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Cardiovascular diseases are a leading cause of death worldwide. Invasive blood pressure 

monitoring is often considered the most reliable method, but it requires surgery and can lead 

to multiple complications. Consequently, there is a need for a non-invasive technique to 

predict the continuous arterial blood pressure (ABP) waveform using 

photoplethysmography (PPG) signals. Predicted ABP can provide more comprehensive 

information than isolated blood pressure values. To this end, we propose a deep learning-

based approach for predicting continuous ABP beats from PPG input beats. Furthermore, an 

in-depth study is presented, exploring different 1-D and 2-D deep learning networks for 

estimating ABP beats from PPG beats across various transformation feature domains. We 

introduce a scattering wavelet transform as a novel transformation domain for ABP 

estimation, combined with a hybrid bidirectional LSTM and CNN neural network 

architecture (conv-BiLSTM). The performance of the proposed method is compared with 

different deep neural networks (DNNs). Specifically, we pit it against two 1-D DNNs 

(LSTM and BiLSTM), a 1-D audio network (crepe), and two 2-D image DNNs (Alexnet 

and VGG19) in terms of mean absolute error (MAE) and standard deviation (STD). 

Simulation results demonstrate that our proposed conv-BiLSTM with scattering 

transformation achieves the lowest STD and MAE for estimating diastolic blood pressure 

(DBP). However, for systolic blood pressure (SBP) estimation, the proposed conv-BiLSTM 

neural network attains the minimum STD and MAE when employing the discrete cosine 

transform. 
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1. INTRODUCTION

The World Health Organization (WHO) has reported that 

globally, cardiovascular diseases (CVDs) account for 

approximately 17.7 million deaths. By 2030, this figure is 

projected to escalate to nearly 23 million annually. Therefore, 

the frequent monitoring of blood pressure is crucial, and if 

found to be elevated, interventions such as medications need 

to be employed to manage optimal blood pressure levels [1]. 

Hypertension, colloquially known as high blood pressure, is 

a condition where an individual's blood vessels narrow due to 

the accumulation of fats and free agents, leading to a persistent 

rise in blood pressure. Consequently, the measurement and 

control of blood pressure during medical procedures and 

outpatient visits are critical in the assessment of hypertension. 

The most reliable and prevalent tool for measuring blood 

pressure is auscultation with a mercury or electronic 

sphygmomanometer. Physicians use Korotkoff sounds to 

determine systolic and diastolic blood pressure [2]. 

While this blood pressure measurement method is 

straightforward and provides adequate values for analysis, it 

carries certain drawbacks. For instance, the discomfort 

associated with increased cuff pressure can induce stress in the 

patient, leading to inaccurate blood pressure measurements [3]. 

Moreover, this method fails to provide continuous beat-to-beat 

measurements needed to evaluate high-frequency blood 

pressure changes, as the inflation, deflation, and normalization 

process can span several seconds. Hence, there has been a 

longstanding pursuit in the research community to devise 

methods for continuous, cuff-free, and non-invasive blood 

pressure monitoring using biomedical data. 

Photoplethysmography (PPG) waveforms offer a less 

intrusive and accurate approach to hypertension monitoring. 

The fundamental principle of PPG is simple: it involves the 

illumination of skin and subsequent measurement of its light 

absorption. Consequently, a typical PPG sensor comprises an 

LED light source and a photodetector [4]. 

Photoplethysmography is employed in various ways to 

estimate blood pressure. This study anticipates the continuous 

arterial blood pressure signal shape from the PPG signal. To 

date, no research has directly predicted arterial blood pressure 

waveforms from PPG signals using one-dimensional and two-

dimensional deep learning networks with different 

transformation features, despite numerous efforts to 
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investigate PPG-arterial blood pressure signals. Our work 

focuses on the beat-by-beat analysis of PPG-arterial blood 

pressure correlation. 

The primary contributions of this paper can be summarized 

as follows: 

1. Comparative study of different one-dimensional and 

two-dimensional deep learning networks for 

estimating arterial blood pressure based on the PPG 

signal. 

2. Comparative study of the impact of the feature 

domain on arterial blood pressure estimation and 

blood pressure estimation using different deep neural 

networks. 

3. Comparative study of different optimization 

algorithms for different transformation feature 

domains in deep neural networks for estimating 

arterial blood pressure from photoplethysmography. 

4. Proposal of a scattering wavelet transform with 

convolutional bidirectional long short-term memory 

deep neural network as a promising feature domain 

for arterial blood pressure and blood pressure 

estimation. 

 

 

2. RELATED WORK 

 

Deep learning algorithms, trained on biological signals, 

have been increasingly utilized in blood pressure waveform 

estimation due to their ability to automatically learn essential 

features. Numerous methods for predicting blood pressure 

from photoplethysmogram signals have been published, 

though fewer techniques focus specifically on arterial blood 

pressure waveform prediction from photoplethysmogram data. 

Biological signals such as electrocardiograms (ECGs) and 

photoplethysmograms (PPGs) form the basis for much of the 

published work on blood pressure waveform prediction. 

The related work for estimating blood pressure or arterial 

blood pressure signals can be broadly classified into three 

categories: traditional methods for blood pressure estimation, 

deep learning-based blood pressure estimation, and arterial 

blood pressure waveform estimation. 

 

2.1 Traditional methods for BP estimation 

 

When examining traditional methods for blood pressure 

estimation, we can categorize them into two groups: those that 

utilize the photoplethysmogram (PPG) signal and those that do 

not. 

Pulse Transit Time (PTT): One approach to measuring 

blood pressure without a cuff is the Pulse Transit Time (PTT) 

method. PTT refers to the duration required for a pressure 

wave to travel between two arterial sites [5]. The relationship 

between blood pressure and PTT under various conditions was 

explored in the study [6]. 

Pulse Arrival Time (PAT): Pulse Arrival Time is the time 

interval between the electrical stimulation of the heart and the 

arrival of the pulse wave at a specific location on the body. 

The Pre-ejection Period (PEP) delay, which includes the Pulse 

Transit Time, isovolumic contraction duration, and ventricular 

electromechanical delay, contributes to PAT [5]. Despite its 

limited accuracy in diastolic pressure measurement, PAT 

continues to be used [7]. 

Pulse Wave Velocity (PWV): Pulse Wave Velocity is 

another method that can be utilized for blood pressure 

estimation without a cuff, and it has demonstrated good 

performance [8]. 

Pulse Wave Analysis (PWA): Pulse Wave Analysis refers 

to the process of signal processing and feature extraction from 

the PPG waveform to identify distinctive characteristics. 

Multiple studies [9] have explored the potential of a single 

PPG sensor for making cuff-free, continuous blood pressure 

predictions. 

 

2.2 PPG-based BP estimation 

 

On the other hand, machine learning (ML) algorithms are 

suitable due to their strong ability to learn complex mapping 

relationships between inputs and outputs. 

Linear Regression (LR): Teng and Zhang conducted an 

initial study on estimating blood pressure using PPG signals 

[10]. Given the high correlation between diastolic blood 

pressure (DBP) and systolic blood pressure (SBP) [11], 

learning both targets within a single model structure could 

enhance estimation by learning common data representations. 

The Taguchi signal-to-noise ratio method for monitoring 

systolic blood pressure was proposed in the research [12], 

while a PLS-based SBP estimation was introduced in 2019 

[13]. 

Regression Tree (RT): In the research [14], the predictive 

efficacy of three machine learning techniques — the 

Multilayer Perceptron (MLR), Support Vector Machine 

(SVM), and Regression Tree (RT) — was examined for SBP 

and DBP prediction. Their research [15] suggested that Heart 

Rate (HR) and Pulse Transit Time (PTT) were the most 

significant indicators of cardiovascular health. 

KNN-based Methods: the research [16] proposed a 

continuous, high-precision arterial blood pressure estimation 

method using machine learning algorithms and the PPG signal. 

Nine morphological features were derived from PPG period 

signals. Machine learning techniques included LR, KNN, 

LASSO, CART, and Elastic Net, with KNN performing best 

in algorithm utility tests. 

Decision Tree (DT): Using the MIMIC II dataset, the 

research [17] extracted features from unsuitable whole-based 

models of PPG signals. Decision Tree, SVM, Adaptive 

Boosting Regression, and Random Forest were used to predict 

blood pressure. This continuous, non-invasive method 

requires no calibration. The study met the AAMI standards for 

DBP and Mean Arterial Pressure (MAP) but not for SBP. 

Support Vector Machine (SVM): Data mining and a 

mechanism-driven model were used to estimate blood pressure 

in the research [18]. SVM outperformed MLR, endorsing the 

nonlinear relationship between features and blood pressure. 

Researchers measured DBP and SBP from a PPG signal and 

extracted 14 features, including PTT, pulse pattern, and heart 

rate [19]. Support Vector Regression (SVR) was used to 

determine blood pressure across all methods. 

 

2.3 Deep learning-based BP estimation 

 

Recurrent Neural Network (RNN): In the research [10], an 

Artificial Neural Network-Long Short-Term Memory (ANN-

LSTM) model was used to develop a waveform-based 

approach for continuously estimating blood pressure using 

Electrocardiogram (ECG) and Photoplethysmogram (PPG) 

waveforms. Artificial intelligence has aided in utilizing 

cutaneous photoplethysmography for blood pressure 

measurement during cardiac resuscitation. It was confirmed 
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through studies that an LSTM model with a single PPG could 

predict blood pressure [20]. Time-frequency-chaotic features 

were identified from ECG and PPG data. The performance 

was compared against Linear Regression (LR), tagged tree, 

coarse tree, Gaussian Process Regression (GPR), Gaussian 

Support Vector (GSV), and dynamic learning models like 

Nonlinear AutoRegressive Exogenous model-Neural Network 

(NARX-NN), RNN, and LSTM [21]. 

Convolutional Neural Network (CNN): Two phases were 

involved in the proposed model of the research [22]. The initial 

phase utilized two CNNs to extract characteristics from PPG 

segments prior to predicting Systolic Blood Pressure (SBP) or 

Diastolic Blood Pressure (DBP). Following this, Long Short-

Term Memory (LSTM) was used to maintain temporal 

dependencies. Incorporating the separation component, the 

research [23] proposed a fully convolutional network for time 

and frequency domain inputs. Furthermore, the research [24] 

demonstrated a complex deep network for physiology or 

medicine using derivative products of PPG and frequency 

domain PPG information. 

 

2.4 ABP waveform estimation 

 

In the research [25], the Nonlinear AutoRegressive 

eXogenous model (NARX) was implemented as an Artificial 

Neural Network (ANN) model applied to 

Photoplethysmogram (PPG), Electrocardiogram (ECG), or 

both. In the research [26], two deep learning models were used 

to generate blood pressure waveform estimates. An 

approximation network, a one-dimensional U-Net network, 

was used to estimate the pattern using a PPG signal. The 

expected blood pressure waveforms were then refined using 

an iterative network. The model was further enhanced using a 

1D Multi Res U-Net model. According to another study [27], 

a 1D adapted U-Net network can be used to evaluate blood 

pressure waveforms. 

 

 

3. THE PROPOSED ABP ESTIMATION BASED ON 

DEEP LEARNING 

 

Due to the structural similarity, all systems in this paper 

used PPG beats to estimate ABP beats. The procedure for 

estimating ABP beats with deep learning is depicted in Figure 

1 using PPG beats. The proposed systems are established in 

several stages: (1) dataset setup, (2) data prepossessing, (3) 

Different Feature domains, (4) data partitioning, (5) Different 

Deep Learning NNs training models, (6) ABP Model 

Estimation. The following sub-sections will implement 

detailed discussion for each stage. 

 

 
 

Figure 1. Block diagram for the proposed system model 

 

3.1 Dataset setup 

 

Physionet MIMIC II (Multi-parameter Intelligent 

Monitoring in Intensive Care) contains the joint PPG-ABP 

data used to teach deep learning models [28]. The research 

[29] arranged the dataset. It has nearly 12,000 subject. Each 

record includes 125 samples per second ECG (channel II), 

PPG (fingertip), and ABP (invasive arterial blood pressure, 

mmHg). We are particularly interested in PPG and marked 

ABP signals. To filter and handle records, 1024 sample parts 

are used. For good results, the research [30] prepare a dataset 

without artefacts to train and test a deep learning estimator for 

a combined PPG-ABP cleaning method. We use 175000 

cleared beats instead of 309000 uncleaned beats because 

uncleaned data can fool deep networks. The dataset is 

available at their website (https://cibpm.com/). 

 

3.2 Data prepossessing 

 

If the PPG signal's morphology doesn't change, just PPG 

signals can be pre-processed using enhancing techniques like 

bandpass filtering in the frequency range [0.5-8] Hz. When 

trying to increase the quality of the ABP signal, the magnitude 

of the signal changes, which in turn changes the BP value, 

rendering the improvement impossible. ABP signals or beats 

that are heavily distorted must be excluded [30]. The resulting 

pre-processed signals were used to extract features and train 

the learning models. 
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3.3 Transformation features domain 

 

A comparison is presented in this section between different 

transformation feature domains and combinations between 

them (Time domain (TD), Discrete cosine transform (DCT), 

Discrete Wavelet transform (DWT) and Scattering Wavelet 

transform (SWT)). 

 

3.3.1 Time domain (TD) 

In this Proposed system, the time domain is the original 

signal for the PPG and ABP signal without any transformation 

techniques. 

 

3.3.2 Discrete cosines transform (DCT) 

The discrete cosine transform is an orthogonal 

transformation of a real series. Discrete cosine transforms 

(DCTs) are used to decompose signals into their fundamental 

frequency components [31]. 

In this article, the discrete cosine transform (DCT) is 

applied to PPG signals to determine their characteristics. After 

the DCT transformation, we find that the initial points of the 

DCT transform sequence contain the majority of the PPG 

signal's energy. So, the PPG signal's initial points after DCT 

are used as the feature to learn to predict ABP. 

 

3.3.3 Discrete wavelet transform (DWT) 

Physiological signals like PPG, ECG, and ABP signals have 

been illustrated and analysed using wavelets because of their 

compact support. The ABP waveform contains clinically 

significant information on multiple time scales. As a result, the 

wavelet method is suitable because it can focus on varying 

sizes of signals, much like a mathematical microscope [32]. 

 

3.3.4 Scattering wavelet transform (SWT) 

The suggested approach estimates the ABP signal from the 

PPG signal using a signal processing technique called wavelet 

scattering transform [33]. Jean Effil and Rajeswari [34] 

accurately estimated BP from PPG signals using a WST and 

LSTM algorithm. The WST is divided into three stages that 

cascade: 

First, the signal x is decomposed and convolved at center 

frequency λ with a dilated mother wavelet ψ yielding x*ψλ. 

Second, when a nonlinear modulus operator is applied to a 

convolved signal, the frequency of the signal increases, which 

may make up for the data lost during down sampling.  

Third, the absolute convolved signal is subjected to a low-

pass/time-average filter implemented as a scale factor, 

yielding |x*ψλ|*∅J. 

 

3.3.5 Combinations for the model 

In this paper used seven input-output combinations using 

different feature domain. These combinations are tabulated in 

Table 1 as follow:  

 

Table 1. Combinations between input-output for different 

feature domains 

 

Scheme 
PPG Input 

Domain 

ABP Output 

Domain 
Abbreviation 

TT TD TD PPG-TD/ABP-TD 

CT DCT TD 
PPG-DCT/ABP-

TD 

CC DCT DCT 
PPG-DCT/ABP-

DCT 

WT DWT TD 
PPG-DWT/ABP-

TD 

WW DWT DWT 
PPG-DWT/ABP-

DWT 

ST SWT TD 
PPG-SWT/ABP-

TD 

SW SWT DWT 
PPG-SWT/ABP-

DWT 

 

3.4 Transfer learning 

 

3.4.1 1-D NN 

LSTM: RNNs fix the common neural network's linear data 

issues. RNN efficiency decreases with sequence length. 

LSTMs are intended to solve this problem [35].  

A CNN or RNN is a self-learning neural network. LSTM, 

the most common RNN, mitigates the fading scaling issue. An 

input gate sends activation into a memory block, and an output 

gate sends it out and into the network. A forget gate was 

integrated into the memory block to sense the subsequent cell's 

internal state and provide an input to the cell via self-repetitive 

communication to forget or reset the cell's memory [36].  

Lee et al. [37] trained a Bidirectional LSTM network to 

estimate BP across heartbeats using data from a 

Ballistocardiogram (BCG), PPG, and ECG.  

BiLSTM: Because LSTM is unidirectional and cannot 

detect relationships with previous words, BiLSTM is used in 

practice. Bi-LSTM [38] is made up of two LSTM modules 

facing each other, one front-to-back and one back-to-front. 

The learnable parameters of two LSTMs with the identical 

inputs can be substantially different. The Bi-LSTM output is 

formed by concatenating the outputs of two LSTMs. By using 

two independent hidden layers that forward to the same output 

layer, bidirectional RNNs (BRNNs) [39] are able to process 

data in both directions. 

ConvBiLSTM: CNN is a cutting-edge method for 

automatic feature extraction, and LSTM is an efficient time 

series data analysis method that can manage long sequential 

data. They proposed a two-hierarchical model with a one-

dimensional CNN and Bi-LSTM for featureless-based BP 

prediction in the research [40]. The lower hierarchy extracts 

feature automatically, while the upper learns their temporal 

connection. The lower hierarchy extracts traits automatically, 

and the upper learns their temporal relationship. CNN layers 

receive resampled PPG segments. From CNN layer output, 

BiLSTM layers produce SBP and DBP regression results. 

Using a CNN-BiLSTM, the research [41] recreates central 

artery pressure from radial arterial pressure patterns. The 

CNN-BiLSTM model for reconstructing central artery 

pressure was tested in 62 patients by invasively measuring 

central aortic and radial arterial pressure patterns before and 

after therapy. 

Crepe: The CREPE model [42] is a time-domain CNN. 

Fully supervised training minimises entropy loss between 

ground truth pitch notes and model output.  

We know no one estimates BP using the CREPE network. 

This paper proposed this network for estimating ABP from 

PPG signal. 

 

3.4.2 2-D NN 

AlexNet: AlexNet, ResNet, and the MIMIC dataset model 

were examined in the research [43]. Transfer learning was 

used to adjust the final layer of models pre-trained with rPPG 

data. This study studied how titration affected blood pressure 

estimate. 
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Some works have used a pre-tested ImageNet model to 

convert one-dimensional physiological potential (PPG) data 

into two-dimensional images [44]. The Visibility Graph (VG) 

method creates images from PPG data. (which are only one 

dimension). This innovative method kept the temporal 

frequency information in the PPG signals and allowed 

transform learning by using previously validated CNN models 

on the extensive ImageNet database.  

VGG-19: DNNs were used to predict SBP and DBP in this 

study [45]. Other researchers offered two independent 

pathways and multistage models for direction-specific 

parameter extraction and estimation. Considering SBP-DBP 

correlation, this method enhanced model sensitivity.  

Wang et al. [44] proposed a VGG19 neural network to turn 

one-dimensional PPG signals into images using Visibility 

Graph (VG) method. allowed using BP-trained image 

classifiers. 
 

3.5 Study of optimization techniques 
 

Training a DNN can take a significant amount of time and 

computing power, therefore finding an efficient optimization 

strategy is of great interest. We use in this paper the most three 

popular algorithms. Adaptive Momentum optimizer (ADAM), 

Stochastic Gradient Descent with Moment (SGDM), and Root 

Mean Square Propagation (RMSProp). 
 

3.6 The proposed method 
 

The suggested system is based on the signals from 

photoplethysmography and employs deep learning models to 

determine the ABP signals on a per-beat basis. Specifically, 

the suggested system is divided into two distinct phases: the 

scattering wavelet transforms phase and the Conv-BiLSTM 

DNN phase. 

First, the scattering transform produces a useful, stable, and 

signal-invariant representation of signal features. Wavelet 

decomposition, modular operation, and LPF achieve this. 

Iteratively calculate the input signal and wavelet modulus 

function. The wavelet modulus operator's constant part Sx is 

used for coefficient output. The next-order transformation's 

covariant input is Ux. Reconstruct high-frequency data lost 

while the invariant component was operating. 

All of the orders 0th through m-th of the scattering 

transform's output sets make up the final scattering 

coefficients: 
 

S𝑥 = {S0𝑥, S1𝑥, … , S𝑚𝑥} (1) 
 

 
 

Figure 2. Block diagram for the proposed scattering wavelet 

transform with conv-BiLSTM DNN for ABP and BP 

estimation 

The scattering transform structure diagram is shown in the 

first stage of Figure 2. 

The proposed network is two-tiered. CNN layers extract 

lower-hierarchy useful information. BiLSTM estimates at the 

highest level by learning temporal links between lower-level 

traits. A block diagram for the whole proposed system is 

shown in Figure 2. The proposed system is consisting of three 

stages. These stages are described in the following steps.  

Signal transformation: During this phase, the PPG and 

ABP signals are examined in their entirety, without 

undergoing any form of segmentation. The central concept lies 

in examining both signals in the frequency domain, where it is 

necessary for both signals to display comparable spectral 

characteristics. Both the PPG and ABP signals originate from 

the same pulsating source, namely the heart. The PPG and 

ABP signals exhibit characteristics of quasi-periodicity, as 

they possess fundamental frequencies that are identical. Both 

signals must pass through the transformation domain before 

entering the learning stage. The study examines four feature 

domains, namely the time domain, DCT domain, DWT 

domain, and SWT domain, through the implementation of 

seven distinct combinations. 

Training Phase: The estimation of ABP beats is conducted 

through the utilization of a Proposed Conv-BiLSTM 

sequence-to-sequence regression model, where the PPG 

features are employed as predictors. In this study, we propose 

a methodology for reconstructing ABP beats from PPG beats, 

utilizing a combination of CNN and BiLSTM models. The 

initial approach to enhancing the model's resilience to 

deformation involves the utilization of CNNs [46]. CNNs have 

demonstrated their efficacy in the field of image recognition 

[47] making them a suitable choice for extracting spatial 

features. After obtaining the spatial features, we proceed to 

utilize the BiLSTM model to extract temporal features from 

the output of the CNN. The utilization of BiLSTM, a classifier 

that incorporates both forward and backward phases, is 

recommended for the prediction of ABP waveforms. In 

contrast to conventional RNN and LSTM models, BiLSTM 

effectively mitigates the problems of gradient vanishing and 

gradient exploding, while maintaining a high level of accuracy. 

Regression: The model's final stage has two fully 

connected levels separated by a Dropout layer. After this layer 

the regression layer of the ABP, SBP and DBP are obtained. 

Resampled PPG segments feed CNN layers. The CNN 

layers will feed the BiLSTM layers SBP and DBP regression 

data. Figure 2 shows the overall case. The model uses a two-

layer, one-dimensional convolutional neural network (CNN) 

with ReLU, BN, and maximum pooling activation functions. 

(max pooling).  

After that, the most recent max-pooling layer output is 

smoothed for BiLSTM layer input. The model's final layer has 

two fully connected levels separated by a Dropout layer. This 

layer generates SBP and DBP regression data.  

The context in which blood pressure is estimated involves 

the estimation of arterial blood pressure (ABP), which can be 

conceptualized as a representation of blood pressure in 

continuous time. In this section, the estimation of ABP beats 

is conducted based on the corresponding PPG beats. This is 

achieved through the utilization of the convBiLSTM network, 

which has been proposed for this purpose. The network 

includes a sequence regressor output layer with dimensions of 

120 × 1. Given that the output is in the form of a sequence, our 

focus lies on the time series of ABP. 
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4. SIMULATION RESULTS 

 

Our models were trained with 90% of the data, 10% of the 

training data used for cross validation and our models tested 

with 10%. Training and testing samples were distinct and 

separated. Using the training dataset, the network's parameters 

are modified based on training error. Thus, network efficiency 

can be objectively assessed. ADAM, SGDM, and RMSProp 

optimizers were used to train the model, and the RMSE loss 

function was chosen. 0.001, 50, and 20 were the initial 

learning rate, max epochs, and minimal batch size. The 

network's learning rate and batch size were optimised through 

testing. All codes were written in MATLAB. 

 

4.1 ABP waveform simulation analysis results 

 

Table 2 presents RMSE values pertaining to the estimated 

ABP beats. These estimations were obtained using the ADAM 

optimizer in conjunction with various Deep Neural Networks 

(DNNs) and distinct feature domains. The ConvBiLSTM 

neural network, as proposed, demonstrates superior 

performance compared to the best RMSE achieved by utilizing 

the combination of scattering wavelet transform (SWT) 

applied to PPG and discrete wavelet transform (DWT) applied 

to ABP. The convBiLSTM neural network with SW feature 

domain demonstrates the lowest RMSE of 6.53, indicating 

superior performance when optimized using the ADAM 

optimizer. 

Table 3 presents the RMSE values for the estimated ABP 

beats. These estimates were obtained using the SGDM 

optimizer, employing various DNNs and distinct feature 

domains. The ConvBiLSTM neural network, as proposed, 

demonstrates superior performance compared to the best 

RMSE achieved using SW. The CT transformations involve 

the combination of DCT applied to PPG and the time domain 

of ABP, resulting in improved RMSE for the BiLSTM neural 

network. The BiLSTM neural network with CT feature 

domain achieves a RMSE of 6.11 for the PPG2ABP task, 

making it the optimal choice when using the SGDM optimizer. 

Table 4 presents the RMSE values obtained from the 

estimation of ABP beats using the RMSProp optimizer across 

various DNNs and feature domains. The ConvBiLSTM neural 

network, as proposed, exhibits superior performance 

compared to the best RMSE achieved using SW. The 

experimental results indicate that convBiLSTM NN with SW 

feature domain produces the most favorable output when 

optimized using the RMSProp optimizer. The RMSE achieved 

by this model for the PPG2ABP task is 6.35. 

 

4.2 ABP waveform reconstruction results 

 

Figure 3 presents an illustrative instance of the 

reconstructed ABP beats, utilizing distinct feature domains 

and diverse DNNs, in comparison to the ground truth ABP 

beat. This comparison is conducted under the ADAM 

optimizer. The figure demonstrates a strong correlation 

between the estimated ABP beat obtained through the 

utilization of SW and ST, and the ground truth ABP beat when 

using the proposed ConvBiLSTM NN compared to various 

other DNNs. 

 

 
 

Figure 3. ABP signal Reconstruction from different DNN and different Transformation combinations at ADAM optimizer (a) 

LSTM, (b) BiLSTM, (c) Proposed ConvBiLSTM, (d) Alexnet, (e) VGG19, and (f) crepe 
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Figure 4. ABP signal Reconstruction from different DNN and different Transformation combinations at SGDM optimizer (a) 

LSTM, (b) BiLSTM, (c) Proposed ConvBiLSTM, (d) Alexnet, (e) VGG19, and (f) crepe 

 

 
 

Figure 5. ABP signal Reconstruction from different DNN and different Transformation combinations at RMSProp optimizer (a) 

LSTM, (b) BiLSTM, (c) Proposed ConvBiLSTM, (d) Alexnet, (e) VGG19, and (f) crepe 
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Figure 4 depicts an illustrative instance of the reconstructed 

ABP beats, utilizing distinct feature domains and various 

DNNs, in comparison to the authentic ABP beat for the SGDM 

optimizer. The figure demonstrates a strong correlation 

between the estimated ABP beat obtained through CT and CC 

methods and the ground truth ABP beat for the BiLSTM NN, 

in comparison to various other DNNs. The proposed 

ConvBiLSTM NN demonstrates a strong correlation between 

the ST and SW feature domains and the ground truth. 

Figure 5 shows an example of the reconstructed ABP beats 

with different feature domains and different DNNs compared 

to the ground truth ABP beat for RMSProp optimizer. As 

shown from this figure, the estimated ABP beat by using SW 

and ST are highly related and correlated to the ground truth 

ABP beat for the proposed ConvBiLSTM NN compared with 

other different DNNs. 

 

4.3 Blood pressure estimation results 

 

Metrics such as mean error (ME) and standard deviation 

(STD) were used to evaluate our SBP and DBP values. These 

tables show ADAM optimizer's SBP and DBP prediction 

performance data. The model predicted DBP better than SBP. 

However, the measurement factor values are fairly well, 

indicating that the proposed model can accurately and easily 

measure SBP and DBP.  

Tables 5 and 6 present a comparative analysis of various 

feature domains in terms of standard deviation (STD) and 

mean absolute error (MAE) for the estimated systolic blood 

pressure (SBP) and diastolic blood pressure (DBP). Based on 

the presented tables, it is evident that the choice of utilizing the 

time domain, discrete cosine transform (DCT) domain, or 

discrete wavelet transform (DWT) domain has a negligible 

impact on blood pressure (BP) estimation. This can be 

attributed to the susceptibility of these domains to variations 

in beat shift and scale. However, the utilization of SWT has 

been acknowledged to enhance the STD and MAE as a result 

of improved feature localization and reduced sensitivity to 

shifting and scaling. Table 5 displays the performance results 

for SBP, indicating that the Proposed convBiLSTM NN 

exhibits the most accurate estimation at the SW feature domain. 

The STD and MAE of the SBP for the proposed NN are 15.65 

mmHg and 12.01 mmHg, respectively. Additionally, Table 6 

presents the performance results for DBP, indicating that the 

Proposed convBiLSTM NN achieves the most accurate 

estimation at SW. The STD and MAE of the DBP for the 

proposed NN are 7.07 mmHg and 5.44 mmHg, respectively. 

 

 

Table 2. PPG2ABP RMSE comparison for ADAM optimizer 

 

 

Table 3. PPG2ABP RMSE comparison for SGDM optimizer 
 

Network SW ST WW WT CC CT TT 

LSTM 7.06 7.88 8.73 8.76 6.75 6.71 9.21 

Bi-LSTM 7.44 7.07 8.78 8.69 6.80 6.71 9.17 

Proposed (ConvBiLSTM) 6.53 6.67 7.31 8.73 6.54 6.56 8.79 

Alexnet 6.76 6.79 6.62 6.59 6.78 6.80 6.69 

VGG-19 7.03 7.22 7.13 7.10 7.33 7.09 7.72 

Crepe 7.14 6.90 6.88 6.75 15.05 6.73 6.74 

 
Table 4. PPG2ABP RMSE comparison for RMSProp optimizer 

 
Network SW ST WW WT CC CT TT 

LSTM 6.89 6.97 8.48 8.54 6.51 6.45 8.86 

BiLSTM 6.85 6.87 8.51 8.46 6.48 6.38 8.97 

Proposed (ConvBiLSTM) 6.35 6.72 8.78 8.98 6.37 6.44 8.93 

Alexnet 7.27 7.21 7.2 7.17 12.20 7.27 7.26 

VGG19 7.27 7.3 7.43 7.33 7.98 7.32 7.32 

Crepe 7.17 6.98 6.96 6.87 11.10 6.85 6.84 

 

Table 5. SBP STD and MAE performance comparison 

 

Network 
SW ST WW WT CC CT TT 

STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE 

LSTM [35] 17.1 13.3 17.8 14.0 18.6 14.4 18.7 14.5 16.2 12.4 16.1 12.3 19.3 15.0 

BiLSTM [37] 17.4 13.7 17.1 13.4 18.6 14.4 18.5 14.3 16.0 12.2 16.1 12.2 19.2 14.9 

Proposed (convBiLSTM) 15.6 12.0 16.2 12.5 18.6 14.4 18.8 14.5 15.7 12.1 15.9 12.1 18.8 14.5 

Alexnet [43] 17.7 20.9 17.7 14.5 17.6 20.8 17.6 14.4 23.8 25.2 17.6 14.3 17.6 14.4 

VGG19 [45] 17.8 23.1 17.7 16.2 17.9 23.9 17.8 16.7 19.7 27.5 17.8 16.8 17.8 16.8 

Crepe 17.9 20.1 17.8 15.7 18.3 22.5 18.0 15.2 24.3 24.6 17.9 15.1 18.0 15.2 

 

 

Network SW ST WW WT CC CT TT 

LSTM 6.53 6.37 8.16 8.07 6.2 6.24 8.37 

BiLSTM 6.62 6.38 8.06 8.09 6.13 6.11 8.38 

Proposed (ConvBiLSTM) 6.51 6.23 8.39 8.33 6.41 6.29 8.29 

Alexnet 8.21 7.74 7.60 7.34 7.05 8.04 9.17 

VGG19 7.54 7.54 8.45 7.84 8.29 7.88 7.62 

Crepe 7.01 7.02 6.84 6.83 6.82 6.81 6.82 
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Table 6. DBP STD and MAE performance comparison 

 

Network 
SW ST WW WT CC CT TT 

STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE 

LSTM [35] 7.75 5.87 8.4 6.6 9.5 7.32 9.53 7.33 7.74 5.87 7.67 5.83 9.88 7.65 

BiLSTM [37] 7.95 6.18 7.65 5.85 9.6 7.38 9.51 7.28 7.69 6.01 7.64 5.85 9.8 7.61 

Proposed (convBiLSTM) 7.07 5.44 7.11 5.46 9.44 7.22 9.48 7.25 7.69 5.64 7.77 5.83 9.49 7.29 

Alexnet [43] 8.90 12.24 8.76 6.73 8.91 20.82 8.67 6.69 9.78 13.01 8.78 6.93 8.78 6.92 

VGG19 [45] 8.93 16.10 8.94 6.90 8.94 16.53 8.94 6.94 8.90 20.42 8.98 6.98 8.98 6.98 

Crepe 8.94 23.19 8.98 6.94 8.94 24.09 9.11 7.02 9.98 19.94 9.11 7.04 9.13 7.05 

 

 

5. CONCLUSIONS 

 

In the present study, we aimed to infer the full heartbeat of 

BP signals from PPG alone. There are actually a number of 

businesses that calculate important information such as DBP 

and SBP. However, none of these studies were able to provide 

a comprehensive picture of BP., that is, the full waveform. In 

addition, they frequently required additional signals, such as 

an ECG, to aid in the calculation. Furthermore, many 

algorithms compute some handcrafted features of the signals 

as an essential pre-processing step, needs properly structured 

signals without any noise or artefacts to work. Thus, in 

addition to demonstrating better performance in DBP and SBP 

predictions even though we were not explicitly trained to do 

so, our work develops state of the art in three different 

dimensions, First, we compare between the proposed 

convBiLSTM NN system for PPG-ABP estimation and BP 

estimation with different NNs which are two 1D DNN (LSTM 

and BiLSTM), with 1D audio network (crepe), and with two 

2D image DNN (Alexnet and VGG19) 

Second, we compare between the proposed scattering 

transformation for convBiLSTM NN system for PPG-ABP 

estimation and BP estimation with different combinations of 

transformation (TT, CT, CC, WT, WW, ST, and SW). Third, 

we compare between different optimizers (ADAM, SGDM, 

and RMSProp) for different NNs and different Transformation 

combinations. 
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NOMENCLATURE 

ABP Arterial blood pressure 

CNN Convolutional neural network 

DCT Discrete cosine transform 

DNN Deep neural network 

DWT Discrete wavelet transform  

ECG Electrocardiogram  

GAN Generative adversarial network 

BiLSTM Bidirectional Long short-term memory 

PGAN Personalized GAN  

PPG Photoplethysmography 

SWT Scattering wavelet transform  

TD Time domain 

Greek symbols 

∅ The Scalling Function 

λ The scale of the filter bank 

ψ The wavelet cluster (Mother Wavelet) 

Subscripts 

Sx The invariant part 

Ux The covariant portion 
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