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The burgeoning global logistics industry has necessitated the development of intelligent 

logistics systems as a crucial means to augment efficiency and curtail costs. Paramount to 

bolstering logistics system performance is the optimization of cargo capacity in logistics 

vehicles, intrinsically linked to diminishing logistics expenses and augmenting 

transportation efficiency. Conventional approaches for gauging vehicle cargo capacity, 

predominantly reliant on manual measurements, have encountered challenges of 

inefficiency and lack of precision. In response to these impediments, this study advocates 

an innovative image processing-based methodology for optimizing vehicle cargo capacity. 

The research initially concentrates on refining stereo matching algorithms, aiming to elevate 

measurement accuracy and stability amidst complex environmental conditions. This 

enhancement proves particularly efficacious in measuring cargos with irregular contours and 

diverse reflective properties, facilitating more precise volume estimations. Additionally, the 

study introduces a novel methodology for volume calculation, predicated on the statistical 

analysis of pixel heights in images. This technique, utilizing meticulous camera calibration 

coupled with the extraction of pixel height data, enables the swift and accurate determination 

of cargo volume in vehicles, thereby markedly improving measurement efficiency and 

precision. The progress delineated herein not only paves a novel technological path for 

optimizing cargo capacity in logistics vehicles but also advances the application of image 

processing technology within the realm of intelligent logistics. The advancements hold 

substantial market potential and research significance, presenting a promising avenue for 

future explorations in this field. 
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1. INTRODUCTION

The burgeoning e-commerce sector and the rise of online 

shopping platforms have precipitated unprecedented 

challenges and opportunities within the logistics industry. 

Central to the efficiency enhancement and operational cost 

reduction in this sector is intelligent logistics, emerging as a 

pivotal technology [1-3]. A fundamental aspect underpinning 

the performance improvement of logistics systems is the 

optimization of cargo capacity in logistics vehicles, a factor 

directly influencing logistics expenses and transportation 

efficiency. Conventional approaches for determining vehicle 

cargo capacity have traditionally relied on manual 

measurements, which have been beset by inefficiencies and a 

lack of precision and reliability [4-7]. Consequently, the 

demand for an automated, high-precision system to measure 

cargo capacity, leveraging image processing, has emerged as 

an urgent necessity in the industry. 

The expeditious and precise quantification of cargo volume, 

coupled with the optimization of cargo capacity, forms a 

critical research trajectory in the domain of intelligent logistics 

[8-10]. In this realm, image processing technology holds 

substantial promise. It facilitates the automatic quantification 

of cargo volume through the analysis of images of goods 

within logistics vehicles, thereby streamlining loading 

strategies [11-13]. The advancement in research related to this 

field not only contributes to the enhancement of intelligent 

logistics systems but also paves the way for breakthroughs in 

the practical applications of computer vision and image 

processing technologies [14, 15]. 

Nevertheless, existing research encounters certain 

limitations in the volume measurement of cargo in logistics 

vehicles. Stereo matching algorithms, for example, often lack 

the requisite precision in complex scenarios, particularly when 

dealing with objects that are obstructed or of varied shapes and 

materials [16-19]. Moreover, the real-time performance and 

robustness of traditional algorithms necessitate further 

refinement to align with the rigorous demands of industrial 

applications [20, 21]. 

This paper presents a system designed to optimize the cargo 

capacity of intelligent logistics vehicles through the 

application of image processing, addressing these challenges. 

Key improvements have been made to stereo matching 

algorithms, enhancing the precision and stability of 

measurements in complex environments, especially for cargos 

characterized by irregular shapes and a range of reflective 

properties. This facilitates more accurate estimations of cargo 

volume. Additionally, the paper introduces an innovative 
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method for volume calculation based on the statistical analysis 

of image pixel heights, incorporating accurate camera 

calibration and the extraction of pixel height information. This 

approach enables the rapid and precise computation of cargo 

volume in vehicles. The findings and methodologies 

delineated in this paper not only raise the technological bar for 

optimizing cargo capacity in logistics vehicles but also offer 

efficient solutions for intelligent logistics systems, thereby 

holding significant theoretical and practical application value. 

 

 

2. IMAGE PROCESSING-BASED MEASUREMENT OF 

CARGO VOLUME IN LOGISTICS VEHICLES 

 

In this research, stereo matching algorithms have been 

employed for the measurement of cargo volume in logistics 

vehicles. The selection of these algorithms is predicated on 

their ability to reconstruct three-dimensional models by 

analyzing disparity information from the same object captured 

in multiple images taken from varied angles. This approach is 

instrumental for the automated acquisition of accurate volume 

information of cargo, avoiding direct contact and enabling the 

precise measurement of dimensions, even for cargos of 

irregular shapes. In the domain of logistics, the implications of 

this approach are manifold, leading to enhanced spatial 

planning and optimization of cargo capacity. This 

advancement results in a reduction of operational costs and an 

elevation in transportation efficiency. 

In scenarios where image processing is utilized for cargo 

volume measurement in logistics vehicles, traditional semi-

global stereo matching algorithms, which rely on Census cost 

computation, often exhibit critical shortcomings. These 

limitations include a marked dependence on central pixels, 

diminished matching precision in areas with similar or weak 

textures, and reduced accuracy in regions of depth 

discontinuity. The stability and robustness of the traditional 

Census transformation, heavily dependent on central pixels, 

are susceptible to degradation when central pixels are affected 

by noise interference or significant variations in illumination. 

Furthermore, the Census transformation is prone to producing 

ambiguous matches in areas with similar or weak textures, 

owing to minimal feature variation, resulting in an insufficient 

matching cost to accurately differentiate true matching points. 

The algorithm's approach to depth discontinuities, often biased 

towards spatial continuity, can obscure actual depth 

boundaries, thereby affecting the precision of volume 

measurements, particularly in complex logistics scenarios. 

In this research, the semi-global stereo matching algorithm, 

traditionally based on Census cost computation, has been 

refined to address the challenges posed by various 

disturbances prevalent in logistics environments, such as 

uneven lighting and reflections on vehicle surfaces, as 

illustrated in Figure 1. These factors have been observed to 

affect the grayscale value of central pixels, leading to 

inaccuracies in the traditional Census transformation, which 

predominantly relies on these pixels. The enhancement of the 

algorithm is achieved through the integration of neighborhood 

pixel constraints and threshold judgment. This advancement 

enables the algorithm to effectively identify and mitigate 

disturbances impacting central pixels, thereby maintaining the 

non-linear characteristics of the Census transformation while 

diminishing the influence of noise on measurement outcomes. 

Consequently, the refined algorithm significantly improves 

the accuracy of depth estimation in stereo matching, enhancing 

the reliability and precision of cargo volume measurements in 

complex logistics settings. An illustrative example of the 

transformation results, post-improvement of the Census cost 

computation, is displayed in Figure 2. The process involves 

defining the reference grayscale value for the non-parametric 

transformation, represented by Ud(a,b), averaging the 

grayscale values of neighboring pixels external to the center 

pixel, denoted by U-(a,b), specifying the grayscale value of the 

center pixel itself as U(a,b), and setting the judgment threshold, 

labeled as S. The formula for establishing the reference 

grayscale value is articulated as follows: 
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Figure 1. Flowchart of the improved semi-global stereo matching algorithm based on Census cost calculation 
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Figure 2. Example of the transformation results after 

improving the Census cost computation 

 

In this segment of the methodology, it is identified that the 

Census algorithm, which hinges on the arrangement of pixel 

intensities in localized neighborhood windows, and the 

Absolute Difference (AD) algorithm, grounded solely in pixel 

grayscale values, are both vulnerable to inaccuracies in regions 

characterized by repetitive textures or along the edges of 

images. The reliance on Hamming distance as the primary 

metric for matching cost, as depicted in Figure 3, can result in 

scenarios where the calculated Hamming distance is nil 

despite the presence of actual differences in grayscale values. 

Such challenges are notably pronounced in logistics 

environments due to the varied surface textures of goods, 

which can complicate the algorithmic matching process. 

Figure 3 offers a schematic representation of the Hamming 

distance computation. 

Enhancements to the traditional semi-global stereo 

matching algorithm, utilized in image processing for 

calculating cargo volume in logistics vehicles, have been 

undertaken to improve its performance in areas with weak 

textures and along edges. These improvements involve the 

integration of gradient information, recognized for its 

sensitivity to image edges and its robustness against variations 

in noise and lighting. Such integration enables the refined 

algorithm to more precisely identify and delineate edge 

features within images. Consequently, this leads to a marked 

increase in the accuracy of matching, particularly in intricate 

logistics scenarios characterized by densely stacked goods, 

intricate texture details, or less-than-ideal lighting conditions. 

In the context of this study, it is posited that the grayscale 

values of the red, green and blue (RGB) channels for a given 

pixel o in the image are denoted by Um(o). Furthermore, the 

grayscale value of the corresponding point at a specific 

disparity f for the same pixel o is indicated by Ue(o,f). The 

absolute difference in the grayscale values of these two pixels 

is represented by ZXF(o,f), forming the basis of the AD 

calculation, as outlined in the following equation: 
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Moreover, the gradient cost at a given disparity f is 

represented by ZH. The formulation for this gradient-based 

cost calculation is provided: 
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The process for the initial cost calculation, incorporating 

these elements, is further detailed: 
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To ensure uniformity across the various cost calculation 

methodologies, a normalization process is employed. In this 

context, the matching cost value of the algorithm is 

symbolized by z, and the weight parameter of the algorithm's 

cost is represented by η. The normalization formula is as 

follows: 
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Subsequently, the formula for the normalized matching cost 

calculation, integrating these factors, is presented: 
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Figure 3. Schematic of hamming distance calculation 
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The algorithmic improvement proposed in this study for the 

precise measurement of cargo volume in logistics vehicles 

entails a holistic optimization of the original image processing 

workflow. Initially, grayscale processing is applied to the 

images to eliminate disturbances caused by color information. 

Subsequently, filtering techniques are employed to remove 

random noise, and contrast enhancement is performed to 

ensure the clarity of image details. Stereo correction is utilized 

to rectify distortions and inconsistencies in epipolar 

constraints during the camera imaging process, guaranteeing 

geometric consistency in the image pairs. The processed image 

pairs are then subjected to an enhanced suite of algorithms: the 

refined Census algorithm, the AD algorithm, and the gradient 

transformation method. Each of these algorithms is tailored to 

optimize specific image characteristics, thereby enriching the 

utilization of texture information, grayscale variations, and 

edge gradients. The culmination of this process involves 

normalizing the cost values derived from these algorithms to 

mitigate disparities arising from different scales. These 

normalized values are then aggregated to yield a 

comprehensive matching cost value that encapsulates diverse 

feature information. This cost aggregation not only augments 

the algorithm's adaptability to the varied characteristics of 

logistics goods but also bolsters the precision and robustness 

of the volume measurement, ensuring reliable cargo volume 

measurement across various logistics environments and aiding 

in the optimization of logistics systems' efficiency. 

In typical logistics scenarios, the stacking of goods often 

results in pronounced depth changes in disparity maps. The 

inadequate handling of these discontinuous edges can lead to 

substantial errors in volume estimation. Moreover, the surface 

textures of logistics goods, often characterized by repetition or 

weakness, present challenges for traditional matching 

algorithms in discerning true matching points. To address 

these issues, this study integrates the cross-domain cost 

aggregation method and the multi-path dynamic programming 

algorithm into the conventional semi-global stereo matching 

algorithm based on Census cost computation. These 

enhancements effectively mitigate the challenges associated 

with discontinuous disparities and areas of weak or repetitive 

textures. The application of the cross-domain algorithm for 

preliminary aggregation correction of initial costs significantly 

enhances the capability of the semi-global stereo matching 

algorithm, particularly in locating depth boundaries and 

improving its performance in regions with discontinuous 

disparity. This methodological advancement is instrumental in 

achieving more effective utilization of cost information along 

distinct paths, while simultaneously maintaining a balance in 

disparity coherence across these paths. This optimization 

crucially enhances the matching accuracy of the algorithm, 

especially in scenarios characterized by repetitive or weak 

textures, a common challenge in complex logistics 

environments. 

A cross-domain aggregation window, centered around the 

current pixel, is constructed to aptly capture and delineate 

vertical and horizontal edge information in images, aligning 

with common edge structures found in goods within logistics 

vehicles. This construction aids in enhancing the continuity 

and accuracy of disparity values at edges. Figure 4 presents an 

exemplar of the cross-domain aggregation window 

construction. The color difference between the initial pixel and 

its surrounding pixels is denoted by Fz, and the pixel distance 

is denoted by Ft, with the associated calculation formula 

provided as: 

( ) ( ) ( )

( ) |oo|o,oF
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Specific constraints within the cross-domain are established 

to effectively mitigate noise and mismatches during the cost 

aggregation process, concurrently enhancing the consistency 

of disparity among neighboring pixels. These constraints may 

include limiting the threshold of pixel differences within the 

neighborhood during aggregation and applying specialized 

weight treatment for edge pixels within the cross-domain. The 

detailed constraints are articulated in the following 

formulation: 
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Figure 4. Example of constructing a cross-domain 

aggregation window 

 

Subsequently, further cost aggregation is conducted within 

each pixel's cross-domain. This phase incorporates the spatial 

information surrounding each pixel, aggregating cost data 

from neighboring pixels to augment matching accuracy and 

robustness. The aggregated cost value for pixel o, denoted as 

R(F), is derived by considering the number of pixels included 

in the aggregation window, represented by ||If(o)||, and the 

initial cost value of neighboring pixels, denoted by Z(t). The 

formula for the aggregated cost is as follows: 
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The optimized aggregated cost formula, a crucial part of the 

process, is delineated below: 
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The methodology involves cost aggregation in four distinct 

directions: upward, downward, left, and right. In each 

direction, the aggregation process takes into account the 

disparity change trends, employing dynamic programming to 

optimize the aggregated cost along each path. This approach 

ensures comprehensive cost optimization in every direction. 

The final stage involves computing the average of the 

optimized costs aggregated from all four directions. This 

average serves as the final matching cost for the current pixel, 

enabling the synthesis of information from various directions 

and balancing their respective influences. This meticulous 

process is designed to yield a disparity estimation that is both 

more precise and stable. The calculation formula for this 

comprehensive process is provided as: 

 

( ) ( )=
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3. IMAGE PIXEL-BASED CARGO VOLUME 

CALCULATION IN LOGISTICS VEHICLES 

 

This study introduces an image pixel-based method for 

calculating cargo volume in logistics vehicles, grounded in the 

principles of stereoscopic imaging geometry. Initially, the 

method employs a binocular stereo vision system to capture 

the three-dimensional profile of the cargo pile within the 

logistics vehicle. The process involves registering and 

matching images from left and right cameras to determine the 

disparity between corresponding pixels. This disparity, 

combined with the baseline distance and focal length of the 

cameras, undergoes a series of geometric transformations, 

resulting in the computation of each pixel's depth information 

relative to the camera. Figure 5 illustrates the relative 

positioning of the camera and the calibration board, 

highlighting this crucial step in the process. Given the diverse 

surface heights characteristic of irregular cargo piles, this 

approach facilitates the precise reconstruction of the cargo 

pile's surface height model. Furthermore, by examining the top 

view of the cargo pile and identifying its contour boundaries, 

the method integrates this information with the height data to 

compute the total volume of the cargo pile. This methodology 

is particularly effective for irregularly shaped goods, as it does 

not rely on the regularity of cargo shape, thereby providing 

accurate volumetric data essential for optimizing cargo 

capacity in logistics vehicles. Assuming uniform distribution 

of points in the depth map of the cargo pile, the method 

denotes the surface area corresponding to a pixel by Δt and the 

height of the small cubic volume corresponding to the pixel 

from the pile's surface by gu. The total number of pixels in the 

target area is represented by V. The formula for the specific 

calculation of the triple integral, integral to this method, is 

delineated as follows: 

 

  =
V

ugtdadbdgN
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The methodology employed in this study addresses the 

challenges of accurately estimating the volume of cargo piles 

in logistics vehicles. A direct estimation based solely on the 

average height of sampling points risks overlooking the 

intricate geometric characteristics and uneven height 

distribution of cargo piles, potentially leading to substantial 

errors in volume estimation. To circumvent these issues, each 

pixel within the image is assigned an exact spatial position, 

specifically its actual height, derived from precise three-

dimensional reconstruction technology. This approach, 

complemented by the incorporation of pixel equivalent values, 

facilitates a more accurate estimation of the entire pile's 

volume. This method takes into account the intricate details of 

each point on the cargo pile's surface within the logistics 

vehicle. Such meticulous attention to detail significantly 

mitigates computational errors that might arise due to complex 

surface geometries or pronounced variations in height. This 

refinement in methodology thereby substantially contributes 

to the overarching research goal of optimizing cargo volume 

measurement in logistics vehicles. The specific steps for 

implementing this improved method are as follows: 

Step 1: Upon acquiring the depth image of the cargo area in 

a logistics vehicle, the initial step involves transforming this 

image into depth information. Each pixel's depth value 

signifies its distance from the camera. The intrinsic parameters 

of the camera, such as focal length and optical center, along 

with its extrinsic parameters, encompassing rotation and 

translation matrices, are utilized to map the two-dimensional 

pixel coordinates onto a three-dimensional spatial coordinate 

system. This task, encompassing intricate geometric 

transformations and matrix operations, ensures precise 

alignment of each pixel's three-dimensional coordinates with 

corresponding points on the physical surface of the object. 

This phase is critical for reconstructing the spatial structure of 

the vehicle's cargo pile, thereby providing vital three-

dimensional data for subsequent volume estimation. 

Following this, image segmentation techniques are applied to 

delineate the cargo from the background within the image. 

This step involves meticulous pixel counting within the 

designated cargo area, incorporating the distance from the 

camera to the cargo surface and the camera's field of vision to 

determine the actual projected area. Accurate identification of 

the cargo's edges and contours is essential here, as it 

contributes to the precision of the calculated area, ensuring it 

closely reflects the actual dimensions. In environments 

characterized by complex logistics, this process may involve 

advanced edge detection and pattern recognition algorithms, 

tailored to accommodate varying types and colors of cargo 

surfaces. The three-dimensional coordinates of the depth 

image's upper-left and lower-right vertices are denoted by 

X(AX,BX,CX) and Y(AY,BY,CY), respectively. The actual plane 

area represented by the entire image is represented by T. The 

formula for calculating this area is structured as follows: 

 

( ) ( )YXXY BBAAT −−=  (13) 

 

Step 2: The ratio of pixels within the cargo area to the total 

pixels in the image is calculated. This ratio is integral to the 

volume estimation process. The analysis involves counting 

pixels within the designated cargo area and comparing this 

count to the total pixel count of the entire image, thereby 

deriving the necessary ratio. This ratio effectively represents 

the proportion of the cargo area within the full image, a crucial 

factor for subsequent volume calculations. Once the pixel ratio 

within the cargo area is ascertained, it is combined with the 

previously calculated projected area. This step entails 

multiplying the projected area by the pixel ratio to estimate the 

actual area occupied by the cargo. Such a process ensures that 

the actual proportion of cargo in the image is accounted for, 

thereby negating the influence of non-cargo areas on the area 

computation and providing an accurate base area value for the 
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overall volume calculation. Assuming the ratio of pixels in the 

cargo pile area to the entire image is denoted by O0, the actual 

area corresponding to the depth image is represented by T, and 

the actual area of the cargo pile region is denoted by T0. The 

formula for deriving T0 involves multiplying O0 with T, and is 

articulated as follows: 

 

00 oTT =  (14) 

 

Step 3: In the subsequent phase of the methodology, the 

depth information for each pixel in the cargo pile area of the 

logistics vehicle is utilized to determine disparity values. 

Disparity, representing the horizontal displacement difference 

between corresponding pixels in binocular stereo vision, is 

indicative of the positional variance of the same object point 

in the left and right camera images. These disparity values, 

once computed, enable the calculation of the distance from 

each pixel to the camera plane. To address issues of noise and 

discontinuities present in the disparity map, a smoothing and 

filtering process is applied to the disparity values. 

Subsequently, pixels are categorized according to the 

magnitude of their disparity values, with each category 

corresponding to different depth layers. This categorization 

facilitates independent volume calculations for various depth 

layers in the subsequent steps. The number of pixels 

corresponding to each disparity category, denoted by vu, is 

divided by the total pixel count R in the image, yielding the 

ratio Ou, articulated as: 

 

R

v
o u

u =  (15) 

 

Step 4: Each disparity category encompasses a collection of 

pixels within a specific depth range. The pixel count within 

each category is ascertained and then divided by the total pixel 

count in the image to obtain the proportion corresponding to 

each disparity category. This proportion reflects the spatial 

occupation of the goods at particular depth levels, serving as a 

fundamental metric for calculating the volume at each depth. 

In practice, this stage may involve statistical and probability 

distribution computations to ensure the accuracy and 

representativeness of disparity categorization. The final step 

involves estimating the volume at each depth level using the 

previously calculated ratios and disparity values. Specifically, 

the proportion corresponding to each disparity category is 

multiplied by the estimated distance from the pixel to the 

ground and the base area, determining the volume for that 

depth level. The aggregate of these individual depth level 

volumes constitutes the total volume of the cargo pile within 

the logistics vehicle. Given that volume calculation is 

independently conducted for each depth level, this method 

offers enhanced adaptability to the irregular shape of cargo 

piles, thereby improving overall volume measurement 

accuracy. The ratio of pixels sharing the same disparity value 

to the total pixel count in the area is denoted by ou, and the 

various disparity levels are categorized, represented by L. The 

calculation formula, which integrates the variables ou and T0, 

and the vertical distance from each pixel to the ground surface, 

is formulated as follows: 

 


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u

uu gTON
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The calculation of the cargo pile's height g1 in the logistics 

vehicle, assuming the distance from the camera to the pile's 

surface as G and the depth value corresponding to different 

disparities as cu, is given by: 

 

uu cGg −=  (17) 

 

 
 

Figure 5. Relative positioning of the camera and calibration 

board 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 6 presents a histogram depicting the distribution of 

pixel numbers corresponding to different disparity values, 

namely 50, 100, and 150. The histogram reveals that at a 

disparity value of 50, a progressive increase in the pixel count 

is observed, rising from 0.02 to a peak at 0.35, before gradually 

declining to 0.1. This trend signifies a specific region of the 

logistics goods, where the number of pixels initially escalates 

to a maximum as the disparity value increases, implying 

greater distances from the camera, and subsequently 

diminishes. The apex of this curve is indicative of the primary 

volumetric area of the object. In contrast, at a disparity value 

of 100, the pixel distribution exhibits a similar pattern to that 

at 50, albeit with a generally higher pixel count, particularly in 

the median disparity range. This suggests a denser 

concentration of the object's volume at intermediate distances. 

At a disparity value of 150, a sharp decrease in pixel numbers 

is evident, commencing with a lower count, peaking slightly, 

and then rapidly falling to zero. This pattern suggests a 

diminished volume of the object at further distances from the 

camera, or possibly the outer edges of the object residing 

within this disparity range. The data from Figure 6 are pivotal 

for the intelligent logistics vehicle cargo optimization system 

based on image processing, as they furnish essential three-

dimensional insights. These insights enable the system to 

estimate object volume using pixel distribution and disparity 

information, thereby facilitating more precise optimization of 

cargo loading. 

Figure 7 displays two sets of disparity values (Comare1 and 

Comare2), along with their average errors. These values are 

derived from images captured at varying angles, and the 

average error provides a benchmark for the accuracy of 

disparity calculations. It is observed in the figure that the 

disparity values for each image pair are closely aligned, 

signifying consistent outcomes produced by the stereo 

matching algorithm. The constancy of the average error across 

different disparity values suggests that a uniform error model 

is applied throughout the evaluation. The disparity values 

2438



 

exhibit minimal fluctuation (ranging from 0.29 to 0.36), 

indicating that changes in disparity are not extreme. This 

consistency is indicative of either relatively flat object surfaces 

or stable conditions in camera positioning and capturing. The 

inference drawn is that the stereo matching algorithm 

demonstrates uniform and stable performance across various 

viewpoints, maintaining coherence in disparity value 

calculations across different images. The presence of a 

uniform average error underscores the stability of the 

algorithm but also signals a consistent level of error across all 

images, underscoring the need for further optimization to 

reduce these errors and enhance precision. 

 

 
 

Figure 6. Histogram of pixel numbers for different disparity 

values 

 

 
 

Figure 7. Disparity values corresponding to images from 

different angles 

 

The dataset, encompassing ten measurements of cargo pile 

volumes in a logistics vehicle at varying heights (8m, 9m, 

10m), is meticulously recorded, alongside the relative errors 

when compared to a reference value (Table 1). The observed 

fluctuations in the measurement data, discernible at different 

heights, highlight the influence of several factors on volume 

measurement in real-world logistics scenarios. These factors 

include the irregular stacking of goods, lighting conditions, 

and the precision of imaging equipment. The findings suggest 

that the volume measurement method for logistics vehicle 

cargo, employing the enhanced stereo matching algorithm 

delineated in this study, achieves reasonable accuracy. The 

relative error, predominantly within an acceptable range, 

underscores the method's applicability across diverse heights 

and practical conditions, thereby demonstrating the method's 

practicality and robustness. To optimize accuracy, further 

refinement through system calibration, algorithmic 

adjustments, or environmental controls is advised. Notably, at 

a height of 10 meters, additional investigation is warranted to 

pinpoint the root causes of the elevated error rates and to 

devise appropriate corrective measures. 

Table 2 documents the accuracy data of the stereo matching 

algorithm across six separate tests. Each test involved 53 

matching attempts, with the occurrence of matching errors and 

their percentage being meticulously recorded. The data reveals 

variability in error rates across the tests, with two instances 

(tests two and six) demonstrating a 0% error rate, indicative of 

flawless matching accuracy. In contrast, the remaining four 

tests exhibited error rates varying from 3.8% to 9.3%. 

Collectively, across all 318 tests, 12 instances of matching 

errors were recorded, culminating in an aggregate error rate of 

3.8%. These findings suggest that the enhanced stereo 

matching algorithm predominantly succeeds in accurately 

matching disparity maps and assessing cargo volume in 

logistics vehicles. The computed average error rate of 3.8% is 

deemed acceptable for practical applications, especially 

considering the inherent complexities and variabilities 

associated with volume measurement in the logistics sector. 

Moreover, this modest error rate implies that occasional 

mismatches are unlikely to substantially impede the overall 

operational efficiency of the logistics system. 

The data presented in Figure 8 were scrutinized to evaluate 

the efficacy of the method employed for cargo volume 

calculation in logistics vehicles, which is based on the 

statistical analysis of image pixel heights. Observations of the 

three groups of measurement data revealed notable 

consistency and stability, despite fluctuations suggesting 

inherent uncertainties. These fluctuations are attributable to 

factors such as intrinsic camera errors, irregularities on object 

surfaces, and variations in the measurement environment. 

However, the clustering of measurement results within a 

defined range, absent of outliers, indicates the measurement 

system's commendable repeatability and stability. It was noted 

that measurement fluctuations marginally increased with 

distance, a trend consistent with the expectation that 

measurement errors escalate with increased distance. Hence, 

despite observed variances, the method under scrutiny 

demonstrates a reliable pattern of consistent and stable 

measurements across the entire dataset, underscoring its 

applicability and effectiveness in real-world scenarios for 

measuring cargo volume in logistics vehicles. 

Table 3 details the measurements of cargo volumes and 

corresponding relative errors for three distinct logistics 

vehicles, identified as a, b, and c. Relative error, a measure of 

deviation from a benchmark or expected value, serves as an 

indicator of the precision of measurements. The data indicate 

fluctuations in relative error for each vehicle: for vehicle a, the 

error ranged between -6.31% and 4.32%; for vehicle b, 

between -6.24% and 7.68%; and for vehicle c, between -3.56% 
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and 6.78%. These results suggest that the method for cargo 

volume calculation, predicated on the analysis of image pixel 

heights, consistently yields minimal relative errors in the 

majority of instances. This observation attests to the method's 

effectiveness and reliability in providing accurate volumetric 

assessments for various logistics vehicles. 

 

Table 1. Corrected images of cargo piles in logistics vehicles and calculated disparity maps 

 

Number of 

Times 

Height: 8m Height: 9m Height: 10m 

Cargo Volume 

Measurement Value 

Relative 

Error 

Cargo Volume 

Measurement Value 

Relative 

Error 

Cargo Volume 

Measurement Value 

Relative 

Error 

1 4526.32 6.35 4125.32 -4.45 3895.22 -7.23 

2 4589.36 8.56 4189.23 -5.23 4578.31 4.12 

3 4125.36 -4.78 4157.58 -3.18 7689.45 9.26 

4 4578.29 5.88 4463.89 6.38 4023.58 -5.57 

5 4126.38 -4.26 4056.33 -5.11 4658.13 7.15 

6 4568.27 7.65 4562.38 -3.12 4589.71 8.23 

7 4015.23 -6.52 4478.68 6.65 4689.21 9.57 

8 4125.17 -4.23 4412.23 6.37 4125.29 -6.36 

9 4126.33 -5.17 4356.87 4.35 4187.22 -6.27 

10 3989.26 -7.58 4523.28 5.48 4156.89 -5.21 

 

Table 2. Algorithm matching accuracy data 

 
Number of Times Total Number of Tests Number of Matching Errors Error Percentage (%) 

1 53 3 5.6 

2 53 0 0 

3 53 2 3.8 

4 53 2 3.8 

5 53 5 9.3 

6 53 0 0 

Total 318 12 3.8 
 

Table 3. Cargo volume measurement values of different logistics vehicles 

 

Number of 

Times 

Logistics Vehicle a Logistics Vehicle b Logistics Vehicle c 

Cargo Volume 

Measurement Value 

Relative 

Error 

Cargo Volume 

Measurement Value 

Relative 

Error 

Cargo Volume 

Measurement Value 

Relative 

Error 

1 291.25 -0.68 243.58 4.79 2897.15 1.35 

2 284.25 -2.54 221.47 -4.56 2952.36 0.52 

3 269.34 -5.63 236.89 0.63 2924.53 -0.14 

4 311.73 3.10 246.23 5.56 2843.56 -3.56 

5 278.93 -1.25 241.25 3.78 3001.26 2.01 

6 301.45 2.56 212.23 -5.12 2956.24 1.21 

7 274.89 -1.617 248.67 7.68 3124.58 6.78 

8 288.63 -1.23 234.56 0.42 3126.36 3.56 

9 304.12 4.32 228.36 -6.24 2897.53 -0.83 

10 278.23 -6.31 239.56 2.89 3012.76 2.14 

 

 
(a) Distance 1 

 
(b) Distance 2 
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(c) Distance 3 

 

Figure 8. Key pixel distance measurements in cargo pile 

images of logistics vehicles 

 

 

5. CONCLUSIONS 

 

This research presents an intelligent logistics vehicle cargo 

optimization system, characterized by its innovative and 

effective approach. The cornerstone of this system is the 

utilization of an enhanced stereo matching algorithm, designed 

to augment measurement accuracy in multifaceted 

environments. This aspect proves crucial for addressing 

challenges associated with objects of irregular shapes and 

varied reflectivity. The refinement of this algorithm ensures 

the acquisition of consistent and reliable volume 

measurements across diverse conditions. Furthermore, the 

system transcends certain constraints inherent in traditional 

volume measurement methodologies, such as reliance on the 

reflective or absorptive properties of materials and the shape 

of objects. This transcendence is achieved through the 

implementation of a novel method, predicated on the statistical 

analysis of image pixel heights. Precision in camera 

calibration and the extraction of pixel height data facilitate the 

swift and accurate computation of vehicle cargo volume, 

enhancing the efficacy of loading optimization strategies. 

Experimental data analysis corroborates the proposed 

method's consistency and precision across a spectrum of tests. 

Notwithstanding observable fluctuations in specific instances, 

the overall error rate is maintained at a minimal level, 

underscoring the system's dependability. The system's ability 

to provide stable volume measurements for various logistics 

vehicles at different heights further underscores its 

applicability in real-world settings. 

In conclusion, the system developed in this study 

amalgamates an advanced stereo matching algorithm with a 

pixel height statistical analysis method. This fusion 

demonstrates substantial potential in managing intricate cargo 

types and diverse logistics environments. The system 

represents a forward-thinking technological solution, poised to 

substantially enhance logistics efficiency and reduce 

operational costs. Its application is anticipated to be extensive 

in future logistics and supply chain management, signifying a 

significant contribution to the evolution of intelligent logistics. 
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