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The efficacy of emerging and established learning algorithms warrants scrutiny. This 

examination is intrinsically linked to the results of classification performance. The primary 

determinant influencing these results is the distribution of the training and test data presented 

to the algorithms. Existing literature frequently employs standard and stratified (S-CV and 

St-CV) k-fold cross-validation methods for the creation of training and test data for 

classification tasks. In the S-CV method, training and test groups are formed via random 

data distribution, potentially undermining the reliability of performance results calculated 

post-classification. This study introduces innovative cross-validation strategies based on k-

means and k-medoids clustering to address this challenge. These strategies are designed to 

tackle issues emerging from random data distribution. The proposed methods autonomously 

determine the number of clusters and folds. Initially, the number of clusters is established 

via Silhouette analysis, followed by identifying the number of folds according to the data 

volume within these clusters. An additional aim of this study is to minimize the standard 

deviation (Std) values between the folds. Particularly in classifying large datasets, the 

minimized Std negates the need to present each fold to the system, thereby reducing time 

expenditure and system congestion/fatigue. Analyses were carried out on several large-scale 

datasets to demonstrate the superiority of these new CV methods over the S-CV and St-CV 

techniques. The findings revealed superior performance results for the novel strategies. For 

instance, while the minimum Std value between folds was 0.022, the maximum accuracy 

rate achieved was approximately 100%. Owing to the proposed methods, the discrepancy 

between the performance outputs of each fold and the overall average is statistically 

minimized. The randomness in creating the training/test groups, which has been previously 

identified as a negative contributing factor to this discrepancy, has been significantly 

reduced. Hence, this study is anticipated to fill a critical and substantial gap in the existing 

literature concerning the formation of training/test groups in various classification problems 

and the statistical accuracy of performance results. 
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1. INTRODUCTION

Addressing classification challenges in practical artificial 

intelligence (AI) applications often requires handling large-

scale datasets. To effectively navigate these challenges, 

specific adjustments, tailored to the nuances of these 

expansive datasets, are necessary. For classifier systems 

leveraging machine learning to yield optimal results, prior 

training is essential. This involves partitioning the dataset into 

training and testing groups, followed by a testing phase. Both 

groups encompass data with unique target values. The features 

of each dataset are presented to the classifier with the aim of 

producing outputs that closely match the target values. These 

generated outputs are subsequently compared to the target 

values, allowing an evaluation of the classifier's performance, 

and thus determining the accuracy rate. The interpretation of 

system outputs may be based on low error values or standard 

deviation among results, a decision subject to the researcher's 

discretion according to the study's objectives [1, 2]. 

Accuracy rates can also be described as the likelihood of 

accurately determining the target value of a randomly selected 

sample from the dataset. However, the extent to which 

randomly chosen data truly reflects the system's performance 

remains uncertain, as the ability to distinguish the optimal and 

suboptimal features of the selected dataset is entirely 

contingent on chance. This process can potentially 

compromise the reliability of performance outcomes for the 

proposed classifier systems. In studies where classifier 

systems have been utilized, data is typically divided into 

training and test groups initially. This segmentation involves 

allocating a certain quantity of data for training and the 

remaining for testing. This method partitions the dataset into 

specific ratios, such as 80/20, 70/30, 60/40, or 50/50, for the 

training and testing groups [3]. Proportional distribution is 

determined based on user preference. Subsequently, the 

system is trained using the rate defined by the training data. 

The trained system is then assessed using the test data 

generated for performance evaluation. Nonetheless, this 
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method possesses certain limitations. The most prominent 

challenge lies in deciding the inclusion of data in the training 

and test groups. Grouping data based on user preferences 

reduces reliability, and with random grouping, statistical 

accuracy may decrease. Consequently, a more reliable 

approach could be to calculate system performance by 

integrating each dataset into both the training and test groups 

[4]. To achieve this, the cross-validation method, originally 

introduced by Geisser [4], was adopted. The k-fold cross-

validation (CV) method was formulated by including the k-

parameter to denote the number of verifications in this method 

[4]. This approach yielded more reliable results compared to 

the train/test split method. However, in this method, the data 

are randomly divided into groups. This randomness can result 

in significant disparities between the results of the folds, 

consequently increasing the standard deviation values between 

them. While this discrepancy may not be an issue for smaller 

datasets, it can pose a challenge for large datasets in certain 

instances. 

Several methods based on the k-fold Cross-Validation (CV) 

technique have been proposed in the literature for the 

segregation of data into training and test groups [5]. One such 

method is the nested CV approach [6]. In the training phase of 

this approach, unique classification models are crafted for each 

fold to secure classification performances [6]. However, 

employing multiple models for different folds is often 

impractical in real-world scenarios due to potential time loss 

and increased complexity. The model optimized for one 

specific fold may not deliver optimal performance on others. 

Another variant is the partially nested CV [5], which, in 

addition to the nested CV, involves feature selection from each 

fold's training data. The results are then derived from the test 

data of each fold based on these selected features. However, 

the practical implementation of this approach is challenging 

due to potential system slowdowns and excessive complexity. 

In another study, researchers proposed an alternate accuracy 

estimation method that deterministically divides data into 

folds instead of relying on random sampling [7]. This 

proposed approach, referred to as either single-centered or 

clustering-based, was tested on various datasets with limited 

data samples [7]. However, the effectiveness of this approach 

varied across datasets with different fold numbers [7], which 

introduces uncertainty about the optimal number of folds for 

real-world applications. Another widely used method for 

forming training and test groups is the leave-one-out Cross-

Validation (CV) [8]. As the number of folds aligns with the 

data count in this approach, it is essentially a derivative of 

standard CV (S-CV) [4, 6]. However, its applicability is 

limited to small datasets, as it is typically employed in 

scenarios with low data counts. An alternative CV technique 

that allocates data to folds according to specific rules is 

stratified cross-validation (St-CV) [9-11]. Although this 

method aims to maintain nearly identical class distributions 

within each fold [9], it has been observed that obtaining highly 

accurate results via this method can be challenging. 

Clustering algorithms are among the analytical tools 

extensively utilized by researchers across various domains to 

manage large datasets. This unsupervised learning method 

involves grouping samples within a dataset based on their 

features, distinguishing similarities and dissimilarities. In this 

approach, the aim is to maximize intra-cluster similarity while 

maintaining a relatively low inter-cluster similarity. 

Similarities among dataset samples are determined through 

distance calculations from designated centroids, using metrics 

like Euclidean, squared Euclidean, and Manhattan distances. 

The primary motivation for applying clustering to data is to 

condense the divided dataset into distinct groups [12]. 

Clustering algorithms include various sub-methods, with the 

k-means and k-medoids algorithms, used in this study, 

classified under partitioning methods. Velmurugan and 

Santhanam conducted a comparative analysis of k-means and 

k-medoids algorithms on datasets generated via normal and 

uniform distributions [13]. Their findings showed that the k-

means method, for both distributions, took slightly longer to 

complete processes than the other methods [13]. Moreover, 

both methods exhibited longer completion times when 

working with datasets derived from normal distributions 

compared to other distributions [13]. Interestingly, the k-

medoids algorithm demonstrated a reduced processing time 

for the maximum data volume [13]. 

Classification problems in literature often involve the 

construction of training and test data groups where data is 

usually distributed randomly. However, this random 

distribution often invites skepticism from researchers 

regarding the classification performance results of systems, 

given the potential for both the best and the worst data to be 

assigned to the training or test groups. To address this issue in 

data distribution, this study proposes novel data distribution 

approaches based on k-means and k-medoids clustering 

methods. With these approaches that utilize unsupervised 

learning and clustering algorithms, the number of clusters is 

automatically determined through Silhouette analysis, and 

folds are subsequently created from the data in the resulting 

clusters. This enables the formation of folds consisting of data 

that do not contain a random selection. Additionally, the 

system automatically determines the number of folds 

according to the number of samples in the clusters obtained 

through an algorithm. Artificial Neural Networks (ANN) were 

deployed for data classification. This study aimed to minimize 

the standard deviation value between the accuracy rates 

achieved for each fold. 

The proposed approaches, especially tested on large data 

sets in the UCI Machine Learning Repository database [14], 

showcased improvements when compared with the S-CV and 

St-CV. Specifically, enhancements in ACC values were 

observed for the elect, occu, pen, skin, and stat data sets, 

demonstrating improvements of 3.62%, 2.81%, 3.34%, 6.91%, 

and 4.26%, respectively, over other standard methods. 

Similarly, in terms of Std, improvements of 98.19%, 91.32%, 

95.68%, 99.08%, and 98.63% were achieved for the same data 

sets, respectively. Furthermore, the proposed methods showed 

at least a 265% speed increase in processing computational 

speeds. 

The most practical contribution of the research is that with 

these proposed approaches, instead of presenting every fold to 

the classifier to achieve the same performance outputs, it is 

sufficient to provide only one fold. This is inferred from the 

significantly low Std values between the ACC results obtained 

from the folds generated by the proposed approaches, and the 

substantial improvement in the Std value compared to 

traditional methods. Consequently, in the classification of 

large-scale data sets, both time loss and system fatigue arising 

from presenting each fold to the system will be minimized, 

while elevating the system's success to higher levels. This 

approach will largely eliminate data assignment problems 

affecting the reliability of even larger data set classifications. 

This research is expected to fill an important and necessary 

gap in the literature in terms of forming training/test groups in 
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many classification problems and enhancing the statistical 

accuracy of performance results. 
 

 

2. MATERIALS AND METHODS 
 

In this paper, novel data distribution approaches based on k-

means and k-medoids clustering are presented from which the 

CV method was derived. The block diagram of the proposed 

approaches is given in Figure 1. 

As depicted in Figure 1, the initial phase involved applying 

k-means or k-medoids clustering operations to the targeted 

extensive dataset. For both approaches, the number of clusters 

to be generated within each dataset was automatically 

determined through Silhouette analysis. Subsequently, the 

dataset was partitioned into folds automatically within the 

framework of the CV method, utilizing the generated clusters. 

Lastly, for result comparison purposes, the data acquired 

through these methodologies underwent classification using 

the ANN system, which possesses fixed parameters. A 

comprehensive illustration of all these stages is meticulously 

delineated in a step-by-step fashion within the flow diagram 

portrayed in Figure 2. 

 

 
 

Figure 1. Block diagram of novel CV approaches based on k-means and k-medoids clustering 

 

 
 

Figure 2. Flow diagram of the algorithm composed within the scope of the study 
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The flow diagram given in Figure 2 briefly runs in 

accordance with the following steps: 

Step-1: The algorithm is started by presenting the data set 

to the system. 

Step-2: The data are presented separately to both proposed 

approaches and the S-CV method. 

Step-3: Data for k-means and k-medoids approaches are 

analyzed and automatically divided into the number of clusters 

determined. 

Step-4: The desired or specified fold number is set. 

Step-5: The data in the clusters obtained for the proposed 

approaches are separated according to the folds. This 

separation is automatically adjusted to have samples from each 

cluster in each fold. 

Step-6: For the S-CV method used for comparison with the 

proposed approaches, the number of folds is set to be equal to 

the others. 

Step-7: The parameters of the ANN classifier used for 

comparison of methods are fixed in the same way for all 

methods. 

Step-8: Folds obtained for each method are presented to the 

ANN system for the training/test. 

Step-9: The results are recorded. 

Step-10: The performances of the proposed CV approaches 

are compared with the results of the S-CV method. 

Step-11: The algorithm is finished. 

 

2.1 Standard (S-CV) and Stratified (St-CV) k-fold CV 

methods 

 

CV is centered on the segmentation of a dataset into one or 

more partitions. While all partitions but one is employed to 

train the chosen algorithm, the remaining partition is allocated 

for testing or validation. This approach facilitates the fine-

tuning of optimal system parameters to ensure the selected 

algorithm yields the best possible outcome. Larson [15] 

pioneered the utilization of this method for algorithm training 

and performance evaluation. Subsequently, Mosteller and 

Tukey, Stone, and Geisser explored various facets of this 

approach in 1968, 1974, and 1975, respectively [4, 6, 16]. 

While numerous variations of this technique are available, the 

S-CV and St-CV k-fold CV methods are most commonly 

favored. The implementation of these approaches adheres to 

the user-defined k-parameter. In literature, setting this 

parameter to 10 has demonstrated enhanced precision in 

results [10]. A visual representation of these CV techniques is 

illustrated in Figure 3. 

As depicted in Figure 3, within the S-CV method, the entire 

dataset is randomly partitioned based on the designated 

number of folds. The classifier system's parameters used in 

this technique remain consistent throughout the application 

across all folds. Consequently, while favorable outcomes 

might be achieved for one fold in accordance with the fixed 

parameters, contrasting outcomes could arise for another fold. 

Hence, the variance between the performance results across 

folds can be substantial. This situation is notably regarded as 

the most conspicuous drawback of the S-CV method. 

Conversely, in the alternative CV method (St-CV), stratified 

sampling is employed instead of random sampling. Through 

this approach, the class distributions across the complete 

dataset are uniformly allocated to each fold. The primary 

objective of this method is to ensure a near-equivalent class 

distribution within each fold. 

 

 
 

Figure 3. Representation of the standard and stratified k-fold CV methods 

 

2.2 K-means clustering-based CV 

 

One of the fundamental goals of clustering algorithms, 

which belong to the category of unsupervised learning 

methods, is to partition a dataset into clusters based on specific 

criteria. While the similarity within formed clusters is 

maximized, the similarity between clusters is minimized. 

Whether data points resemble each other is calculated using 

distance metrics like Euclidean, squared Euclidean, and 

Manhattan [12]. A widely used partitioning method, the k-
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means algorithm, possesses the capability to minimize cluster 

error [17]. Introduced by MacQueen, the k-means algorithm is 

a clustering technique that sharply divides a dataset into k 

groups [18]. The core mechanism of the algorithm involves the 

random selection of k elements, each representing a distinct 

cluster. Subsequently, all data points in the dataset are 

assigned to a cluster based on their distances from the center 

points, ensuring that no data point remains unassigned. In the 

subsequent steps, cluster centers are determined by calculating 

the average of the data points within each cluster. These steps 

are iterated until there is no further change in the cluster 

centers [17-19]. 

This proposed CV approach initiates with the application of 

the k-means clustering algorithm to datasets. In this clustering 

method, the user defines the k-parameter within a specified 

range, and its automatic determination is based on certain 

calculations. This automatic determination process relies on 

the Silhouette value computed within the algorithm. The 

Silhouette value serves as an indicator of the extent to which a 

sample within the dataset pertains to the cluster it is a part of. 

This measure serves as a criterion aiding in the interpretation 

of data consistency within resulting clusters. In essence, this 

criterion offers both numerical and graphical insights into 

whether data points are appropriately grouped within clusters, 

as inferred from necessary computations. This analytical 

approach is commonly favored for determining the optimal 

number of clusters in clustering algorithms like k-means and 

k-medoids. The calculation of the Silhouette value involves 

the utilization of distance metrics such as Euclidean and 

Manhattan distances. 

The CV approaches presented in the study were designed to 

be used with large data consisting of high dimensions and a 

large number of instances. As presented by Aggarwal et al. 

[20], it was stated that the Manhattan calculation criterion 

gives more consistent results than the Euclidean, especially for 

applications concerning high dimensional data; therefore, it is 

correct to choose this method. Manhattan was preferred as the 

distance calculation, since the data sets used in our study 

contain a large number of samples and are high in size.  

Assume that X and Y are two d-dimensional points as X=[x1, 

x2, x3…… xd] and Y=[y1, y2, y3…… yd]. Accordingly, the 

Manhattan distance (1) between these two points is calculated 

as shown below: 

 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) = ∑ |𝑥𝑗 − 𝑦𝑗|
𝑑
𝑗=1   (1) 

 

Thus, by using the same distance measure in the proposed 

CV approaches, integrity and harmony can be achieved within 

the system. Using a different distance calculation in the 

Silhouette analysis may cause misinterpretation of the cluster 

number. For this reason, it is necessary to pay particular 

attention to the use of the same criteria in distance calculations. 

The mathematical expression of the silhouette value is shown 

in Appendix. 

As a result of this calculation in Appendix [21-23], a value 

is obtained in the range of [−1, 1]. Obtaining s(i) as close to 1 

means that the cluster to which the sample belongs is correct 

[23]; however, values less than 0 and close to −1 mean that the 

sample belongs to the wrong cluster [23]. Calculating this 

value as 0 indicates the instability of whether the data belongs 

to C(A) or C(B). The s(i) value of the whole class is calculated 

by taking the average of the s(i) values of all of the samples in 

the data set [23]. In this study, the mean s(i) values were 

calculated by changing the number of clusters (k) in the range 

of [3, 23] for each data set. Accordingly, analyzes were 

performed by taking the number of clusters with the maximum 

mean s(i) value. Silhouette analysis graphs, which were 

obtained for different number of clusters [5-13] of the 

occupancy detection (occu) data set used in the study are given 

in Figure 4. 

In the graph belonging to the occu data set, the silhouette 

values calculated for k values between 2 and 10 were 

calculated as 0.6542, 0.6957, 0.3957, 0.4107, 0.4050, 0.4333, 

0.4380, 0.4533, and 0.4051, respectively. As a result, the 

highest value was obtained as 0.6957 for k = 3. 

 

 
 

Figure 4. Silhouette analysis graphs for different number of clusters 
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In the next stage of the algorithm, operations were 

performed based on the number of clusters with the maximum 

s(i) value. The data within clusters formed based on the k-

value play a crucial role in determining the number of folds in 

the CV process. The maximum number of folds was set at 10 

in the proposed systems; however, if the data count within any 

cluster is below 10, the fold count is adjusted to match the 

number of data points within that cluster. This adjustment 

ensures an equitable distribution of data across folds from each 

cluster. Given that every cluster encompassed a minimum of 

10 samples, the fold count was uniformly set at 10, and 

subsequent procedures were carried out accordingly. 

Subsequent to the segmentation of clusters into folds, 

training and test groups were established to facilitate the 

analyses. An ANN classifier was employed to compare the 

performances of the proposed methodologies. Within this 

ANN system, a multi-layered structure comprising input, 

hidden layer, and output layers was adopted. In this setup, 

which favors a feed-forward neural network architecture, the 

hidden layer was configured with 10 neurons. The architecture 

of this ANN and other pertinent parameters remained constant 

across all conducted analyses within the study. To attain more 

robust and distinct outcomes, the ANN system was executed 

100 times for each fold, and the ultimate outcome was derived 

by averaging the results. The resultant process culminates in a 

comparative assessment of classification accuracy rates, along 

with their corresponding standard deviation values, across 

folds for all systems. 

 

2.3 K-medoids clustering based CV 

 

The k-medoids algorithm, akin to k-means, falls within the 

category of partitioned methods and constitutes a clustering 

approach within the realm of unsupervised learning. At its core, 

this algorithm aims to identify k-representatives (medoids) 

that best capture the structural essence of the dataset [23]. The 

sample nearest to the centroid of the pertinent cluster is 

selected as the representative and bears the title of 'medoid'. 

Numerous iterations of this clustering algorithm exist, 

showcasing robustness against outliers in the dataset. However, 

the Partitioning Around Medoids (PAM) algorithm, originally 

introduced by Kaufman and Rousseeuw, stands out as the most 

widely employed variant [23]. Within this approach, k-

medoids are initially designated based on user input, and every 

data sample is assigned to the nearest representative, 

culminating in the creation of k-clusters. Subsequently, the 

swapping process is initiated. For each new element's 

integration into the cluster, the same sequence of actions is 

undertaken, pinpointing the element with the most substantial 

contribution. Subsequent to this identification, the swap 

mechanism is executed, with the previously identified point 

assuming the role of the new center, while the previous center 

assumes the position of a typical cluster element. These 

operations endure until the medoid's position remains 

unaltered [23, 24]. 

The PAM algorithm consists of two stages [23]. In the 

initial stage in which the first cluster is formed, the following 

steps are performed: 

 

Stage 1: Select the Initial Unselected Object (m) 

1. Choose any previously unselected object (m). 

Stage 2: Select Another Unselected Object and Calculate 

Difference (n) 

1. Choose another unselected object (n). 

2. Calculate the dissimilarity difference (Dissn) between 

this object (n) and the selected m-object from Stage 1. 

Stage 3: Calculate Contribution Value (Cnm) 

1. A positive difference indicates that the n-object will 

contribute to the selection of the m-object. 

2. Calculate the contribution value (Cnm). 

Stage 4: Calculate Total Gain 

1. Calculate the total gain from selecting the m-object. 

Stage 5: Select Object with Maximum Contribution 

1. Select the yet-unselected m-object with the maximum 

contribution value (Cnm). 

2. Repeat these steps until k number of objects are detected 

in this first stage. 

 

Second Stage of the Algorithm: Swap Operation (the 

displacement process) 

1. Begin by selecting the m-object and create pairs of 

unselected p-objects. 

2. Follow these steps to determine the effect of swap 

between the created pairs on clustering: 

Stage 1: Calculate Contribution to Swap Process (Cnmp) 

1. Take an unselected n-object and determine its 

contribution (Cnmp) to the swap process. 

Stage 2: Calculate Total Effect 

1. Calculate the total effect (Tmp) of the Cnmp 

contributions on the swap process. 

Stage 3: Decision to Execute Swap Process 

1. Identify the (m, p) pairs that minimize the Tmp value. 

2. When the minimum Tmp value is negative, execute the 

swap process and return to Stage 1. 

3. When the minimum Tmp value is positive or zero, stop 

the swap process and end the algorithm. 

 

In the CV approach proposed in this study, PAM algorithm 

was employed, and the Manhattan distance metric was utilized 

for distance calculations. Similar to the k-means CV method, 

the system automatically determines the optimal value through 

requisite assessments across various k values. Furthermore, 

during the CV stage, the number of folds is automatically 

ascertained based on the quantity of elements within the 

resultant clusters. Given that the count of elements within all 

clusters resulting from the application on the relevant datasets 

exceeded 10, the fold count was set at 10, mirroring the 

approach taken in other presented methodologies. An ANN 

was employed as a classifier to assess system performance and 

facilitate comparison with alternative methods. Additionally, 

measures were taken to ensure uniformity in the classifier's 

parameters, aligning them with those employed in other 

instances. 

 

2.4 Used data sets 

 

Up to this point, the study has encompassed an overview 

and elucidation of the newly proposed approaches. 

Additionally, explanations have been provided for the S-CV 

and St-CV methods, with which these approaches are being 

contrasted. At the stage of obtaining experimental outputs of 

the study, five data sets recorded in different fields detailed in 

Table 1 were used. All of these data sets were taken from the 

UCI Machine Learning Repository database [14]. Data sets 

with abbreviated names in Table 1 are the Electrical Grid 

Stability Simulated data set (elect) [25], Occupancy Detection 

data set (occu) [26], Pen-Based Recognition of Handwritten 

Digits data set (pen) [27], Skin Segmentation data set (skin) 
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[28, 29], and Statlog-Shuttle data set (stat) [14]. When the data 

sets selected for the study were compared with the sample 

number of the data sets in many studies in the literature, it 

could be seen that they contain an extremely large number of 

samples. For this reason, these preferred data sets were named 

as “large data set”. 

 

Table 1. Information about data sets used in this study 

 
Used Data 

Sets [14]  
Data Set Characteristics 

Attribute 

Characteristics 

Area of Data 

Set 

Number of 

Classes 

Number of 

Attributes 

Number of 

Instances 

elect Multivariate Real Physical 2 13 10000 

occu Multivariate, Time-Series Real Computer 2 5 20560 

pen Multivariate Integer Computer 10 16 10992 

skin Univariate Real Computer 2 3 245057 

stat Multivariate Integer Physical 7 8 58000 

The data sets providing general information as shown in 

Table 1 have a minimum of 2 and a maximum of 10 classes. 

In addition, their dimensions and number of samples ranged 

from 3 to 16 and 10000 to 245057, respectively. When 

evaluating the data in terms of sample numbers, it is possible 

to evaluate the data as large. 

When literature studies are examined, it can be seen that the 

data sets with low number of samples (such as 200, 500, and 

900) are generally used. However, it is known that real-world 

data is always large. Accordingly, as can be seen in Table 1, 

exceptionally large data (in the range of 10000 to 245057) 

were preferred for performing the experimental processes in 

this study. Thus, it was possible to test the ability of the 

proposed systems to analyze such data compatible with the 

real world. 

 

 

3. EXPERIMENTAL RESULTS 

 

In this study, an experimental comparison of the two 

proposed novel CV approaches (k-means and k-medoids CVs) 

was made, both among themselves and with the S-CV and St-

CV methods. In order to make these comparisons, five 

different data sets [25-29] with an excess number of samples 

taken from the UCI Machine Learning Repository [14] were 

used. These data sets were elect, occu, pen, skin, and stat with 

the number of samples between 10000 and 245057. The ANN 

classifier was used to obtain and compare the classification 

results of the systems. A feed-forward neural network 

structure was used within the classifier. This structure consists 

of input-hidden-output layers. For all methods, the number of 

hidden layer neurons was taken as 10 and remains constant. 

The number of neurons in the input and output layers was 

determined entirely by the characteristics of the data sets. The 

number of neurons in the input was determined according to 

the dimension of the data set (ie, the number of features), while 

the output layer was formed according to the number of classes. 

Accordingly, the number of input and output neurons for elect, 

occu, pen, skin, and stat were 13-2, 5-2, 16-10, 3-2, and 8-7, 

respectively. Also, all experiments were run on a computer 

with 1.8GHz CPU, 8GB of RAM, 128GB HDD, 128MB of 

VRAM, number of cores 7 (i7), and Windows 10 pro operating 

system.  

The Levenberg–Marquardt optimization function was used 

to train the network structure of the classifier system. In the 

ANN classifier, hyperbolic tangent sigmoid (tansig), which 

can obtain faster output rates for the hidden and output layers 

[30], and purelin transfer functions, which can handle the 

hidden layer output data more consistently [30], were used. 

Within the classifier, the mean squared error (MSE) is used as 

a loss function (performance function). The MSE operation 

computes the loss between network predictions and target 

classes. The additional training parameters of the neural 

network include a maximum number of training epochs (the 

number of iterations=1000), a performance goal set to zero, a 

control parameter (momentum constant: mu) for 

adapting/learning rate set at 0.001, and a learning rate (lr) of 

0.01. These system parameters of the ANN classifier used in 

this study were initially fixed and were never changed in any 

of the applications of this study. In this way, it was ensured 

that the performances of all of the proposed approaches and 

traditional CV methods were obtained under equal conditions. 

As a result of running the study strategy, outputs for the CV 

methods were obtained. As part of this strategy, the ANN 

classifier was run 100 times for each fold of each data set in 

order to evaluate the performance of each method. Before 

running the classifier system, the number of folds to which the 

relevant data set will be separated is performed automatically 

according to the number of samples in the obtained clusters. 

However, the number of samples in the clusters was at least 10 

in all of the data sets; accordingly, the number of folds was 

assigned as 10 for all the data sets used in the study. The 

number of clusters that would occur for each data set was 

determined according to the automatically calculated 

Silhouette value, as mentioned in the previous sections. After 

this stage, the MSE values were obtained for each fold of the 

data sets by the ANN classifier. Percentage means accuracy 

rates and standard deviation values between folds were 

calculated using these error values. The accuracy (ACC), 

standard deviation (Std) values, number of clusters, and 

computation time for each data set obtained as a result of these 

calculations are given in Table 2. 

When Table 2 is examined, the maximum average 

classification accuracy for all the data sets was obtained using 

the k-means CV method. However, when the results obtained 

for each fold were evaluated in terms of the standard deviation 

values, the minimum deviation was obtained in the k-medoids 

CV method for all of the other data sets except stat. Among all 

of the data sets, the minimum Std value in skin was 0.022. This 

data set had the highest number of samples and the lowest 

number of features among all the data sets. The St-CV method 

was last with respect to all of the data sets in terms of both 

accuracy and standard deviation (ACC and Std, respectively). 

The best ACC value was obtained as about 100% in the elect 

data set with two classes and a minimum number of samples. 

Graphical representation of the ACC and Std values obtained 

for each data set as a result of the applied methods is given in 

Figure 5. 
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Table 2. Comparative results for k-means CV, k-medoids CV, S-CV, and St-CV methods  

(F: Fold, ACC: Average classification accuracy, Std: Standard deviation, Nc: Number of clusters, Ct: Computation time (minute)) 

 
Data CV Methods F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10 ACC Std Nc Ct 

elect  

k-means 100 100 100 99.9 99.95 99.97 99.98 99.98 100 100 99.98 0.032 4 0.29 

k-medoids 100 99.94 99.92 99.98 99.99 99.94 99.99 99.99 99.99 99.93 99.97 0.031 3 0.21 

S-CV 96.52 97.58 98.85 94.78 96.45 97.26 94.37 95.46 98.51 96.64 96.64 1.480 - 5.78 

St-CV 94.48 96.52 98.74 97.41 95.36 99.12 94.85 97.37 96.74 94.25 96.48 1.722 - 5.92 

occu 

k-means 99.3 98.82 99.46 99.27 99.13 99.08 99.04 99.01 99.06 99.07 99.12 0.178 3 0.96 

k-medoids 99.11 98.98 99.2 98.76 99.26 99.12 99.07 99.26 99.08 99.1 99.09 0.146 2 0.87 

S-CV 94.63 98.82 97.39 96.02 97.17 98.97 95.2 98.83 98.97 98.68 97.47 1.668 - 7.62 

St-CV 96.82 95.49 94.85 95.52 96.84 97.56 93.08 97.33 98.5 98.25 96.42 1.681 - 7.75 

pen 

k-means 98.68 98.66 98.6 98.76 98.52 98.51 98.97 98.56 98.72 98.62 98.66 0.136 5 1.82 

k-medoids 98.52 98.59 98.58 98.64 98.6 98.45 98.7 98.57 98.71 98.68 98.60 0.082 2 1.74 

S-CV 95.56 97.61 96.29 93.31 94.48 96.87 95.87 96.15 95.35 98.19 95.97 1.431 - 11.04 

St-CV 93.53 96.79 94.44 92.52 95.77 94.32 97.73 98.24 94.47 96.87 95.47 1.898 - 11.23 

skin 

k-means 99.74 99.75 99.72 99.75 99.71 99.7 99.72 99.75 99.78 99.73 99.74 0.024 2 9.18 

k-medoids 99.71 99.71 99.75 99.73 99.7 99.72 99.71 99.77 99.72 99.71 99.72 0.022 2 9.13 

S-CV 92.74 92.59 95.63 97.63 94.75 95.73 98.75 92.65 97.65 93.72 95.18 2.279 - 23.48 

St-CV 93.27 91.72 96.62 92.89 97.83 91.61 90.14 94.65 91.75 92.52 93.30 2.401 - 24.16 

stat 

k-means 99.95 99.91 99.94 99.95 99.93 99.9 99.89 99.89 99.95 99.91 99.92 0.025 2 3.37 

k-medoids 99.93 99.92 99.92 99.88 99.86 99.94 99.86 99.92 99.91 99.92 99.91 0.029 2 3.29 

S-CV 94.73 97.93 93.16 96.87 95.83 97.78 98.82 94.55 96.83 97.78 96.43 1.809 - 15.24 

St-CV 95.84 92.73 97.84 94.835 96.682 98.84 95.86 96.94 94.91 93.96 95.84 1.826 - 15.46 

 

 
 

Figure 5. ACC and Std results obtained for each data set and method 

 

Thanks to the proposed CV approaches, especially large-

scale data sets are initially divided into clusters. This ensures 

that data with similar structures and features find their place 

within these established clusters. In contrast, in other 

traditional CV techniques (S-CV and St-CV), the folding 

process is performed entirely randomly. Due to this 

randomness, the performance outcomes between folds vary. 

Therefore, when using standard CV methods, it becomes 

necessary to present the entire data set to the classifier. This 

situation leads to both time loss and sluggishness in the system. 

The core logic of the proposed approaches is prominently 

demonstrated here. In essence, the presence of similar-

structured data within the same cluster will ensure 

compatibility among the data in the generated folds. This 

reasoning has led to a significant reduction in the Std among 

the folds, a key achievement in this study. In this way, it is 

ensured that the achieved performance outputs are more 

reliable. Consequently, instead of the whole data set, it has 
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been proven that it will be sufficient to execute the operations 

on only one of the folds created by using the proposed 

approaches. 

When the results were interpreted according to the number 

of clusters obtained as a result of applying clustering methods, 

it appears that more clusters were formed in the elect, occu, 

and pen data sets via k-means CV. For the other data sets, an 

equal number of clusters were obtained with both CV 

approaches. As a result of applying these methods, a maximum 

of five and a minimum of two clusters were formed for the k-

means and k-medoids CV techniques, respectively. 

When the methods are evaluated in terms of calculation 

time, the shortest time for all data sets was obtained in k-

medoids and k-means CV methods. The time difference 

between these two methods is negligible. However, in S-CV 

and St-CV methods, this process time was much longer. In 

general, it can be said that the computation time for all 

methods was affected by all of the components of the data sets 

(the number of classes, attributes, and instances). The 

correlation coefficients calculated between these components 

and the computation times of the methods were given in Table 

3. 

To discuss the results in more detail; when the performance 

outputs obtained are evaluated in terms of ACC, the proposed 

approaches provide a minimum of 2.81% and a maximum of 

6.91% improvement compared to other traditional CV 

techniques. In terms of Std, it has been proven that the 

difference between the folds is improved at minimum and 

maximum 91.32% and 99.08%, respectively. In addition, as a 

result of using the proposed methods, 28, 8.9, 6.45, 2.64, and 

4.7 times faster operations were concluded for elect, occu, pen, 

skin, and stat datasets, respectively. The proposed CV 

approaches are believed to have a positive impact on the 

classification of large heterogeneous data sets commonly 

found in real-world applications. Because, on the basis of these 

methods, first of all, the data with scattered properties are 

grouped by clustering techniques and then the process of 

dividing them into folds is carried out. In this way, the 

disadvantage of heterogeneous data is mitigated. To 

substantiate this, in this research, extensive experimental 

research has been conducted on both heterogeneous and large-

scale data sets, yielding successful outcomes. 

Upon examining Table 3, it becomes apparent that a robust 

correlation exists between the number of samples (constituting 

a fundamental data set element) and the processing time. In 

essence, this element exhibits a primary influence on 

computational speed. Subsequently, the number of features 

comes into play. Notably, the number of classes exerts the 

least impact. While these components are assessed 

independently, they collectively contribute to the overall 

system dynamics. To illustrate using the utilized system as an 

example, the number of features and classes corresponding to 

each data set instance determine the neuron count within the 

network's input and output layers during formation. For this 

reason, these components directly affect the network structure 

and therefore the time spent. As a result, choosing data with a 

fewer number of features, classes, and instances will positively 

affect the system time no matter the method. Although it is not 

possible to intervene in the number of classes belonging to the 

data, the time can be manipulated by changing the number of 

features with various methods. However, it should be known 

that additional time should be allocated for this process. 

Therefore, the operations to be performed on the data should 

be implemented after careful consideration of the advantages 

and disadvantages. When Table 2 is examined, it ca be seen 

that the computation times of the k-means and k-medoids 

methods are much less than the others. The reason for this 

difference is that new approaches divide the data into clusters 

in advance and distribute them equally to folds. Thus, the 

classifier can label the data in the folds much more easily and 

quickly. The absence of such a preliminary stage in other 

methods causes the system time to be longer. It could be also 

seen that the time difference between the proposed approaches 

and other methods varies inversely with the number of 

instances.  

As a result, it is clear from the above-mentioned 

performance results that the techniques suggested for larger 

data sets can complete operations in less time than needed for 

other data sets. Accordingly, when the methods are compared 

in terms of computation time, the temporal superiority of the 

k-means and k-medoids CV is seen much more, especially for 

large data. Apart from all of these features, intervenable 

factors affecting the specified times are the computer's 

hardware features used for analysis. The higher the quality of 

these technical features, the shorter the analysis time for the 

methods and systems.  

As a culmination of these applications, it became evident 

that the cluster-based CV methods introduced within the study 

effectively minimized the Std value among folds while 

simultaneously maximizing the overall ACC value. 

Consequently, this approach significantly mitigated 

challenges like time inefficiency, complexity, and system 

strain in classifying extensive data sets. This investigation 

revealed that presenting the entire array of folds to the system 

during data classification is unnecessary. Instead, employing a 

selected fold yielded nearly equivalent performance outcomes 

compared to the use of all folds. The Std values observed 

among folds, resulting from the implementation of the 

proposed CV methods, consistently exhibited reasonable 

levels across all data sets. In essence, these suggested CV 

techniques demonstrate a high level of reliability and can be 

confidently applied to diverse data sets. 
 

Table 3. Correlation coefficients between the components of the data sets and computation times of the methods 
 

Used 

Data 

Sets [14] 

Components of the Data Sets Computation Times (minute) Correlation Coefficients 

Number of 

Classes 

(A) 

Number of 

Attributes 

(B) 

Number of 

Instances 

(C) 

k-means 

CV 

(D) 

k-medoids 

CV 

(E) 

 

S-CV 

(F) 

 

St-CV 

(G) 

 

 

A - D 

 

 

B - D 

 

 

C - D 

elect 2 13 10000 0.29 0.21 5.78 5.92 -0.173 -0.623 0.983 

occu 2 5 20560 0.96 0.87 7.62 7.75 A - E B - E C - E 

pen 10 16 10992 1.82 1.74 11.04 11.23 
-0.173 -0.622 0.983 

A - F B - F C - F 

skin 2 3 245057 9.18 9.13 23.48 24.16 
0.003 -0.562 0.925 

A - G B - G C - G 

stat 7 8 58000 3.37 3.29 15.24 15.46 -0.006 -0.564 0.929 
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4. DISCUSSION 

 

In the literature, the classification performances of systems 

are examined during the testing process of the learning 

algorithms that are introduced by the researchers. The main 

factors affecting the results are the separation of data as 

training-test and other system parameters. If the training-test 

data distribution is not suitable, no matter how well the system 

parameters are adjusted, it is inevitable that the system will 

have low performance values. For this reason, the preparation 

stage for giving the studied data set to the classifier is the most 

important part of the general flow. In this section, proportional 

(80/20, 70/30, 60/40, and others) and CV methods were used 

in order to separate the data as training and test data sets. 

Although the proportional separation method was usually used 

in preparation of these data, “k-fold CV” and “leave-one-out 

CV” are currently used in almost all of the studies in this field. 

However, in the CV method, data are assigned randomly to 

training/test groups. This randomness has always raised 

doubts regarding the classification results. For this reason, the 

possibility that the elements in which the classes in the data set 

are best separated from each other in either the training or test 

group exists. In this study, novel CV approaches based on k-

means and k-medoids clustering are presented in order to 

minimize such disadvantages caused by data distribution. 

Thanks to these approaches, negative situations and doubts 

that may arise due to random data assignment can be 

minimized, if not eliminated. The results pertaining to 

confirmation of the reliability of the approaches proposed in 

the study were compared with the results of the S-CV and St-

CV techniques, which were tried under equal conditions. 

According to the results of the comparison, the minimum Std 

value between the created folds was obtained thanks to the 

new approaches proposed in the study. 

When the literature is examined, large data sets were used 

in a small number of studies for classification purposes 

because many researchers hesitate to test their new 

classification algorithms on large data sets due to the long 

training period and system fatigue. Thanks to the use of the 

approaches presented in this study, the Std value between the 

fold results of large data sets was minimized. Accordingly, it 

was proven that presenting a randomly selected fold without 

having to give all the folds to the classifier system yields 

approximately the same performance result. Thanks to this 

study, it is thought that large data sets can be easily used by 

researchers in testing of classifier systems. 

Some aspects of the new approaches proposed in the study, 

which can be considered as advantages, are summarized below: 

1. The number of clusters for which the data set will be 

separated is determined automatically. 

2. The number of folds to be composed is determined 

automatically according to the number of samples in the 

clusters. 

3. Especially for large data sets, low Std values between 

the folds and maximum general classification results were 

obtained. 

4. The proposed approaches for multi-dimensional and 

low-class data sets performed better. 

5. For the data set with the maximum number of 

samples, the Std value was minimized. 

6. The proposed new approaches outperformed the S-

CV and St-CV methods for all tested data sets. 

7. High-performance results were obtained by using 

data sets with more samples than those reported in the 

literature. It is thought that this result will encourage 

researchers to use large data sets in their studies. 

8. Considering that the data sets in real-world problems 

are large, the importance and advantage of the proposed 

approaches are once again understood. 

9. When the systems are evaluated over the computation 

time, it can be seen that k-means and k-medoids CV methods 

are faster. 

Thanks to these novel approaches, it is believed that the 

utilization of large-scale datasets, which have been less 

preferred in the existing literature, will increase. Nevertheless, 

as with any research, this study also has its share of limitations. 

The foremost among these limitations is the presence of 

inaccurate or missing values within the datasets. It is 

imperative to ascertain the presence of samples with missing 

value attributes in the datasets under examination. Otherwise, 

it will cause errors because the related system cannot identify 

this situation. On the other hand, it is possible to correct or 

complete the data defined as incorrect/incomplete with some 

methods. Nonetheless, introducing additional methods into the 

system to identify and rectify such instances necessitates an 

extra computational burden. In truth, this issue of missing data 

is pervasive within this research domain and calls for further 

investigation. The second limitation pertains to working on 

more real-world problems with large data in order to enhance 

the dependability of the systems. However, challenges persist 

in terms of accessing and recording extensive data in the 

literature. Moreover, the number of researchers inclined to 

work with these datasets in the literature remains relatively 

limited. This acts as a hindrance to the wider proliferation of 

big data. In essence, when evaluated from this standpoint, we 

believe that our research has the potential to steer the attention 

of researchers in the field towards large-scale data. 

 

 

5. CONCLUSIONS 

 

In recent years, data analysis methods based on machine 

learning have gained significant importance. However, the 

application of these methods on large datasets is limited. 

Researchers have avoided these datasets due to reasons such 

as computation time and performance imbalances. Moreover, 

the reliability of data separation methods discussed in the 

literature is questioned due to the random distribution of data. 

In this study, unlike those in the literature, novel CV 

approaches based on k-means and k-medoids clustering were 

presented in order to overcome a deficiency in this field. In 

this way, the study aim was to eliminate the disadvantages 

caused by randomness and doubts in the results. In algorithms 

created using clustering methods, the number of clusters into 

which the data will be divided and the number of resulting 

folds was automatically realized. The system benefited from 

the number of samples in clusters obtained at the stage of 

determining the number of folds. While determining the 

number of folds required for each data set, the number of 

samples in the clusters was examined. If the number of 

samples in the clusters is not less than 10, the number of folds 

is taken as 10. Otherwise, the number of folds is taken equal 

to the minimum number of samples. Based on the proposed 

CV methods, the data in the folds were composed without 

randomness in a certain order. The methods were tested on 

large data sets and compared with the results of S-CV and St-

CV. When the results are analyzed, the maximum ACC values 

were reached for all the data sets using the k-means CV 
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approach. However, the minimum Std values between the 

folds were obtained for 4 out of 5 data sets using the k-medoids 

CV. As a result of the application, the maximum ACC value 

was reached in elect data with approximately 100%. When 

examining the datasets, it is observed that skin has the highest 

number of instances. Regarding the Std results, it is seen that 

the best performance was achieved with a value of 0.022 in 

this dataset. This result indicates that as the number of 

examples increases, more coherent clusters can form within 

them, reducing the standard deviation difference between 

folds, and enhancing the reliability of the results. Furthermore, 

the potential positive contribution of having a higher number 

of features in the data to the success of class separations should 

not be ignored. The St-CV, for which the performance values 

were compared, was the worst method in terms of both the 

ACC and Std results for all of the tested data sets. When the 

results are generally evaluated in terms of Std values, it could 

be seen that minimum Std results were obtained by the 

proposed novel CV approaches. To put it briefly; in particular, 

presenting all the folds of larger data sets to the systems will 

cause both an increase in calculation time and unnecessary 

system fatigue. Thanks to the CV approaches proposed in this 

study, rather than presenting all the folds to the system in order, 

performing analysis by selecting any of the folds could prevent 

similar disadvantages. 

In future, the proposed methods can be applied on smaller, 

larger or more varied data sets. Also, number of folds and 

clusters can be changed for certain numbers in manual mode 

instead of automatically. In this way, the effect of number of 

folds on the results can be examined. In addition to this, other 

classifier algorithms such as Decision Trees, Support Vector 

Machines, Random Forest or Naive Bayes can be used. After 

applying the feature selection and dimension reduction 

methods frequently used in the literature, the methods can be 

presented to the proposed approach algorithms. Thus, it can be 

understood which feature contributes positively or negatively 

to the algorithm’s performance. As a result, the system will be 

capable of completing transactions more quickly. It is thought 

that techniques similar to those that can be applied on the 

properties of the data will contribute positively to the 

processing of large data sets. 
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APPENDIX 

 

The mathematical expression of the silhouette value [21-23]: 

 

i: any sample in the data set (data(i)) 

A: the cluster in which data(i) is located (cluster-A) ‘C(A)’ 

a(i): average of the distance of data(i) from other data in 

C(A). a(i) is an indication of how much data(i) belongs to the 

cluster in which it is located. A direct proportion between the 

smallness of this value and the degree to which it is assigned 

to the cluster exists. 

B: the adjacent cluster closest to the cluster to which data(i) 

belongs among other clusters (cluster-B) ‘C(B)’ 

b(i): average of the distance of data(i) from other samples 

in C(B). 

s(i): Silhouette value (2) [21-23] 

 

( )
( ) ( )

( )
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