), we have 

mathematically defined the fixed size patch division and 𝑝 

implies the patch with a size of 56×56. By using the GAP layer 

of the pretrained MobileNetV2, 1280 features have been 

extracted. Therefore, the length of feature vector is equal to 

1280. In this step, we have created. 

Step 5: Merge the extracted features to get final feature 

vector. 

 

𝑋 = 𝜔(𝑓1, 𝑓2, … , 𝑓17) (4) 

 

Herein, 𝑋 defines the merged feature vector and we have 

created the merged feature with a length of 21,760 (=1280×17). 

Step 6: Apply NCA [21] to the generated features to select 

the most informative 512 feature. A brief information about 

the NCA feature selector has been given below. 

NCA is the commonly used feature selector in machine 

learning and is a distance-based method. Its central aim lies in 

augmenting classifier performance by selecting the most 

informative features from the generated features. 

The core concept driving NCA revolves around advancing 

classification accuracy by maximizing the relative similarity 

among data points belonging to the same class while 

minimizing the similarity between data points from distinct 

classes. In essence, NCA seeks a transformation that draws 

similar data points closer together, while pushing dissimilar 

data points further apart. 

Using the optimization of a differentiable objective function, 

NCA acquires the transformation matrix that best 

distinguishes between classes. Characterized as a distance 

metric learning approach, NCA tries to learn a distance metric 

that reflects the intrinsic data structure, rendering it 

particularly suitable for the specific classification task at hand. 

NCA has demonstrated success in diverse domains, 

encompassing computer vision, natural language processing, 

and bioinformatics. Its adaptability to the data and its 

proficiency in selecting informative features have rendered it 

a valuable instrument in bolstering classifier performance and 

elevating the overall accuracy of machine learning models. 

Step 7: Classify the selected features by deploying the SVM 

[22, 23] classifier with 10-fold cross-validation. 

The given seven steps above have been defined the 

proposed MobileSEMNet. Moreover, we have explained the 

methods as below. 

We selected MobileNetV2 as the basis for MobileSEMNet 

due to its proven efficiency in image classification tasks, 

especially in resource-constrained environments. The model's 

lightweight architecture, utilizing depthwise separable 

convolutions, strikes a balance between computational 

efficiency and high-performance classification. This choice 

was motivated by the need for a model that could handle large 

SEM image datasets effectively while ensuring computational 

feasibility. 

Global Average Pooling (GAP) layers were employed to 

extract deep features from SEM images. GAP layers condense 

spatial information into a single value per feature map, 

allowing the model to capture essential patterns and features 

efficiently. This is particularly advantageous in reducing the 

dimensionality of the feature space, promoting computational 

efficiency, and preventing overfitting. The choice of GAP 

layers aligns with the objective of MobileSEMNet to 

efficiently capture relevant features from SEM images. 

The selection of a fixed-size patch with dimensions of 

56×56 was deliberate. This choice aims to balance granularity 

and computational efficiency. A patch size of 56×56 provides 

sufficient local information for capturing fine-grained details 

in SEM images while keeping computational demands 

manageable. This decision was made to strike a pragmatic 

balance between feature richness and model efficiency. 

In the feature selection phase, we opted to choose the most 

informative features using the NCA feature selector. The 

selection of precisely 512 features was driven by a desire to 

strike a balance between informativeness and computational 

efficiency. This number was chosen to ensure that the selected 

features encapsulate the most crucial information for accurate 

classification while avoiding excessive computational 

overhead. 

In the classification phase, we have used SVM since we 

obtained the best classification performance with Cubic SVM. 

Moreover, we have used 10-fold cross-validation to get robust 

results. 

Providing this reasoning aims to enhance the transparency 

of our methodology, showcasing the thoughtful considerations 

behind each decision. These choices collectively contribute to 

the effectiveness of MobileSEMNet in addressing the 

challenges posed by SEM image classification in material 

science applications. 

 

 

4. EXPERIMENTAL RESULTS 

 

In this research, we utilized MobileNetV2 as the 

foundational model and introduced a novel architecture named 

MobileSEMNet. MobileNetV2 was employed with its default 

settings, and we conducted training on our designated dataset 

to acquire a pre-trained model. The development of 

MobileSEMNet involved the design of a functional structure 

encompassing dedicated functions for feature extraction, 

feature selection, and classification. The implementation of the 

proposed model was carried out using the MATLAB (2023a) 

programming environment, leveraging both the deep learning 

designer tool and custom MATLAB files for function creation. 
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To identify the best classifier for our task, we conducted an 

extensive comparison using the MATLAB classification 

learner toolbox, which offers a selection of over 30 classifiers 

grouped into seven main categories: (i) decision tree (DT) [24], 

(ii) discriminant (D), (iii) Naive Bayes (NB) [25], (iv) k 

nearest neighbors (kNN) [26], (v) SVM [27], (vi) Ensemble 

classifiers (Ens.), and (vii) neural networks (NN) [28]. After 

assessing the classification outcomes, we found that the Cubic 

SVM classifier surpassed other classifiers in terms of accuracy. 

Additionally, we conducted evaluations on various feature 

selectors, and the most effective feature selection method 

proved to be NCA. Consequently, NCA was incorporated into 

this model. 

The hyperparameters of the Cubic SVM were set as follows: 

a 3rd polynomial kernel, a box constraint level of 1, one-vs-all 

coding, and a 10-fold cross-validation for validation. We have 

selected these parameters manually. Actually, these 

parameters are the default parameters of the Cubic SVM in 

MATLAB classification learner tool. These hyperparameters 

played a pivotal role in bolstering the performance of the 

Cubic SVM, facilitating precise classification of the data and 

rendering it the optimal choice for our MobileSEMNet model. 

In scrutinizing the outcomes, we employed widely 

acknowledged performance evaluation metrics, specifically: (i) 

overall accuracy, (ii) recall, (iii) precision, and (iv) F1-score. 

The mathematical formulations of these performance metrics 

are elucidated below: 

 

𝑜𝑎𝑐 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑓𝑛+𝑡𝑛
  (5) 

  

𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (6) 

 

𝑝𝑟𝑒 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  (7) 

 

𝑓1 = 2
𝑝𝑟𝑒×𝑟𝑒𝑐

𝑝𝑟𝑒+𝑟𝑒𝑐
  (8) 

 

We have used true positive (𝑡𝑝), true negative (𝑡𝑛), false 

positive (𝑓𝑝) and false negative (𝑓𝑛) values to compute overall 

accuracy (𝑜𝑎𝑐), recall (𝑟𝑒𝑐), precision (𝑝𝑟𝑒) and F1-measure 

( 𝑓1 ). To compute these classification measurements, we 

generated a confusion matrix based on the predicted output 

and the actual output. The resulting confusion matrix is 

depicted in Figure 2. 
 

 
 

Figure 2. The computed confusion matrix of the 

MobileSEMNet 

The names of the classes per the given numbers have been 

given in Table 1. 

By using the computed confusion matrix (see Figure 1), we 

have computed the class-wise and overall results and these 

results have been tabulated in Table 2. 

 

Table 2. Results (%) of the proposed MobileSEMNet for the 

used dataset 

 
No Class Recall Precision F1 Accuracy 

1 Biological 97.50 99.15 98.32 - 

2 Fibres 92.50 97.37 94.87 - 

3 Film-coated surface 81.25 90.28 85.53 - 

4 
MEMS device and 

electrodes 
98.17 97.40 97.78 - 

5 Nanowires 96.64 97.66 97.15 - 

6 Particles 97.76 96.77 97.26 - 

7 Pattern surface 96.97 96.16 96.56 - 

8 Porous sponge 84.09 92.50 88.10 - 

9 Powder 96.05 95.63 95.84 - 

10 Tips 96.29 96.77 96.53 - 

Overall 93.72 95.97 94.79 96.87 

 

Table 2 demonstrates the overall and class-wise results of 

the proposed model. Per Table 2, overall recall, precision, f1-

score and accuracy of the proposed MobileSEMNet are 

computed as 93.72%, 95.97%, 94.79% and 96.87% 

consecutively. 

 

 

5. DISCUSSIONS 

 

 
 

Figure 3. The class-wise results 

 

 
 

Figure 4. Performance comparison of the Chi2, ReliefF and 

NCA feature selectors 
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Figure 5. Accuracies of the used classifiers 

 

This research introduces a novel deep feature engineering 

model named MobileSEMNet, implemented using 

MobileNetV2. The proposed MobileSEMNet achieved a 

commendable classification accuracy of 96.87% and an 

unweighted average recall (UAR) of 93.72% when evaluated 

on the utilized imbalanced SEM image dataset. Additionally, 

we present class-wise results, which are depicted in Figure 3. 

According to Figure 3 and Table 2, the first class (Biological) 

achieved the highest precision and F1-score, while the fourth 

class (MEMS device and electrodes) attained the best recall. 

Conversely, the third class (Film-coated surface) displayed the 

weakest performance. Notably, all class-wise test results 

surpassed 80%, underscoring the MobileSEMNet's impressive 

capability in SEM image classification. 

During the feature generation phase, we employed a patch-

based deep feature extraction approach. By utilizing the 

Neighborhood Component Analysis (NCA) technique, we 

selected the top 512 features from the pool of 21,760 generated 

features. The outcomes of this process, specifically the 

selected features per the patches, are presented in Figure 4. We 

also conducted tests using other feature selectors, namely 

NCA, ReliefF, and Chi2. Figure 4 illustrates the classification 

performances of these selectors for our dataset. 

As shown in Figure 4, it is evident that the NCA feature 

selector yields the best results among all the feature selectors 

considered. Hence, we have chosen to employ the NCA 

feature selector in the proposed MobileSEMNet. 

For the classification phase, we evaluated the performance 

of six classifiers: (i) Decision Tree (DT), (ii) Linear 

Discriminant (LD), (iii) Naive Bayes (NB), (iv) k-Nearest 

Neighbors (kNN), (v) Support Vector Machine (SVM), (vi) 

Ensemble Discriminant (Ens. D.), and (vii) Neural Networks 

(NN). The classification performances of these classifiers have 

been depicted in Figure 5. 

Based on the findings from Figure 5, the SVM classifier 

emerges as the most effective classifier when utilizing the 

generated features through MobileSEMNet. Consequently, we 

have selected SVM as our classifier of choice. 

To demonstrate the effectiveness of MobileSEMNet, we 

conducted a comparison of classification performance 

between MobileNetV2 and our proposed model. It is important 

to note that we utilized the pretrained MobileNetV2 to create 

MobileSEMNet. As a result, we present the training and 

validation curves of MobileNetV2 for this dataset in Figure 6. 

 

 
 

Figure 6. The training and validation curve of the 

MobileNetV2 for the collected dataset 

 

 
 

Figure 7. Test accuracies of the MobileNetV2 and 

MobileSEMNet 

 

As depicted in Figure 6, MobileNetV2 achieved a training 

accuracy of 100% and a final validation accuracy of 95.47%. 

Subsequently, we utilized this trained MobileNetV2 to 

construct the proposed MobileSEMNet. The main purpose of 

MobileSEMNet is to enhance the classification capability of 

MobileNetV2. The test accuracies of both models are 

illustrated in Figure 7. 

As depicted in Figure 7, the proposed MobileSEMNet 

exhibits a notable increase of 2.02% in test accuracy compared 

to MobileNetV2. 

 

Table 3. Comparisons 

 
Study Method Number of Samples Split Ratio The Results (%) 

Wong et al. [29] GoogleNet 
3 classes 

456 SEM images 
70:30 Accuracy: 92.70 

Azimi et al. [30] 
Fully convolutional neural network, 

DeCAF features, SVM 

4 classes 

4331 patches 

2831 training, 

2262 test 
Accuracy: 93.94 

Our proposed model MobileNetV2, NCA, SVM 
10 Classes 

21,272 SEM Images 
10 fold CV 

MobileSEMNet Accuracy: 96.87 

Recall: 93.72 

Precision: 95.97 

F1-Score: 94.79 
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In order to showcase the high classification performance of 

MobileSEMNet, we conducted a comprehensive comparison 

with other state-of-the-art (SOTA) material classification 

methods. The comparative results have been presented in 

Table 3. 

The comparative evaluation of various models in SEM 

image (see Table 3) classification reveals insightful findings. 

Wong et al. [29] implementation using GoogleNet for a dataset 

comprising 3 classes and 456 SEM images achieved an 

accuracy of 92.70%, demonstrating commendable 

performance. Azimi et al. [30] adopted a more complex 

approach with a Fully Convolutional Neural Network, DeCAF 

features, and SVM for a dataset containing 4 classes and 4331 

patches. Despite the increased complexity, their accuracy 

reached 93.94%, showcasing the effectiveness of their 

methodology. In contrast, our proposed MobileSEMNet, 

employing MobileNetV2, NCA, and SVM for a more 

extensive dataset of 10 classes and 21,272 SEM images, 

achieved a notable accuracy of 96.87%, along with high recall, 

precision, and F1-score values (93.72%, 95.97%, and 94.79%, 

respectively). This indicates that our model outperforms the 

aforementioned studies, emphasizing its efficacy in handling a 

more diverse and extensive SEM dataset. The meticulous 

design and integration of deep learning features in 

MobileSEMNet contribute to its superior performance, 

showcasing its potential for advancing SEM image 

classification in material science and related domains. 

The findings about the experiments of this research have 

been given below. 

- In addition to overall accuracy, we employed several 

widely recognized performance evaluation metrics to 

provide a more nuanced understanding of the model's 

effectiveness. These metrics included: Recall: 

Measures the ability of the model to correctly identify 

instances of a particular class. Precision: Reflects the 

accuracy of the model when it predicts a specific class. 

F1-Score: Represents the harmonic mean of precision 

and recall, offering a balanced measure of a model's 

performance. 

- Class-wise results were presented, depicting 

individual performance metrics for each class. This 

detailed breakdown highlighted the strengths and 

weaknesses of the model in classifying different 

categories. Visual representations, such as Figure 3, 

provided additional insights into the varying 

performance across different classes. 

- UAR was employed as an additional metric, providing 

a balanced measure of recall across all classes. This 

metric is particularly useful when dealing with 

imbalanced datasets, ensuring that the model's 

performance is not skewed by the prevalence of any 

specific class. 

- The performance of MobileSEMNet was compared 

with other state-of-the-art material classification 

methods, as demonstrated in Table 3. This 

comparative analysis provided context for evaluating 

the model's performance against existing benchmarks 

in the field. 

- The training and validation curves of MobileNetV2 for 

the collected dataset were presented in Figure 6. This 

representation offered insights into the model's 

training progress, showcasing the convergence and 

potential signs of overfitting or underfitting. 

- Test accuracies of both MobileNetV2 and 

MobileSEMNet were illustrated in Figure 7. The 

comparison highlighted the improvement achieved by 

MobileSEMNet over MobileNetV2, demonstrating 

the model's capacity to enhance classification 

capabilities. 

- The selection of the Cubic SVM classifier was based 

on its superior performance during extensive 

comparisons. The hyperparameters were carefully 

chosen to optimize the model's accuracy while 

mitigating overfitting. 

Advantages and limitations of this research are also given 

below. 

Advantages: 

- MobileSEMNet achieved a commendable 

classification accuracy of 96.87% on a diverse SEM 

image dataset, demonstrating its effectiveness in 

accurately identifying materials. 

- The model provided detailed class-wise results, 

enabling a nuanced understanding of its performance 

across different material categories. This information 

is valuable for applications where specific classes hold 

more significance. 

- The use of the Neighborhood Component Analysis 

(NCA) technique in feature selection enhanced the 

model's ability to focus on the most informative 

features, contributing to its overall classification 

performance. 

- Leveraging MobileNetV2 as the base model ensured a 

balance between computational efficiency and 

classification accuracy, making MobileSEMNet 

suitable for real-world applications with resource 

constraints. 

- The proposed MobileSEMNet demonstrated a notable 

increase of 2.02% in test accuracy compared to 

MobileNetV2, showcasing its capability to improve 

upon the baseline model. 

- Patch-based Approach: The patch-based deep feature 

extraction approach allowed the model to capture fine-

grained details in SEM images, enhancing its ability to 

recognize intricate patterns. 

Limitations: 

- The MobileSEMNet model is the manual selection of 

hyperparameters. While the chosen hyperparameters, 

including a 3rd-degree polynomial kernel, a box 

constraint level of 1, and one-vs-all coding, 

contributed to the model's superior performance, the 

manual selection process introduces subjectivity. 

Automated hyperparameter optimization techniques, 

such as grid search or random search, were not 

employed in this study. The use of automated methods 

could potentially fine-tune the hyperparameters more 

objectively, ensuring optimal performance and 

generalizability across different datasets. 

- The dataset used for training and evaluation may 

exhibit class imbalances, potentially leading to biased 

results and affecting the model's performance on 

minority classes. 

 

 

6. CONCLUSIONS 

 

Our examination of the MobileSEMNet model has yielded 

notable results, indicating a classification accuracy of 96.87%. 

Comparative analyses with MobileNetV2 and other state-of-

2785



 

the-art models reveal improved performance, establishing 

MobileSEMNet as a valuable tool in SEM image classification. 

The implications and applications of MobileSEMNet 

extend into material science research and related domains, 

offering precision and efficiency for automated material 

classification across various settings. Specific examples, from 

materials analysis in manufacturing to geological studies, 

illustrate the diverse applications where MobileSEMNet can 

enhance efficiency and accuracy. 

Peering into the future, a vast expanse of opportunities lies 

ahead for the refinement and advancement of MobileSEMNet. 

Exploring potential enhancements to the model's architecture, 

investigating alternative deep learning frameworks, and 

extending adaptability to other image classification types 

beyond SEM images are promising avenues. Additionally, 

exploring transfer learning opens potential applications in 

novel domains. 

Acknowledging encountered limitations enriches our 

findings. Manual hyperparameter selection and challenges in 

model dataset structure are recognized for improvement. 

Addressing these limitations in future iterations can enhance 

the robustness and applicability of MobileSEMNet. 

The significance of this work lies in advancing machine 

learning and image classification, particularly in SEM image 

analysis. MobileSEMNet introduces a novel deep feature 

engineering model that utilizes the efficiency of MobileNetV2. 

Beyond improving classification accuracy, it demonstrates the 

adaptability of deep learning to material science challenges, 

extending its potential beyond SEM image classification to 

broader machine learning applications. 
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