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The advancement of technology has unveiled the immense potential of deep learning across 

various domains, notably in multi-view image fusion within complex environments. Multi-

view image fusion aims to merge images from different perspectives to garner more 

comprehensive and detailed information. Despite this, challenges persist in such fusion 

under complex conditions, particularly when confronting significant variations in 

perspective and intricate lighting scenarios. Predominant deep learning approaches, reliant 

on extensive annotated data, grapple with high computational complexity when processing 

large-scale and high-dimensional image data, thus hindering real-time applicability. This 

exploration primarily focuses on two facets: multi-view image registration based on the 

moment of inertia axis method, and multi-view image fusion utilizing morphological 

decomposition and attention feature integration. The objective is to enhance the efficiency 

and effectiveness of multi-view image fusion in complex settings, propelling the practical 

advancement of deep learning technologies. 
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1. INTRODUCTION

With the advancement of technology, deep learning has 

demonstrated significant potential and advantages across 

various fields, especially in multi-view image fusion within 

complex environments, where its importance is self-evident [1, 

2]. Multi-view image fusion, which involves the combination 

of images from different perspectives to obtain more 

comprehensive and detailed information, is a highly 

challenging task [3-6]. In complex environments, the 

considerable visual disparities between images from different 

perspectives render the fusion process difficult. In such 

contexts, the flexibility and powerful pattern recognition 

capabilities of deep learning become particularly crucial [7-

11]. 

The study of multi-view image fusion not only contributes 

to advancing image processing technology but also holds 

significant theoretical value for enhancing the visual 

understanding capabilities of artificial intelligence systems 

[12-15]. For instance, in fields such as autonomous driving, 

drone reconnaissance, and 3D modeling, multi-view image 

fusion can provide more detailed and comprehensive visual 

information, thereby improving system performance and 

accuracy. Therefore, exploring the application of deep 

learning in multi-view image fusion within complex 

environments is of great value for advancing research and 

application in related fields [16, 17]. 

However, despite significant achievements of deep learning 

in many domains, including image processing, several issues 

and challenges remain in multi-view image fusion within 

complex environments. For example, existing deep learning 

methods often rely on large amounts of annotated data, which 

are challenging to obtain in practical applications [18-21]. 

Additionally, these methods struggle with high computational 

complexity when processing large-scale and high-dimensional 

image data, making it difficult to meet real-time requirements. 

Finally, existing fusion methods often fail to achieve 

satisfactory results when dealing with significant changes in 

perspective and complex lighting conditions [22-24]. 

This exploration focuses on two research areas: firstly, 

multi-view image registration based on the moment of inertia 

axis method, and secondly, multi-view image fusion using 

morphological decomposition and attention feature integration. 

The moment of inertia axis method, as a novel approach for 

image registration, effectively addresses the issue of multi-

view image registration; meanwhile, the method based on 

morphological decomposition and attention feature integration 

demonstrates superior performance in extracting and 

integrating image features. Through the combination of these 

two methods, it is expected that a new approach will be 

proposed for effective multi-view image fusion in complex 

environments. This research not only aims to fill existing gaps 

in the field but also holds significant value in enhancing the 

efficiency and effectiveness of multi-view image fusion, as 

well as advancing the practical application of deep learning 

technologies. 

2. MULTI-VIEW IMAGE REGISTRATION BASED ON

MOMENTS AXIS

In the context of multi-view image fusion within complex 
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environments, significant visual disparities such as scale, 

rotation, and tilt may exist between images from different 

perspectives. These disparities can impact the effectiveness of 

image fusion. The method of moments axis is capable of 

computing the primary geometric characteristics of an image. 

By aligning images based on these geometric characteristics, 

visual disparities are either eliminated or reduced. 

To achieve multi-view image registration in complex 

environments, geometric moments are utilized to capture the 

geometric properties of images. Specifically, geometric 

moments of different orders are computed based on the 

position and value of pixels. Assuming d(z,t) represents the 

multi-view images to be registered, o and w are the order of 

geometric moments to be solved, wherein Low denotes the 

(o+w)-th order geometric moment, the following formula 

defines the geometric moment of multi-view images in 

complex environments: 

 

( ) ( ) ( ) ( )* , , 0,1...owL z o t w d z t dzdt o w =   =   (1) 

 

In this study, geometric moments are employed to describe 

and compare the shape characteristics of multi-view images, 

thereby enabling more accurate image registration and fusion. 

Each order of geometric moments represents a specific image 

characteristic. The zeroth and first-order moments are moment 

features of the image, assisting in describing the basic 

geometric attributes of the image. The zeroth-order moment, 

also known as the mass moment, can be interpreted as the area 

of the image or the sum of the pixels. In multi-view image 

fusion within complex environments, the zeroth-order 

moment is used to represent the overall scale of the image, i.e., 

the number of pixels contained in the image. The formula for 

calculating the zeroth-order moment L00 of the image d(z,t) is 

given by: 

 

( )00 ,L d z t dzdt=    (2) 

 

The first-order moment is used to calculate the centroid of 

the image, which is the average center of mass position. In 

multi-view images within complex environments, the first-

order moment helps in locating the center position of the 

image, crucial for image alignment and registration. Assuming 

the first-order moment is represented by (L01, L10), the centroid 

of image d(z, t) is (z-,t-), and there is: 
 

10 01

00 00

,
L L

z t
L L

= =  (3) 

 

In multi-view image fusion scenarios within complex 

environments, central moments are defined as moments 

relative to the image centroid. They are calculated by 

subtracting the coordinate values of each pixel from the 

corresponding centroid coordinates in each dimension, then 

multiplying by the pixel values and summing. Central 

moments reflect the geometric characteristics of an image, 

such as shape, size, and orientation. By calculating and 

comparing the central moments of images from different 

perspectives, this study aims to understand and describe the 

shape characteristics of images, thereby achieving more 

accurate image registration and fusion. Such method based on 

central moments can effectively process multi-view images in 

complex environments, enhancing the effectiveness and 

efficiency of image fusion. The central moment Iow of the 

original multi-view images can be obtained by shifting the 

coordinate origin to the image centroid as follows: 

 

( ) ( ) ( )* ,owI z z o t t w d z t dzdt
    =   − −

      
 (4) 

 

The fundamental principle of multi-view image registration 

based on the method of moments axis involves using the 

geometric properties of images, including the centroid and 

orientation, to align them. Firstly, each image's first-order 

moment is calculated to find its centroid, the center of gravity 

position. The centroid, an average of all pixel positions, 

reflects the approximate location of the image. Further, the 

image's second-order moments are calculated to determine the 

principal axis direction, indicating the shape orientation. The 

angle between the image and the coordinate axes, calculated 

using second-order moments, reflects the image's rotation. 

Finally, by translating the image to the centroid position and 

rotating it according to the calculated angle, image registration 

can be achieved. This ensures that images from different 

perspectives align in spatial position and orientation, 

facilitating subsequent image fusion operations. 

Considering the practical scenarios of multi-view image 

fusion in complex environments, this study employs the 

method of moments axis based on image grayscale 

information for multi-view image registration. Assuming the 

image to be registered is denoted as d(l, b), with the desired 

order of geometric moments represented by o and w, its (o+w)-

th order geometric moment, low, is defined as follows to align 

with the discrete characteristics of image grayscale values: 

 

( )
1 1

,
L B

o w

ow

l b

l l b d l b
= =

=  (5) 

 

The centroid coordinates (z-,t-) of the image d(l,b) that 

conforms to the discrete characteristics of image grayscale 

values can be obtained through the following equations: 

 

( ) ( )
1 1 1 1

, / ,
L B L B

l b l b

z ld l b d l b
= = = =

=   (6) 

 

( ) ( )
1 1 1 1

, / ,
L B L B

l b l b

t nd l bn d l b
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=   (7) 

 

The central moment ωow of the image d(l, b), conforming to 

the discrete characteristics of image grayscale values, is 

calculated as: 

 

( ) ( ) ( )
1 1

,
L B o w

ow

l b

l z b t d l b
= =

= − −  (8) 

 

Central moments, calculated relative to the image centroid, 

are obtained through second-order moments. These moments 

are derived by subtracting each pixel's coordinate value from 

the corresponding dimension's centroid coordinates, 

multiplying by pixel values, and summing. The axis, 

representing the primary direction of the image shape, is 

usually obtained from the image's second-order moments. In 

two-dimensional images, the direction of the principal axis can 

be determined by calculating the image's second-order central 

moments. Specifically, the direction of the principal axis is the 
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eigenvector of the covariance matrix formed by the second-

order central moments, corresponding to the direction of the 

eigenvector associated with the largest eigenvalue. Similarly, 

the angle ϕ between the image and the coordinate system can 

also be calculated using second-order moments, as per the 

following formula: 

 

11

20 02

2
tan 2




 
=

−
 (9) 

 

The centroid serves as a reference point for image 

translation. Further, by comparing the centroids of images 

from different perspectives, their horizontal and vertical 

displacement amounts are calculated. The rotation angle of the 

image relative to the coordinate system can be determined 

through second-order moments. This rotation angle reflects 

the image's rotational state, aiding in determining the principal 

axis direction. Once the displacement amounts and rotation 

angle are determined, translation and rotation operations can 

be performed to adjust the image's position and orientation. 

This aligns the multi-view images in spatial position and 

orientation, achieving image registration. Assuming the 

centroid and the angle between the image and the coordinate 

system for the image to be registered are represented by z-
o, z-

o, ϕ-
o, and for the reference image by z-

E, z-
E, ϕ-

E, the horizontal 

and vertical displacement amounts and the rotation angle 

relative to the coordinate system for the image to be registered 

are denoted by Δz, Δt, Δϕ, respectively, as per the following 

calculation formulas: 

 

O Ez z z = −  (10) 

 

O Et t t = −  (11) 

 

O E   = −  (12) 

 

 

3. MULTI-VIEW IMAGE FUSION BASED ON 

MORPHOLOGICAL DECOMPOSITION AND 

ATTENTION FEATURE INTEGRATION 

 

In complex environments, multi-view image fusion 

encounters several challenges, such as significant changes in 

perspective and complex lighting conditions. Addressing these 

issues, this study proposes a method of multi-view image 

fusion based on morphological decomposition and attention 

feature integration. For multi-view image fusion in complex 

environments, morphological decomposition extracts shared 

features across different perspectives, as well as unique 

features of each perspective, providing richer and more 

detailed information for fusion. The attention feature 

integration method, an effective deep learning technique, 

automatically learns and extracts the most important features 

in images. By incorporating the attention mechanism, the 

model focuses on the most critical parts of the image during 

processing, thereby enhancing the accuracy of fusion. In the 

context of complex lighting conditions, attention feature 

integration automatically adjusts the model's focus, enabling it 

to identify the most vital features under varying lighting 

conditions, thus improving the effectiveness of fusion. 

The constructed multi-view image fusion network structure 

comprises three modules: the MCA module, the feature 

extraction module, and the feature fusion module. The MCA 

module performs morphological component decomposition on 

multi-view images, subdividing them into structural and 

textural components. Structural components generally 

correspond to the main objects and contours in the image, 

while textural components relate to details and noise. This 

decomposition allows for better localization and extraction of 

key image features. Furthermore, the MCA module 

preliminarily fuses the structural and textural components of 

both types of images, effectively utilizing information from 

both perspectives. This fusion not only retains spatial and 

spectral information but also removes some redundancy and 

noise, crucial for enhancing the quality and efficiency of 

image fusion. The MCA module, by fully leveraging the 

spectral information and spatial detail present in both types of 

images, better facilitates image registration. This implies that 

the constructed model can understand and interpret multi-view 

images in a broader context, thus improving the accuracy and 

stability of image fusion. The MCA module primarily consists 

of a dual-branch feature extraction network, composed of two 

cascading convolutional subnetworks. The dual-branch 

structure allows the MCA module to simultaneously process 

image data captured from two different perspectives, with each 

convolutional subnetwork handling images from one 

perspective, enabling the extraction and learning of richer and 

deeper feature information. Figure 1 presents the framework 

diagram of the MCA module. 

 

 
 

Figure 1. Framework of the MCA module 

 

In the constructed multi-view image fusion network, the 

feature extraction network module utilizes a dual-branch 

cascading convolutional layer structure to extract spectral and 

spatial features processed by the MCA module. Spectral 

features reflect the spectral information of the image, such as 

color and brightness, while spatial features represent the 

spatial information, like shape and location. These features are 

crucial for understanding the content of the image. The design 

of the feature extraction network module, with its cascading 

convolutional layers, allows for capturing a broader range of 

contextual information while retaining local features. The 

dual-branch design of the feature extraction network module 
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enables simultaneous processing of images from two 

perspectives, providing strong support for subsequent image 

fusion. 

Structurally, the input to the feature extraction network 

module consists of the textural and structural components of 

the source images obtained through the MCA module. These 

two components contain key information of the image, which 

is essential for feature extraction. The feature extraction 

network module is composed of two subnetworks, each 

containing three consecutive convolutional modules. Each 

convolutional module consists of cascading 3×3 and 1×1 

convolutional layers. The 3×3 convolutional layer extracts 

local spatial features, while the 1×1 convolutional layer 

captures global features. This cascading design enables the 

network to extract features at different levels, thus obtaining 

richer information. Each convolutional layer is followed by an 

LReLU activation function. The LReLU activation function 

adds non-linearity to the network, allowing it to learn and 

represent more complex features. 

Assuming the outputs of the j-th convolutional layer in the 

two subnetworks of the feature extraction network are 

represented by Yj(j=1,2,3) and Vj(j=1,2,3), with the channel 

index denoted by vg, and the convolution kernels of the j-th 

layer convolution in the two subnetworks are represented by 

qj
Y(vg) and qj

V(vg), the expressions for Yj and Vj are as follows: 

 

( ) ( ) ( )( )1, , ReLU , , *j j j

Y vg
Y u k vg M Y u k vg q−=  (13) 

 

( ) ( ) ( )( )1, , ReLU , , *j j j

V vg
V u k vg M V u k vg q−=  (14) 

 

Figure 2 gives a diagram showing the feature extraction and 

fusion network framework. The feature fusion network 

module is primarily utilized to generate multi-spectral images 

with high spatial resolution. Multi-spectral images, containing 

abundant spectral information, provide richer details than 

single spectral channels, thereby enhancing the quality of 

image fusion. Within the feature fusion network module, two 

types of attention mechanism blocks are designed: Dual 

Cascading Attention Mechanism (DCAM) and Effective 

Channel Attention (ECA). The DCAM focuses the model on 

important spatial information, while ECA guides the model 

towards significant spectral information. These attention 

mechanism blocks enable the model to better focus on and 

utilize critical information, generating high-quality fused 

images. 

Structurally, the input to the feature fusion module consists 

of feature maps outputted by the feature extraction network, 

including textural and structural components. These feature 

maps first undergo weighted averaging before entering the 

initial 1×1 convolutional layer. The 1×1 convolutional layer 

effectively alters the depth of the feature maps without 

changing their spatial dimensions, providing richer 

information for subsequent operations. The output of the 

convolutional layer is concatenated with the first 

convolutional module of the dual-branch feature extraction 

network. This concatenation operation merges features along 

the depth dimension, allowing the network to consider 

information from different modules simultaneously. The 

concatenated feature map is then input into the second 1×1 

convolutional layer, followed by the DCAM module. This 

mechanism enhances focus on important information within 

the feature map, improving the model's efficiency in utilizing 

key information. The output from the DCAM is concatenated 

with the second convolutional module of the dual-branch 

feature extraction network, followed by the third 1×1 

convolutional layer. The concatenated feature map enters the 

ECA module, which captures inter-channel interaction 

information, aiding in extracting richer features. The output of 

ECA is concatenated for the last time with the third 

convolutional block of the feature extraction network, then 

output to the final 1×1 convolutional layer, resulting in the 

fused image. 

 

 
 

Figure 2. Feature extraction and fusion network framework 

diagram 

 
 

Figure 3. Principle of the DCAM 
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To focus on features significantly impacting the quality of 

the fused image, this paper utilizes the L2 norm as the loss 

function. This approach allows the model to prioritize 

important features during training, avoiding distraction by less 

significant ones. Additionally, the L2 norm offers faster 

convergence rates, crucial for training large-scale image 

fusion models. Let the number of training samples be 

represented by b, images from different perspectives by TX 

and LA, original images in the training set by U, and the fusion 

function outputted by the model by D(TX,LA,ϕ). The L2 loss 

is represented as: 
 

1 1

1

1
| ( , , ) |

b

u

D TX LA U
b


=

= −  (15) 

 

In multi-view image fusion, the information contained in 

images from different perspectives can vary significantly. 

Some information is vital for generating the fused image, 

while other information may be less important. Attention 

mechanisms assist the model in selecting and utilizing useful 

information while disregarding the unimportant, thereby 

enhancing the quality of the fused image. The DCAM, through 

spatial and channel attention mechanisms, generates attention 

feature maps in both spatial and channel dimensions, enabling 

the model to better utilize information in both dimensions. 

ECA emphasizes the importance of avoiding dimension 

reduction and inter-channel interaction when using spatial 

attention mechanisms, allowing the model to better capture the 

relationships between channels while maintaining the richness 

of spatial information. 

Figure 3 illustrates the principle of the DCAM. This 

mechanism takes a feature map D of size G*Q*V as input. 

Through global average pooling and global max pooling, the 

average and maximum values of each channel within the 

feature map are computed. These processes enable the model 

to capture global information of each channel, determining the 

importance of each channel to aggregate the spatial 

information of the feature mapping. The new feature vectors 

obtained after pooling are then processed by a multi-layer 

perceptron (MLP). By incorporating the MLP, the model 

learns nonlinear relationships between channels, thus 

acquiring more accurate channel weights. This approach 

allows the model to enhance the efficiency of channel 

information utilization, based on the global information of the 

channels, thereby improving the effectiveness of image fusion. 

Assuming the Sigmoid activation function is denoted as σ(.), 

global average pooling and max pooling as XV
AV(.) and XV

MAX(.) 

respectively, and the weights of the MLP as Q1 and Q2, the 

output vector is obtained by element-wise addition, expressed 

as follows: 
 

( )( )
( )( )

2 1

2 1

ReLU

ReLU

C

AV

V
V

MAX

Q Q X
D

Q Q X


 
 =
  +
 

 
(16) 

 

The channel attention mechanism aids the model in 

identifying important channels. To enable the network to more 

flexibly capture contextual information, the spatial attention 

mechanism builds upon the channel attention mechanism, 

further assisting the model in identifying crucial spatial 

positions within these important channels. This is represented 

as: 

 

( )( )7 7 ,S S

A AV MAXD d X X =  (17) 

As the model needs to consider information in both the 

channel and spatial dimensions, and these dimensions are 

interrelated, it concatenates the information from both 

dimensions to produce the final attention feature map. This 

method optimizes the model in both dimensions, thereby 

generating fused images with higher quality: 

 

VA V AD D D D=  +  (18) 

 

 
 

Figure 4. Principle of the adaptive channel attention 

mechanism 

 

Since the optimal convolutional dimension may vary under 

different circumstances, for images containing extensive 

global information, larger convolutional dimensions may be 

required to capture this global information. Conversely, for 

images with abundant local information, smaller 

convolutional dimensions may be needed to capture these 

local details. The adaptive channel attention mechanism 

determines convolutional dimensions adaptively and alters the 

ratio between convolution kernel size and the number of 

channels to enhance the effectiveness of multi-view image 

fusion. Figure 4 presents the principle of the adaptive channel 

attention mechanism. Assuming J can only take odd values, 

denoted as |.|ODD, the formula for defining the kernel size J 

given the number of channels V is as follows: 

 

( ) 2logV

ODD

n
J V

e e
= = +  (19) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the data provided in Table 1, it is observed that as the 

grayscale levels decrease from 256 to 2 levels, the alignment 

of multi-view image registration exhibits varying degrees of 

reduction. For high-resolution 256×256 images, as the 

grayscale levels decrease from 256 to 2 levels, the alignment 

reduces from 11.258 to 2.014, showing the most significant 

decrease in alignment at the highest resolution when grayscale 

is reduced. For medium-resolution 128×128 and 64×64 

images, the trend of alignment reduction is similar to that of 

the 256×256 images, but the magnitude of the decrease is less. 

This may indicate that medium-resolution images have certain 

robustness to reductions in grayscale levels. For low-

resolution 32×32 and 16×16 images, especially at lower 

grayscale levels such as 8 and 4 levels, the alignment decreases 
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less, suggesting that low-resolution images are less affected by 

grayscale levels. These data lead to the conclusion that the 

moment of inertia axis method maintains high alignment for 

high-resolution images across different grayscale levels, 

demonstrating its effectiveness in multi-view image 

registration at high resolutions. As the grayscale levels 

decrease, the alignment reduces, but even at lower grayscale 

levels, such as 32 and 16, the method still maintains relatively 

good alignment. 

 

Table 1. Alignment of multi-view images at different 

grayscale levels 

 
Grayscale 

Levels 

256 

Levels 

128 

Levels 

64 

Levels 

32 

Levels 

16 

Levels 

8 

Levels 

4 

Levels 

2 

Levels 

256×256 11.258 11.897 11.701 11.012 8.202 5.231 2.034 2.014 

128×128 11.236 11.885 11.235 11.112 8.423 5.487 2.568 2.115 

64×64 11.141 11.587 11.895 11.324 8.421 5.224 3.478 2.003 

32×32 11.232 11.326 11.320 9.356 7.235 5.856 2.301 2.215 

16×16 22.369 15.698 11.548 8.234 8.523 5.239 2.652 2.014 

 

 
 

Figure 5. Change of alignment value with grayscale levels 

 

Figure 5 depicts the change in registration alignment with 

varying grayscale levels. From the lowest 0 level to 300 levels, 

the alignment number gradually increases from 2 to 12.1, then 

slightly decreases to 11.9 at 300 levels. As the grayscale levels 

increase from 0 to 100, the alignment number significantly 

increases from 2 to 11.5. This indicates that at very low 

grayscale levels (i.e., low image contrast), the moment of 

inertia axis method significantly improves image registration 

alignment. As grayscale levels increase from 100 to 200, the 

alignment number gradually increases and stabilizes between 

12 and 12.1. This stable alignment indicates that the moment 

of inertia axis method effectively maintains consistency and 

precision in image registration at medium grayscale levels. 

When grayscale levels exceed 200, the alignment number 

remains between 12 and 12.1, with a slight decrease to 11.9 at 

300 levels. This slight decrease may be due to noise or other 

factors affecting registration accuracy at high grayscale levels. 

Overall, however, the alignment number remains relatively 

high. Therefore, the moment of inertia axis method is effective 

for multi-view image registration across the entire grayscale 

level range, maintaining high alignment. Particularly, a 

significant increase in alignment is observed as grayscale 

levels rise from low to medium, indicating good adaptability 

of the method to image grayscale and its ability to handle 

images of different contrasts. At high grayscale levels, there is 

a slight decrease in alignment, but it still remains high, 

demonstrating the robustness of the moment of inertia axis 

method. Hence, the multi-view image registration method 

based on the moment of inertia axis is effective and can 

maintain high alignment across different grayscale levels, 

which is significant for practical applications involving multi-

view images. 

 

 
 

Figure 6. Registration probability variation with grayscale 

levels 

 

Figure 6 presents the relationship between registration 

probability and grayscale levels. Within the grayscale range of 

0 to 50 levels, the registration probability rapidly climbs from 

0.0% to 99.0%. At the extreme low end of grayscale levels (0 

level), the registration probability is 0.0%, implying that 

registration is nearly impossible without any grayscale 

information. This is expected, as registration requires 

distinguishable features between images. With a slight 

increase in grayscale levels, the registration probability 

sharply rises to 80.0%, indicating that even at very low 

grayscale levels, as long as basic contrast exists, the moment 

of inertia axis method can achieve high probability of 

registration. At medium grayscale levels (10 to 15 levels), the 

registration probability quickly reaches between 97.0% and 

99.0%, demonstrating that this method can achieve very high 

registration accuracy even at relatively low grayscale levels. 

Once the grayscale levels reach 20 or above, the registration 

probability stabilizes at 99.0%, suggesting that beyond a 

certain level, increasing grayscale levels does not significantly 

improve the registration probability. This shows the high 

robustness of the moment of inertia axis method once a certain 

grayscale level is reached. Overall, the moment of inertia axis 

method for multi-view image registration exhibits high 

efficiency and robustness across different grayscale levels. 

Particularly, at very low grayscale levels, the method quickly 

increases registration probability, demonstrating a strong 

capability in registering low-contrast images. 

The data provided in Table 2 illustrates the variation in 

registration probability and time with increasing grayscale 

levels. As the grayscale levels rise from 5 to 11, the 

registration probability significantly improves, starting from 

91.25% and steadily climbing to 100%. There is a slight dip to 

97.58% at grayscale level 10, but it then recovers and reaches 
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100% at level 11. This indicates that the moment of inertia axis 

method becomes more accurate in image registration with the 

increase of grayscale information. The registration time 

slightly increases from 0.724 seconds to 0.829 seconds, with a 

minimal increase over the process. This suggests that, 

although an increase in grayscale levels might lead to higher 

computational complexity due to more grayscale values being 

processed, the increase in registration time is very slight, 

indicating that the moment of inertia axis method maintains 

high computational efficiency relative to the improvement in 

registration accuracy. The moment of inertia axis method 

achieves high registration probability even at lower grayscale 

levels and continues to increase with rising grayscale levels, 

ultimately achieving perfect registration. 

 

Table 2. Registration performance indicators with grayscale 

levels 

 
Grayscale 

Levels 
5 6 7 8 9 10 11 

Registration 

Probability 
91.25% 94.56% 96.84% 98.73% 98.99% 97.58% 100% 

Registration 

Time 
0.724s 0.748s 0.749s 0.789s 0.823s 0.817s 0.829s 

 

Table 3. Comparison of image quality metrics for different 

multi-view image fusion methods 

 
Fusion Method EN SF AG CEN IC JE 

Laplacian Pyramid Fusion 

Algorithm 
2.564 8.785 1.489 0.071 2.457 5.784 

Wavelet Transform Fusion 

Algorithm 
2.639 9.361 1.491 0.112 2.412 5.826 

PCA Fusion Algorithm 2.647 12.142 2.124 0.057 2.639 6.415 

The proposed method 2.742 13.268 2.268 0.043 3.241 6.528 

 

Table 3 lists the comparisons of image quality metrics for 

several image fusion methods. According to the data, this 

study's method achieved the highest entropy value EN (2.742), 

indicating the highest information content in the fused images, 

implying that this method enhances the information content 

during fusion. Similarly, this method scored the highest in 

spatial frequency SF (13.268), suggesting the fused images 

possess optimal clarity and texture edge detail. On the average 

gradient (AG) metric, the proposed method (2.268) 

outperformed other methods, meaning the fused images are 

visually sharper with better image contrast. This method had 

the lowest cross-entropy value CEN (0.043), indicating high 

pixel-level similarity between the fused images and reference 

images, preserving the quality of the original perspectives. In 

terms of information capacity (IC), the proposed method 

scored the highest (3.241), representing the fused images' 

ability to present richer information. The highest joint entropy 

(JE) score (6.528) also belongs to the proposed method, 

indicating its superior effectiveness in merging edge and detail 

information. Overall, the multi-view image fusion method 

based on morphological decomposition and attention feature 

integration outperforms other listed methods across multiple 

quality metrics. These results demonstrate the proposed 

method's effectiveness in enhancing the fused images' 

information content, clarity, contrast, and overall quality. 

Particularly noteworthy are the high scores in spatial 

frequency and average gradient, indicating a significant 

advantage in preserving edge and texture information. 

Therefore, the proposed method is highly effective in 

processing multi-view image fusion, providing high-quality 

fused images for applications in related fields. 

Analyzing the AG index for different multi-view image 

fusion methods as depicted in Figure 7, it is first noted that 

each model's performance varies across different sample 

numbers. In the context of image fusion, a higher AG typically 

means the fused image retains more edge information and 

detailed features. The data shows that the proposed model 

performs well, exhibiting consistency and strength above most 

other models, even though it is not the highest in certain 

samples. This indicates that the proposed method, based on 

morphological decomposition and attention feature integration, 

is also effective in preserving edge and detail information in 

images. Especially when compared to models without 

registration, the registration step is crucial for improving 

fusion quality. 

Figure 8 provides the root mean square error index for 

different multi-view image fusion methods. The figure 

indicates that the performance of the proposed model is at a 

higher level. Although it does not reach the highest value, it 

performs better than some other models (such as the Laplacian 

Pyramid model, Wavelet Transform model, PCA model) in 

certain samples. This suggests that the proposed model has 

competitive effectiveness in terms of fusion error, especially 

when registration or morphological component analysis is not 

ideal. 

 

 
 

Figure 7. AG index comparison for different multi-view image fusion methods 
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Figure 8. Root mean square error comparison of different multi-view image fusion methods 

 

 
 

Figure 9. Structural similarity index comparison of different multi-view image fusion methods 

 

 
 

Figure 10. Chen-Varshney index comparison of different multi-view image fusion methods 

 

The data presented in Figure 9 shows the structural 

similarity index of various multi-view image fusion methods 

across different sample numbers. It is evident that the 

proposed model displays the highest or near-highest index 

values on multiple sample numbers, particularly for sample 

numbers 0, 10, 15, 20, etc. This indicates that this model has 

superior structural similarity performance on these samples 

compared to other models. Figure 10 shows the comparison of 

the Chen-Varshney image quality index for outputs from 

different multi-view image fusion methods. The Chen-

Varshney index is a metric used to assess the quality of image 

fusion, commonly employed to compare the performance of 
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different fusion techniques. Under this index, lower values 

typically indicate higher image quality, as it quantifies the 

error between the fused image and the reference image. The 

figure reveals that the proposed model has lower index values 

on most samples, especially on samples 0, 10, 20, etc., where 

the index values are at a lower level, indicating high-quality 

fused images with minimal differences from the reference 

images. Through comparative analysis, it can be concluded 

that the proposed model generally demonstrates consistent low 

Chen-Varshney index values, indicating its ability to provide 

fused images closer to the reference images across multiple 

samples. This shows the effectiveness of the method based on 

morphological decomposition and attention feature integration, 

as it maintains high fusion quality across different image 

contents and scenes. 

Overall, the multi-view image fusion method based on 

morphological decomposition and attention feature fusion, as 

proposed in this study, exhibits effectiveness in maintaining 

image quality across multiple samples. This method may have 

advantages in preserving image details, reducing fusion 

artifacts, and enhancing the overall quality of the fused images. 

However, a more comprehensive assessment would require 

testing on a broader dataset and different types of image 

content and comparing with other advanced image fusion 

techniques. 

 

Table 4. Comparative performance of different multi-view 

image fusion methods across viewpoint changes 
 

Experimental Data Algorithm SSIM NMI 
Fusion 

Accuracy 

First Set of 

Experimental Data 

(Different Perspectives) 

Laplacian 

Pyramid Fusion 

Algorithm 

88.84% 84.28% 85.26% 

Wavelet 

Transform 

Fusion 

Algorithm 

85.13% 87.62% 88.36% 

PCA Fusion 

Algorithm 
87.85% 84.25% 87.45% 

The proposed 

method 
95.23% 94.27% 91.23% 

Second Set of 

Experimental Data 

(Same Perspective) 

Laplacian 

Pyramid Fusion 

Algorithm 

83.12% 84.23% 91.52% 

Wavelet 

Transform 

Fusion 

Algorithm 

83.56% 83.74% 91.46% 

PCA Fusion 

Algorithm 
85.34% 81.52% 92.33% 

The proposed 

method 
92.78% 91.35% 94.52% 

 

Table 4 shows the performance comparison of different 

multi-view image fusion methods under perspective changes, 

including three image quality metrics: Structural Similarity 

(SSIM), Normalized Mutual Information (NMI), and Fusion 

Accuracy. For the two sets of experimental data provided (the 

first set involving fusion of views from different perspectives, 

and the second set from the same perspective), the following 

analysis can be made. In the first set of experimental data 

(different perspectives), this study's method shows the highest 

performance in all three metrics, with SSIM at 95.23%, NMI 

at 94.27%, and Fusion Accuracy at 91.23%. These figures are 

significantly higher than other comparative algorithms, 

indicating that this method maintains structural integrity and 

effectively preserves shared information between images, 

while maintaining high fusion accuracy when processing 

fusion of different angle views. In the second set of 

experimental data (same perspective), this study's method still 

performs the best, with SSIM, NMI, and Fusion Accuracy at 

92.78%, 91.35%, and 94.52%, respectively. This further 

confirms the advantage of the proposed method in maintaining 

image visual quality and fusion accuracy. 
 

 

5. CONCLUSION 
 

The research work in this study is divided into two main 

parts. The first part, multi-view image registration based on 

the moment of inertia axis method, explores how to use this 

method to improve the accuracy of multi-view image 

registration. The moment of inertia axis method finds the 

principal axis of the image by calculating its geometric 

moments, thereby achieving effective registration of images 

from different viewpoints. This method is particularly useful 

in multi-view scenarios as it considers the global shape 

attributes of images and does not rely on local feature 

matching, thus showing good stability and accuracy even in 

cases of occlusions or inconsistent image quality. The second 

part, multi-view image fusion based on morphological 

decomposition and attention feature fusion, focuses on image 

fusion techniques. Morphological decomposition involves 

breaking down the image into different morphological 

components, helping to distinguish and extract different levels 

of image features. Attention feature fusion refers to assigning 

different weights to various features during the fusion process, 

enhancing important features and suppressing less significant 

information. Combining these two strategies effectively 

improves the quality of image fusion, particularly in 

maintaining image structure and information sharing. 

Combining these two methods, this study has achieved 

significant results in the complex environment of multi-view 

image fusion. Experimental results demonstrate that the fusion 

method proposed in this study outperforms other commonly 

used image fusion methods, such as the Laplacian Pyramid 

fusion algorithm, Wavelet Transform fusion algorithm, and 

PCA fusion algorithm, in key performance indicators like 

SSIM, NMI, and Fusion Accuracy. These results not only 

confirm the effectiveness of this method in fusing views from 

different and same angles but also show its adaptability and 

stability. 

In summary, the multi-view image registration method 

based on the moment of inertia axis proposed in this study 

effectively addresses registration issues between different 

viewpoints, enhancing accuracy and robustness in the fusion 

process. The multi-view image fusion method using 

morphological decomposition and attention feature fusion 

exhibits outstanding performance in extracting and merging 

image features, especially in maintaining image structure and 

enhancing information sharing. The combination of these two 

methods provides an effective new approach for multi-view 

image fusion in complex environments. Experimental results 

show that this method achieves better results than existing 

technologies in multiple key performance indicators. 
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