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Agriculture forms the bedrock of India's economy, contributing significantly to the nation's 

development and sustaining the majority of its population. However, plant stress, 

specifically biotic stress, poses a significant threat to agricultural sustainability, leading to a 

substantial decline in crop production. Biotic stress, caused by living organisms such as 

bacteria, fungi, and viruses, damages plant tissues and weakens their overall health. As such, 

the control of biotic stress is pivotal to the enhancement of agricultural sustainability. In this 

study, a novel approach to early detection of plant biotic stress is proposed, utilizing 

advancements in deep learning techniques. A Hybrid Deep Convolution Neural Network 

(DCNN), termed "DCNN-MCViT", has been developed, employing a multi-scale vision 

transformer with cross-attention for efficient detection and classification of plant illnesses. 

This approach diverges from traditional Convolution Neural Networks (CNNs) and 

leverages the emerging capabilities of Vision Transformers, a recent development in the 

field of computer vision that has demonstrated superior performance in image classification 

tasks. Evaluation results have indicated that the DCNN-MCViT model significantly 

outperforms other state-of-the-art techniques, achieving an average accuracy of 99.51% in 

stress classification and a remarkable 99.78% accuracy on the comprehensive PlantVillage 

dataset. Moreover, the model demonstrated a high accuracy of 99.82% in estimating the 

degree of severity and classifying various forms of plant biotic stress. The findings of this 

study underscore the potential of the DCNN-MCViT model in improving agricultural 

sustainability through the early detection and intervention of plant biotic stress. This 

research represents a significant step forward in the application of deep learning techniques 

to agricultural challenges and holds promise for future applications in plant health 

monitoring and disease management. 
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1. INTRODUCTION

India, a stronghold of agriculture, contributed 19.9% to the 

nation's economy, as reported in the GDP statistics for 2020-

21. The burgeoning population, projected to reach 9.2 billion

by 2050, necessitates a substantial increase in crop production

for sustainable growth [1]. In this context, Phytopathology, the

study of plant diseases, plays a pivotal role. It assists in

quantifying and diagnosing plant stress, often gauged through

visual assessment of plant tissues [2]. Importantly, pinpointing

the causative agent behind plant growth abnormalities remains

a challenging yet crucial endeavor [3].

Recently, the Convolutional Neural Network (CNN), a 

novel technological approach, has shown promise in 

identifying the severity of symptoms in apple leaves affected 

by black rot, with accuracy exceeding 90% [4]. Another 

innovative method, PD2SE-Net, a multi-tasking CAD system, 

was able to categorize plant disease and estimate severity on 

the PlantVillage dataset with remarkable accuracy - 91% for 

severity estimation and 98% for disease classification [5]. 

These advancements underscore the importance of accurate 

and rapid plant disease identification, as diseases significantly 

impact food production and grain yield [6]. The main focus of 

the research is to identify the correct disease that affects the 

crops and induce appropriate measures to reduce the spread of 

the infection from one plant to another [7].  

With the rapid development of Artificial Intelligence, many 

fields opted to solve their issues by incorporating time and 

manpower, and accurate measures to take immediate action 

don’t contribute to these AI-based technologies among them, 

object identification and classification captured the cause of 

the abnormality but also enhancing the yields and thereby 

increasing the economy of the country which in turn relies on 

Agriculture [8]. Usually, the pathological differences that 

occur in a plant are reflected in its leaves, stem, root, shoot, 

and flowers and among them, leaves are more identical in 

showing the difference [9]. One of the major concerns is to 

identify plant diseases at the early stage as plants are prone to 

various illnesses at every stage of their life cycle [10]. The 

traditional methods for detecting plant illness over large 

geographical area requires more manual methods leading to 

huge loss and it is important to implement timely the limelight 

in which different AI methods are effectively used in 

achieving the best results in the field of agriculture and the 
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work here focused on extracting the useful features from 

tomato plant leaves using Gabor and color based filters and 

radial basis function was used to detect the disease at the early 

stage with an accuracy of 90.37% [11]. With new 

advancements in Computer vision, Deep Learning methods in 

particular Convolution Neural Networks proved to project 

good work in many areas like face recognition, image 

formation, face detection, object tracking, and image 

classification, and with this improvement, many works used 

CNN for detection as well as classification of plant diseases 

[12]. The improvements in deep learning algorithms were 

remarked with the introduction of a CNN algorithm for its 

distinguishing capabilities to differentiate between a spatial 

and temporal relationship which is used for extracting useful 

features from the image which stores meaningful information 

[13]. Image feature extraction plays an important role. The 

CNNs use a specific operation called convolution to extract 

the local features from a raw image which minimizes the need 

for human intervention. Traditional Machine learning 

algorithms need a manual process to extract features like shape, 

texture, and colour and finally using AI-based algorithms like 

KNN, and SVM the features are reduced as in the case of 

cucumber and many other species [14]. Several CNN 

(Convolution neural networks) models are used to identify 

plant diseases for instance Mask-RCNN was used to detect 

fusarium head blight disease in wheat which attained an 

average accuracy of 92.01% [15]. Similarly, Resnet152, 

MobileNet, and Inception V3, models have attained an 

accuracy of 77.65%, 73.50%, and 75.59% [16].  

Apart from plant diseases, plant stress both Biotic and 

Abiotic also has significant importance. A pertained VGG-16 

model is used to identify Biotic and Abiotic stress from Paddy 

from the field images belonging to 12 different stresses which 

obtained an average accuracy of 92.89% [17]. Though CNNs 

are good at exploring the hidden features of the image they fail 

to project the positional information of relative features and 

this is because the interpretation of deeper layers is not done 

appropriately by the new layers and this can be resolved by 

increasing the number of filters, this creates a great increase in 

the computational cost. Despite having many advantages, the 

CNN models have a major drawback concerning the size of 

the kernel which leads to the loss of focus on the global 

information of an image [18]. Several architectural changes 

are suggested but the experts which gave a path for the 

introduction of the attention mechanism by replacing it with 

the convolution layer have shown commendable results [19]. 

Transformers are a standard paradigm of Natural Language 

Processing that uses an attention mechanism in the field of 

computer vision. Vision Transformers (ViT) is the first 

designed Transformer model to handle 2D images where the 

self-attention mechanism is used to collect the information 

from an image which is further broken down into non 

overlapping patches with size 16×16 with 49M parameters 

which focuses on the global information by resolving long-

range dependencies without compromising the computational 

efficiency. Furthermore, the newly formed 2D token are 

flattened into 1D tokens using linear Projection and are fed 

onto the Encoder layer [20]. But, the main drawback of ViT is 

that it could not work with small datasets as it focuses on 

extraction of long-range dependency features than on local 

features and the Transformer model requires large amount of 

data for training [21]. Though ViT outperforms existing CNN 

models, just by increasing the layers doesn’t give better 

performance and requires more memory to deal with high 

resolution images [22]. Several modifications were applied to 

the Transformer models finally concluding that to extract both 

local and global information it is better to combine ViT with 

CNN where convolution operations are replaced with attention 

mechanism [23].  

An attempt to reduce the overhead of computational cost of 

the transformers, a pyramid structure was introduced to reduce 

the feature dimensions. But the pyramid structure works well 

with dense prediction tasks whereas while dealing with Image 

classification a new horizon should be implemented [24]. 

Analysing multi scale features on vision transformers proved 

to have achieved satisfying results for video and image 

classification [25]. A new technique called cross attention with 

Vision Transformers (cross-ViT) has gained more attention in 

recent times [26]. In order to obtain best results, we developed 

a hybrid model that uses Deep Convolution Neural Network 

with Multi scale Vision Transformers along with cross 

Attention (MCViT) to attain perfect balance between local and 

global spectral features and for identification of plant illness 

and classification of diseases and stress. Due to the wide range 

of managerial implications in the agricultural sector, several 

advancements are done in accurately identifying the biotic 

stress in plants. Mainly for early detection, transformers 

models are used to identify the severity of stress at the earliest 

by proactively identifying the onset of the disease. By 

applying the real time monitoring mechanism, this approach 

helps the farmers in identifying the loss on point to protect the 

crop from further damage. By introducing transformer models, 

the scope for detecting the plant stress at a large scale becomes 

more flexible. Even in Precision farming to improve the 

sustainability of the production plant stress detection gives a 

detailed insight into the pattern and analysis of yield loss and 

it greatly helps the farmers to concentrate on the particular 

target for the prevention of wide spread of diseases using 

transformer models, farmers can mitigate the use of pesticides 

while combatting with the environmental abnormalities 

effectively. In the area of Research, plant stress detection and 

classification using transformer models generates data related 

to frequency of occurrence of diseases, pattern analysis of 

stress which contributes to the future research for disease 

control strategies by fostering innovations in agricultural 

sector. From the above stated managerial implications, we 

conclude that our research focuses mainly on how transformer 

models can work effectively in identifying the biotic stress 

plants. The analysis of leaf diseases relies heavily on feature 

extraction. We can identify the root of plant stress more 

precisely. Even though CNN does feature extraction on its 

own, it is limited in what it can do because it only extracts a 

small number of crucial features. As a result, we added CNN 

functionalities to our study on vision transformers. With the 

aid of deep convolutional neural networks (DCNN) and multi-

scale vision transformers, our work attempts to extract both 

local and global features from plant leaves. This model focuses 

on attaining correlation between different scales with dual 

branches. The contributions of our work include: 

1. Inclusion of Multi Scale Vision Transformer 

architecture where a multi scale dual branch is used to 

fuse features obtained from various scales. 

2. A hybrid model that combines the DCNN with 

proposed MCViT to extract absolute features. 

3. To classify the disease and estimate its severity. 

This paper focuses on the summary of the related works in 

section 2. Section 3 focuses on the dataset used for our work 

and the methodology to carry out our research followed by 
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results and discussion in section 4 and the work was 

summarized with conclusion in section 5. 

 

 

2. RELATED WORKS 

 

In the field of plant disease identification and classification, 

numerous studies have made significant strides. For instance, 

Khan et al. [26] achieved a commendable accuracy of 98.60% 

by developing a fusion method for detection, classification, 

and feature extraction of plant diseases on the CASC-IFW 

database. Kundu et al. [27] 's Custom-Net model, designed to 

detect pearl millet diseases utilizing Raspberry Pi, achieved a 

slightly higher average accuracy of 98.78%. 

In a different approach, Chen et al. [28] proposed a hybrid 

model to detect plant diseases in maize using three different 

datasets. By integrating two blocks of pre-trained VGG16 and 

two Inception v3 blocks, accuracies of 84.25%, 92%, and 

80.38% were achieved. Similarly, Anami et al. [29] utilized 

traditional conventional classifiers, such as the Support Vector 

Machine (SVM) and Back Propagation Neural Network 

(BPNN), to identify Biotic and Abiotic crop stress in Paddy, 

achieving an accuracy of 89.12%. 

The integration of the residual CNN and self-attention 

mechanism, as proposed by Zeng and Li [30], was applied to 

the AES CD9214 and MK-D2 datasets. The results were 

promising, with accuracies of 95.33% and 98%, respectively. 

Lu et al. [31] designed a Ghost enlightened Transformer (GeT) 

architecture, which was applied to a grape’s dataset 

comprising 12,615 vine images across 11 classes, and 

achieved an accuracy of 98.14%. 

The potential of Vision Transformers (ViT) in the 

agricultural sector was highlighted by Reedha et al. [32]. They 

emphasized the importance of classification without 

modifying the basic versions with 16 and 32 attention blocks 

(ViT-B16 and ViT-B32). In a similar vein, Thakur et al. [33] 

designed a hybrid model called PlantXViT, which combines 

two convolutional blocks of VGG16, one inception block, and 

ViT architecture. This model, designed to capture the local 

features of the image, demonstrated remarkable performance 

compared to other state-of-art techniques. 

Graham et al. [34] proposed a hybrid transformer-based 

architecture, LeViT, which combined the advantages of CNN 

and transformer for vision tasks. Meanwhile, Wang et al. [35] 

suggested incorporating attention into the EfficientNet 

network on self-built datasets for apple leaf disease and 

achieved 98.92% recognition accuracy, albeit with large 

FLOPs and Parameters. Bi et al. [36] attempted to redefine the 

model by using fewer FLOPs and Parameters for Mobile-Net 

to identify apple diseases, achieving a 73.5% recognition 

accuracy. 

Rangarajan et al. [37, 38] applied AlexNet and VGG16 

architectures for identifying plant disease in tomato leaves 

from segmented images, where the background pixel is set to 

zero, and achieved a 97.49% accuracy. Sumari et al. [39] 

proposed a novel technique to identify the disease in Manggis 

fruit using hybrid deep learning architectures in comparison 

with traditional state of art techniques to classify the fruits that 

are free from diseases as this helps the farmers to take effective 

measures to prevent further spread of the disease. The model 

achieved an accuracy of 94.99%. Vasavi et al. [40] used 

various Machine learning algorithms to choose the best 

algorithm for identifying the diseases in chili crops by 

examining the images taken from the field and achieved an 

accuracy of 94% and 96% for Gradient boost and random 

forest algorithms. A ViT-based multi-branch architecture, i.e., 

Cross ViT, was used to fuse the features obtained from 

branches belonging to different scales. This architecture 

processes the image patch obtained from the dual branch of the 

transformer operated at different scales. Each branch extracts 

the local information of the image patch of respective scales, 

and an efficient model fuses the features obtained from two 

branches. To incorporate positional information in each token 

of the corresponding branches, a learnable positional 

embedding is introduced at the head of each token, akin to the 

Vision Transformer (ViT) architecture. A cross-attention 

model was proposed to fuse information obtained by multi-

scaling of patch tokens from both branches. Inspired by this, a 

dual-branch vision transformer is proposed for identifying 

plant diseases. 

The aforementioned studies mainly focus on using various 

CNN models to identify plant diseases, emphasizing the 

efficiency of various neural networks in classifying biotic 

stress in plants using images. The introduction of transformer 

models to biotic stress classification is due to their ability to 

capture both global and local features, whereas CNN captures 

only important features for the purpose of extracting important 

features. Transformer models have shown remarkable results 

in exploring various features of an image to analyze the root 

cause of biotic stress. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Dataset overview 

 

In the Proposed work we have compared the results with 3 

datasets-PlantVillage, Plant Village Paddy, DiaMOS dataset 

(peer leaf). 

 

3.1.1 PlantVillage dataset 

The PlantVillage dataset is mainly used for multiclass 

classification of images and it contains 55,448 background-

only images (61,486 in the enhanced version) that are divided 

into 39 classes cateogorizing the images into healthy and 

diseased. This dataset contains variety of images belonging to 

various species like cherry, apple, cornrasphberry, blueberry, 

grape, orange, potato, bell pepper, peach, soyabean, squash, 

strawberry, tomato altogether 14 species. In addition to this 

this dataset also contains 17 fungal disease images, diseases 

caused by bacteria, mold, virus and mites. The example 

images of Plant Village dataset are shown in Figure 1. 

 

 
 

Figure 1. Plant stress images. (a) bacterial spot of tomato, (b) 

phosphorus deficiency in corn plants, and (c) corn fields 

having stalk rot 

 

The tomato dataset is made up of RGB images with size 

256×256 collected in a controlled setting, with each leaf 
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centered on a continuous background (tabletop or black). It has 

a total of 15,892 images in 10 categories (normal, stress), 

under 10 different labels like training: 11,204 images, 

Validation: 3,092 images and Testing: 1,596 images. The corn 

dataset includes 18MP ground photographs captured with an 

18MP camera, as well as RGB images of corn leaves in their 

natural habitat and pictures of noisy cornfields (3456×5184 or 

5184×3456 image size generated). The region of interest (plant 

stress, marked with the occurrence in each case) is situated in 

the exact middle of the image. There are 8,911 images total in 

the dataset among 11 categories (10 stress and normal) 

(divides as training-6,232 images, Testing-886 and validation-

1,793 images). From the 6 categories, five labeled as stress 

images and one category as normal. Total of 6,635 images 

altogether make up the dataset (divided as training-4,642 

images, Testing-660 and Validation-1,335 images. Because 

the plant leaf center plays a crucial role the corn and soybean 

datasets, each image center is cropped (made square) to 

345×345 (1/10 resolution). No cropping or size changes are 

made to the tomato image. 

 

3.1.2 Paddy crop 

One of the wide publicly available data sources is 

PlantVillage which constitutes a total of 54,306 images 

belonging to 26 classes of 14 species with 3355 specifically 

focusing on paddy leaves. Among them paddy leaves are 

represented by 3355 images which includes images of various 

categories like Brown spot (523 images), Hispa (565 images), 

Leaf blast (779 images) and remaining images in a total of 

1488. The dataset is enriched using classical image 

augmentation techniques, resulting in 167,750 images. To 

ensure consistency and computational efficiency, the images 

are resized into a resolution of 256×256 pixels. The dataset is 

then divided into three groups as training, validation, and 

testing. This partitioning enables effective model training, 

parameter tuning, and unbiased evaluation of model 

performance. 

 

3.1.3 DiaMOS plant 

It is a real time dataset created, to identify and track plant 

ailments. Images of pear fruit with three different biotic 

stresses-primarily from leaves-are included in the DiaMOS 

plant dataset. In total, 3057 images were gathered, comprising 

both healthy and sick leaves that had experienced one or more 

biotic stressors, such as leaf spot, leaf desiccation, and slug 

damage as shown in Figure 2. 

 

 
 

Figure 2. Sample of pear leaves stress images in DiaMOS 

plant dataset 

 

3.2 Methodology 

 

3.2.1 Data augmentation 

Another crucial stage in computer vision is resizing the 

images before processing. By changing the size (width and 

height) of images it becomes easy for the model to train on 

newly preprocessed or scaled images. When compared to 

images, that are twice or three times larger than machine 

learning models can learn more quickly on tiny images since 

they don’t require the network to learn on as many pixels. 

When feeding the images into the Keras-based deep learning 

architecture pipeline, we used a technique to resize the images 

to 150×150 pixels and 224×224 pixels. There are two input 

sizes (150×150×3) and (224×224×3), where 150 and 224 are 

width and height and 3-way is a colour channel. Since samples 

of healthy plant leaves are significantly less than those of the 

other two types, we made a label-preserving alterations to 

plant leaves to fictitiously enhance the data/sample size and 

lessen model overfitting. 

We followed the same with the images having same range 

with smaller pixel values to cut down the computing costs. 

This is done using a scale transformation. The parameter value 

(1/255) indicates that all pixel values fall between 0 and 1. To 

rotate an image by a specified angle, a transformation called 

rotation is applied. To randomly offset the image to the right 

or left, use the Width Offset Range transform and a value of 

0.1 for the Width Offset parameter. By setting the Height Shift 

Range parameter to 0.1 can vertically shift the training images. 

The shearing angle is the angle at which the other axis is scaled 

up in a shearing transformation while the first axis is fixed to 

the image. In order to avoid this, a 0.2 shear angle is used. To 

conduct a random scaling transformation, the scaling range 

parameter is applied. Zooming in>1.0 on a picture requires a 

zoom factor of 0.2, whereas zooming out on an image requires 

a factor of<1.0. The image is turned horizontally with the flip 

apply function. A straightforward image processing technique 

generates 32,073 enhanced images, balancing the size of each 

class with images from the dataset of 2,000 images. 

 

3.2.2 Elimination of natural background 

In Pre-processing, segmentation plays a crucial role and is 

often considered as difficult operation. Before evaluating 

individual leaves, plant leaves must be segmented. The 

inclusion of depth information improves the accuracy of leaf 

segmentation process. Based on depth characteristics, 

backdrop plant leaves are first eliminated. However, the depth 

of the leaves is obviously different from that of the items in 

the backdrop. Since depth noise cannot be utilised to segment 

leaves, depth pictures of plant leaves are softer and cannot be 

represented. The depth of the leaf in mentioned in Figure 3. 

 

 
 

Figure 3. RGB image of leaf depth 

 

3.2.3 Enhanced mean-shift segmentation algorithm 

Enhanced Mean-shift Segmentation techniques are used to 

estimate the local density gradients in correlation with image 

pixels as shown Figure 4. The process of gradient estimation 

is iteratively performed to identify similar pixels in 

corresponding images. It employs an enhanced mean-shift 

technique and segments images of object depth. 
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Figure 4. The proposed leaf segmentation method 

 

The d-dimensional point set xi=1 is the average motion 

vector at position xi determined by n is given in Eq. (1): 

 

𝑀(𝑥) =
∑ 𝑥𝑖𝐾𝑤(𝑥𝑖−𝑥)𝑛

𝑖=1

∑ 𝐾𝑤(𝑥𝑖−𝑥)𝑛
𝑖=1

− 𝑥  (1) 

 

where, the kernel function is represented in Eq. (2): 

 

𝐾𝑤(𝑥) = |𝑊|−
1

2 𝐾(𝑊−
1

2𝑥)  (2) 

 

In practice, a diagonal matrix termed W-add bandwidth 

matrix with positive symmetry-is utilized, with x designating 

the kernel’s center. 𝑥  represents the position at which the 

vector in motion is caluclated. The average moving vector M(x) 

computes the local density gradient and the most significant 

direction of density increase for that pixel in improved average 

moving clustering.  𝑥𝑖  represents the ith position in the d-

dimensional point set and 𝐾𝑤(𝑥𝑖 − 𝑥)  represents the 

difference between 𝑥𝑖 and 𝑥 applied to the kernel function K. 

Summation Ʃ is applied to values from 1 to n. From Eq. (2) 

the kernel function with parameter w is applied to x denoted 

by 𝐾𝑤(𝑥)  and |𝑊|  the determinant of matrix W is 

calculated. 𝑊−
1

2𝑥 represents the square root of inverse of W 

and kernel function K is applied to it. In order to find local 

density peaks, apply the formula given in Eq. (3): 

 

𝑦𝑗+1 =
∑ 𝑥𝑖𝐾𝑤(𝑦𝑖−𝑥𝑖)𝑛

𝑖=1

∑ 𝐾𝑤(𝑦𝑖−𝑥𝑖)𝑛
𝑖=1

  (3) 

 

All points pointing to the apex that are plotted on the same 

peak are regarded as belonging to the same segment. This 

results in a general improvement in Mean Moving 

Segmentation. 

Grayscale depth data are processed using a modified mean-

shifting clustering approach in this work to produce leaf areas 

and background. Let 𝑥𝑖 = 1 ,2, … , 𝑛 represent the 2D input in 

the grayscale image space domain. The local density peak is 

represented by 𝑦𝑖,𝑗 at pixel 𝑥𝑖 at iteration j. A more effective 

approach for shifting depth data segmentation is presented in 

the next section. 

1. Creates the initial state of a window for coverage and 

a window for navigation in the radius ps and rs 

domains, respectively. A local density peak should be 

established at yi, 1=xi, iteration step j=1. 

2. Depth difference for each pixel is calculated in the 

space window, distance window, and the centre pixel, 

then work out the motion vector of the navigation 

window. 

3. Determine and set the average depth value yi and 

average depth j+1 for each pixel in the spatial frame. 

4. In the spatial window, clusters with cpp in range [1 ... 

m] are formed by pixels whose depth difference is less 

than the radius of the range window rs. Repeat the 

preceding methods until the shift values are modest 

enough to suggest convergence to determine whether 

the enhanced mean shifting clustering has reached 

convergence. 

 

 
 

Figure 5. Enhanced mean shift segmentation of leaves, (a) 

mean-shift segmentation outcome, (b) segmentation results of 

the image depth and (c) RGB image segmentation view 

 

Therefore, the depth picture is separated into sub-regions 

when mean-shift convergence takes place. These pieces are 

shown in different hues in Figure 5. By contrasting the RGB 
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tones of green plant images with leaf images, Figure 5 

demonstrates how the segmentation results are generated. In 

this stage, background items that are not green are eliminated. 

The plant picture is divided into several leaf images, which are 

then extracted from the segmented leaf depth and colour 

images. 

In order to calculate a, use the GVF vector’s four 

surrounding pixels, p (i, j), p (i+1, j), p (i, j+1), and p (i+1, 

j+1). I and j are the pixel coordinates of the image such that v 

(i, j)=x (i, j) and y (i, j). for computing the pixel p (i, j) GVF 

vector for a given pixel. “v” includes a function to indicate 

direction as in Eq. (4): 

 

𝑠𝑖𝑔𝑛 (𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑥 < 0
 (4) 

 

Therefore, the potential scattering point set s P is as follows 

mentioned in Eqs. (5)-(7): 

 

𝑃𝑠𝑥 = {𝑝(𝑖, 𝑗)|𝑥(𝑖, 𝑗) ≤ 𝑥(𝑖 +

1, 𝑗) 𝑎𝑛𝑑 𝑎𝑏𝑠(𝑠𝑖𝑔𝑛(𝑥(𝑖, 𝑗)) + 𝑠𝑖𝑔𝑛(𝑥(𝑖 + 1, 𝑗))) ≤

1}  

(5) 

 

𝑃𝑠𝑦 = {𝑝(𝑖, 𝑗)|𝑦(𝑖, 𝑗) ≤ 𝑦(𝑖 +

1, 𝑗) 𝑎𝑛𝑑 𝑎𝑏𝑠(𝑠𝑖𝑔𝑛(𝑦(𝑖, 𝑗)) + 𝑠𝑖𝑔𝑛(𝑦(𝑖 + 1, 𝑗))) ≤

1}  

(6) 

 

𝑃𝑠 = 𝑃𝑠𝑥 ∩ 𝑃𝑠𝑦  (7) 

 

where, 𝑃𝑠𝑥, 𝑃𝑠𝑦 represent the potential scattering points in the 

x and y direction. According to the center of divergence, the 

initialization of the contour model distinguishes lobes from 

occlusions. Each lobe’s borders are shown by yellow lines, 

while the initialized model is shown by green circles in Figure 

6. 

 
 

Figure 6. Simulation results of plant stress segmentation 

 

3.3 Proposed multi–scale vision transformer with DCNN 

 

The input image is trimmed into patches of fixed size and 

constant scale for conventional Vision Transformers. Various 

cropping ratios are used for this process. Multi-scale feature 

representations of images are created for image recognition by 

dividing them into large and tiny chunks. Both tiny and large 

blocks can be used to represent little or huge patches, 

respectively, using small or large branches. This study 

employs two FCs to incorporate two branch outputs in turn, 

enabling the application of inputs obtained from two branches 

into the Vision Transformer. Figure 7 displays the class token 

and has an output dimension of 768. Dimension is utilized by 

each quadrant. 

 

 
 

Figure 7. Architecture of proposed transformer with cross 

attention layer (CrossViT) 

 

Normally, the Vision Transformer inputs the image tokens 

into multi-layer perceptron and the multi-head iterates them 

and the output is added to the token itself, and then again, the 

input is fed into the MLP, and multi-head layers iterate, and 

adds the output before that. Then, in the same way, repeat this 

process an additional L times before sending the result to the 

next transformer encoder. By simply repeating the embedding, 

this method does a poor job of shifting focus from the current 

input to the following layer. This cycle multiplies the attention 

of the next layer with the attention of the preceding layer to 

obtain new active attention. This technique allows for the 

effective utilization of the attention of every branch of Vision 

Transformer. The results of the following categorization 

efforts are improved by providing a piece of caution 

information. In Cross-Attention Fusion’s most recent two 

quarters, the class tokens are represented by the two circles 

above. 

Our model is used to process large and small image patch 

tokens in two independent branches having different 

computational difficulties, and these image patch tokens are 

recurrently fused to complete one another. This project’s 

major objective is to create a classification system that works 

for visual translators. Using a cross-alert module that is 

effective, each transformer branch creates non-patch tokens to 

act as intermediaries for communicating information with 

other branches through attention. By merging CNN and ViT 

to add multi-scale capabilities rather than using a model that is 

only based on ViT, as in earlier work, our suggested method 

differs significantly from that of the prior research. 

As an addition to the ResNet family of designs, the Non 

Local Network (NLN) is proposed. In this architecture, the last 

block includes a non-local aggregation procedure. Multi Head 

self-attention is connected to the ResNet bottleneck block 

using a Bottleneck Transformer introduced by the NLN design. 

These two techniques significantly enhance multi-vision work. 
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Similar to how adding a CNN with non-local operations 

enhances image classification, we construct a DCNN and 

present it as CrossViT (DCNN-MCViT), which is a DCNN 

with ViT added, and use the DETR model for object 

recognition and picture activity. Contrary to earlier non-local 

block applications, we implement multi-scale interactions 

directly using our suggested DCNN-MCViT architecture by 

gradually adding CNNs. 

Representations are typically transferred at low resolution 

levels in CNN-based image categorization networks. ResNet, 

for instance, has five stages with a final feature map that is 

1/32×1/32 in each dimension. Each level reduces the 

resolution by half. ViT, on the other side, starts off with tokens 

that are 16×16 in size, which lowers the resolution in this 

dimension. At that resolution, the final layer yet persists. As a 

result, ViT has a higher likelihood of maintaining position data 

than ResNet. Since location information is not necessary for 

classification judgements in image classification tasks, we 

cannot claim that ViT has an advantage over ResNet since it 

keeps track of locations. 

Due to the associations being explicitly embedded in the 

DCNN architecture, CrossViT typically needs a lot of training 

data to learn them. CrossFit can nonetheless discover intra-

image correlations in the absence of these guided deflections. 

For example, capturing spatial rather than local semantics is 

impossible with DCNNs. To merge these two architectures, 

DCNN-MCViT uses CrossViT to compute non-local spatial 

semantics obtained from CNN to encode local data. The 

markers Tp from the obtained final feature map before the 

customary global pooling step are extracted to create the CNN 

feature map with kernel size P=1. Unlike the CrossFit model, 

which extracts labels directly from the input image X, this is 

not the case. We put forth a multi-scale hybrid visual 

transformer based on earlier jobs that join non-local activities 

with already-existing CNNs like CrossViT. Our suggestion is 

to apply CrossViT to the backbone CNN at various scales, as 

opposed to the original HViT which simply extended the 

backbone CNN with CrossViT. To translate the non-local 

spatial semantics of images to other scales, we additionally 

introduce cross-scale links between ViTs. 

 

3.3.1 Cross-attention 

Class tokens will be cautious while interacting with block 

tokens from larger branches of modules’ small branches in 

order to finally produce new class tokens. According to the 

architecture, in order to obtain a new class token for the large 

branch. To facilitate attention in the small branch, we perform 

a trade between the corresponding class token and the block 

token. This exchange ensures that the attention mechanism in 

the small branch focuses on the relevant information. Instead 

of directly using the class token, we substitute it with the block 

token, allowing the attention mechanism to consider the local 

context captured by the block token. This enables the small 

branch to concentrate on important features and enhance its 

attention-based operations. 

Fusion should only be used on the minor branch. Then, as 

demonstrated in formula, project the minor branch’s class 

tokens via FC and compare the results to the major branch’s 

class token given in Eq. (8): 

 

𝑥𝑙𝑠 = [𝑓𝑠(𝑥𝑐𝑙
𝑠 )|| 𝑥𝑝𝑎𝑡𝑐ℎ

𝑙 ] (8) 

 

where, the sub-branch class label is represented by 𝑥𝑐𝑙
𝑠  and 𝑓𝑠 

is the FC used to project it to this dimension. Between class 

markers in the minor branch and block markers in the main 

branch, cross-annotation is performed throughout the entire 

module. The following formula can be used to numerically 

express cross attention following Eq. (9) and Eq. (10): 

 

𝑞 = 𝑥𝑐𝑙𝑠
′𝑠 𝑊𝑞 , 𝑘  (9) 

 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑇

√
𝐶

ℎ

)  (10) 

 

in which, C/h is the learnable parameter, C is the embedding 

dimension, and h is the total number of attention heads. The 

attention map produced by Cross-computational attentions and 

memory complexity is linear in our study because we only 

employ CLS tokens. 

 

 
 

Figure 8. Cross-attention fusion sketch 

 

Figure 8 illustrates the fundamental concept of our 

suggested intersectionality, wherein one quarter uses patch 

tokens and the other use Fusion CLS tokens. For example, to 

communicate information between patch tokens of various 

branches more quickly and efficiently, we first utilise the CLS 

tokens of each branch as a proxy before converting it into our 

own Backproject to the branch. The interaction between patch 

tokens in different forks helps contain information at various 

scales because the CLS token has learned abstract knowledge 

across all patch tokens in its own fork. The CLS token interacts 

with its own patch token in the following converter encoder 

after being fused with other branch tokens to amplify the 

information of each patch. The primary branch’s cross-

attention module is described in the section that follows, and 

the operation is carried out by simply switching the secondary 

branch’s indexes l and s. The process of creating Attention 

maps in Cross-attention is more effective than All-Attention 
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since we only employ CLS in the query, which reduces the 

computational and memory cost from quadratic to linear. 

An input layer, one or more hidden layers that are switched 

sequentially from the input layer, and an output layer make up 

a multilayer neural network structure. A multilayer neural 

network contains many connections from the first layer to the 

network and vice versa. At this time, concentrate on the 

process’s closing steps for the greatest outcomes. In order to 

do this, a classifier with a softmax hierarchy is fed with a 

pooled set of the features that were determined in the previous 

stage. You may then decide which response is the most 

accurate using this. Unlike the activation function used in 

hidden layer, the output layer activation function is special. 

Each layer has a distinct function and execution strategy. After 

a classification procedure, the final hierarchy can produce 

class probabilities for incoming data as shown in Figure 9. 

 

 
 

Figure 9. Proposed DCNN with CrossViT (DCNN-MCViT) 

with N multi scale transformer encoders having 2 inbuilt 

transformer encoders E1, E2 with a stack of M cross attention 

layers 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Classification results 

 

We carried out tests utilising the Deep Learning Toolbox 

available in the MATLAB 2021 b programming environment 

to categorise biotic stress by Importing a pretrained CNN 

model into Deep Network designer; change the required 

hierarchy characteristics to get it ready for transition learning. 

A recent collection of images depicting life stress is matched 

to categories by substituting the output layer for the last 

learnable layer of all models (also known as the classification 

layer). On a single Windows 10 workstation with an NVIDIA 

GPU, an Intel Core i7-11700 CPU, 16GB of RAM, and 12GB 

of RAM, we tested and trained the CNN model. 

By dividing the pixel values of the original and 

supplemented datasets by 255, we normalized each image in 

this study. Then scale it down to match the model’s basic 

measurements. To account for these variations, the Inception 

V3 model is set to 224×224 pixels, while the AlexNet, 

ResNet50, and VGG16 pictures are set to 227×227 pixels. All 

models in the EfficientNet architecture have to be scaled to 

match the input picture resolutions of our experimental 

research due to hardware constraints. 

A minimal amount of data alignment is used to update 

weights and biases during backpropagation. It is often advised 

to choose a value divided by sum of samples in the dataset 

when selecting a size that is less than the complete dataset. 

Because it strikes a compromise between rapid network 

convergence and precise predictions, this value is helpful for 

training. The maximum allowable mini-batch size in this study 

is 16, which takes into account the hardware resources of all 

models. Table 1 provides a list of the fundamental parameters 

utilised in each experiment. 

 

Table 1. Simulation parameters setting 

 

Model Input Size 

Parameters and 

Optimization 

Technique 

Model 

Learning 

Rate 

AlexNet 

 
227×227 

A (B 1=0.9, B 2=0.999, 

D=0.0) 
0.001 

VGG16 224×224 SGD (M=0.0, D=0.0) 0.01 

ResNet50 224×224 
A (B 1=0.9, B 2=0.999, 

D=0.0) 
0.001 

Inception 

V3 
229×229 

A (B 1=0.9, B 2=0.999, 

D=0.0) 
0.001 

DCNN-

MCViT 
132×132 

A (B 1=0.9, B 2=0.999, 

D=0.0) 
0.001 

*M-Momentum, *A-Adam, *B-Beta, *D-Decay 

 

4.1.1 Training dataset 

The PlantVillage dataset and DiaMOSPlant datasets are 

utilized for training and testing data in this work. Then 60%, 

30%, and 10% of the total datasets used as training, testing and 

validation is tabulated in Table 2. 

 

Table 2. Division of images into train, test and validation sets 

 
Total Training (60%) Validation (30%) Testing (10%) Training (70%) Validation (20%) Testing (10%) 

PlantVillage image dataset 

30920 

(Original) 
18552 9276 3092 21644 6184 3092 

15,46,000 

(Augmented) 
927600 463800 154600 1082200 309200 154600 

PlantVillage paddy crop stress image dataset 

3355 

(Original) 
2013 1007 335 2349 671 335 

167750 

(Augmented) 
100650 50325 16775 117425 33550 16775 

DiaMOSPlant pear leaves stress image dataset 

3057 

(Original) 
1835 917 306 2140 612 306 

152850 

(Augmented) 
91710 45855 15285 106995 30570 15285 
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4.2 Performance measures 

 

Using binary or multiclass outputs, evaluate the 

effectiveness of classifying plant diseases. A confusion matrix 

tracks actual and anticipated performance. Additionally, 

specificity as the actual rate indicated in Eq. (12) sensitivity as 

the genuine positive rate in Eq. (13), and the capacity to 

properly differentiate between healthy and sick leaves. The 

number of positive outcomes accurately categorised by the 

total of all positive results in Equation is the recovery rate, also 

known as the chance of detection in Eq. (11). Calculate the 

Mathews Correlation Coefficient (MCC) in Eq. (15) to take 

class imbalance into consideration. The F-measure in Eq. (14), 

which is the harmonic mean of precision and recall, may be 

used to assess the equation’s recall and precision. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
 (13) 

 

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

 
Mathews correlation coefficient (MCC)

=  
(𝑇𝑁 ∗ 𝑇𝑃) − (𝐹𝑁 ∗ 𝐹𝑃)

((𝐹𝑃 + 𝑇𝑃) (𝐹𝑁 + 𝑇𝑃) (𝐹𝑃 + 𝑇𝑁) (𝐹𝑁 + 𝑇𝑁))^0.5
 

(15) 

 

True positive outcomes are those that come in line with the 

prediction (TP). A very poor outcome is a true negative (TN). 

A false positive (FP) result is one that seems to be positive. 

False Voice is the outcome of false Negative (FN). To 

evaluate the performance of the model, classification accuracy, 

precision, recall and F1-score metrics are included. We 

compare the proposed DCNN-MCViT model against cutting-

edge models. 

By utilizing 9-fold cross-validation, the data were divided 

by 10%:90%, 20%:80%, 30%:70%, 40%:60%, 50%:50%, and 

60 to evaluate the performance of the model. did. %: 40%, 

70%: 30%, 80%: 20%, 90%: 10% (for testing and training) in 

Table 3. 

Comparing the traditional methods like ResNet-50, 

AlexNet, VGG16, Inception-v3 based on the performance 

metrics like accuracy, precision, recall, and F1-score, 

suggested DCNN-MCViT performs better. Our complexity 

study shows that the proposed DCNN-VxT model can learn 

fewer parameters in terms of model size and number than 

conventional transform learning methods. The model 

prediction procedure is less complicated with a smaller set of 

learnable parameters and a lower model size. In contrast, the 

suggested DCNN-MCViT performs better in classifying plant 

leaf diseases compared to VGG16, ResNet 50, Inception v3 

and AlexNet for PlantVillage and DiaMOS dataset is shown 

in the above table. 

We further examined the overall crop stress discrimination 

and classification performance for individual and joint colour 

feature categories using AlexNet, VGG16, ResNet50, 

Inception V3, and the proposed DCNN-MCViT classifier. The 

below Table 4 shows the average classification accuracy for 

the DCNN-MCViT, Inception V3, ResNet50, VGG16, and 

AlexNet classifiers have shown the Avearge Accuracy values 

as mentioned in the below table for PlntVillage,Paddy crop 

and DiaMOS datasets. 

In order to regulate model learning, crucial learning 

parameters such as initial learning rate, validation frequency, 

number of epochs, and mini-batch size were set at 0.0001, 10, 

30, and 32, respectively. The “ReLu” function allows all 

hidden layers while the “Softmax” function just allows the 

output layer. The network is tuned using a stochastic gradient 

descent method and a categorical cross-entropy algebraic loss 

function. The augmented picture dataset is used to train and 

evaluate the customized CNN model, as shown in Table 1. 

 

Table 3. 9 fold cross validation of PlantVillage and DiaMOS dataset 

 

Validation 
Accuracy (%) Sensitivity (%) Specificity (%) F1 (%) 

PlantVillage DiaMOS PlantVillage DiaMOS PlantVillage DiaMOS PlantVillage DiaMOS 

10:90 98.13 98.12 96.78 99.82 99.24 99.82 98.49 98.39 

20:80 98.46 99.05 99.45 99.07 99.43 99.07 98.58 99.08 

30:70 97.13 97.17 99.46 97.34 99.34 97.34 97.27 97.25 

40:60 97.08 97.14 98.42 97.17 98.17 97.17 97.23 97.20 

50:50 96.84 97.28 96.38 98.28 96.40 98.28 96.84 97.83 

60:40 98.38 98.90 98.35 98.10 98.31 98.10 98.35 98.49 

70:30 98.06 97.92 99.02 97.14 97.15 97.14 98.08 98.12 

80:20 98.09 99.30 97.56 98.56 98.57 98.56 98.05 99.19 

90:10 96.13 99.91 93.72 98.64 98.66 98.64 96.15 99.85 

 

Table 4. Average classification accuracy (%) across the PlantVillage, paddy, DiaMOS datasets 

 

Model 

name 

Avg Accuracy (%) Avg Sensitivity (%) Avg Specificity (%) Total Training Time (s) 

Plant 

Village 

Plant 

VillagePaddy 
DiaMOS 

Plant  

Village 

Plant 

VillagePaddy 
DiaMOS 

Plant 

Village 

Palnt 

VillagePaddy 
DiaMOS PlantVillage 

Plant 

VillagePaddy 
DiaMOS 

AlexNet 

 
94.12 95.14 94.46 94.20 94.25 92.34 94.82 95.51 90.15 332.54 334.76 324.60 

VGG16 96.91 96.36 96.32 95.43 96.21 94.78 94.83 95.69 93.67 328.42 330.24 329.42 
ResNet50 97.51 97.85 97.16 97.35 95.74 97.40 95.78 93.24 95.83 325.21 326.76 327.67 

Inception 

V3 
98.63 98.36 98.36 98.24 97.67 98.12 97.48 95.90 96.36 324.90 323.76 324.18 

DCNN-

MCViT 
99.51 99.78 99.82 98.87 98.92 99.26 98.56 99.12 98.76 321.06 320.76 321.79 

 

2643



 

 
 

Figure 10. Confusion matrix for plant disease detection-

PlantVillage dataset 

 

The success of the suggested model for the PlantVillage 

dataset is demonstrated by the confusion matrix in Figure 10 

of the report. This makes it feasible to assess the performance 

of the model visually. Actual class output is indicated by the 

rows and columns. In contrast to non-diagonal cells, which 

reflect inaccurate observations, diagonal cells represent 

accurate observations. 

 

4.3 Severity results 

 

The results are intriguing since actual occupations take into 

account more forms of stress than those that are reported. 

There are several options for plant pathologists to measure 

crop stress. The quantification approach, which measures each 

stress level on a scale from 0 to 100% depending on how 

severe the stress is, is an extension of the categorization 

method. The next step in future research is thought to be the 

measurement of stress. Given the great degree of 

unpredictability in the external environment, this task is 

difficult and complex. The suggested approach can withstand 

fluctuations in outside illumination pretty well. 

For healthy, and stressed classes, a severity level is assigned, 

where each level is set based on the percentage of the leaf area 

that is affected due. The stress severity was then categorized 

into five classes as no risk (0%), very low (1-20%), low (20-

40%), medium (40-50%) and highest is (>50%). 

The following are the experimental conditions: the task was 

initially done by evaluating the models to get the classification 

results, and the same was done using our suggested DCNN-

MCViT model over training and validation data. Their 

respective best models were then preserved. Second, we used 

the DCNN-MCViT optimum model to test on the PlantVillage 

Stress Dataset and the DiaMOS Plant Dataset. The severity 

detection of the sample photos from the PlantVillage Stress 

Dataset and the DiaMOS Plant Dataset is shown in Tables 5 

and 6. 

 

 

Table 5. Biotic stress severity level of the PlantVillage stress 

dataset 

 
Sample Image Severity (% Range) 

 

40.0+ to 50.0 

 

70.0+ to 80.0 

 

70.0+ to 80.0 

 

40.0+ to 50.0 

  

60.0+ to 70.0 

 

Table 6. Biotic stress severity level of the DiaMOS stress 

dataset 

 
Sample Image Severity (% Range) 

 

80.0+ to 90.0 

 

30.0+ to 40.0 

 

50.0+ to 60.0 

 

30.0+ to 40.0 

 

40.0+ to 50.0 
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Table 7. Comparison of the training time of PlantVillage 

dataset and DiaMOS dataset 

 

Model Name 
Average Training Time (s) 

PlantVillage Dataset DiaMOS Dataset 

AlexNet 321.10 245.28 

VGG16 320.76 232.14 

ResNet50 320.54 227.96 

Inception V3 323.57 215.49 

DCNN-MCViT 316.02 190.63 

 

Further evidence for a model’s ranking comes from its 

computational efficiency or training time. Shorter time 

periods are required, which is predicted given the 

characteristics of networks built to fully use the resources of 

ResNet50 and DCNN-MCViT, followed by VGG-16, 

InceptionV3, and AlexNet. The average training time of the 

proposed method is about 316.02s whereas the conventional 

VGG16 training time took around 320.76s in the PlantVillage 

Dataset. In DiaMOS Dataset, the average training time is very 

less bout 190.63s when compared to the other exiting methods 

in Table 7. 

 

4.4 Discussion 

 

 
 

Figure 11. Average accuracy results 

 

 
 

Figure 12. Average sensitivity results 

 

In this work, we collaborated CNN with ViT to recognize 

and detect plant illnesses. The model combines the benefits of 

sensors and CNNs to enhance feature extraction performance 

and classification accuracy and the same has been shown in 

Figures 11-14. The main effects of DL are in activation 

processes. This serves as a statistical “gate” between the 

output of the layer-skipping neuron and the input of the neuron 

that is now feeding it. A step function that, in response to a 

threshold or rule, switches neuron output on or off. It is crucial 

for the fusion of arbitrary linear models. When developing 

solutions to difficult issues, a variety of activation functions 

might enhance performance. Invisible layers between input 

and output are used in deep learning (DL), which makes it 

simpler to learn elaborate and complex patterns. Since there 

are more parameters to estimate, it needs more training data 

than other DL learning algorithms. The suggested 

methodology boosts productivity and unearths intricate 

patterns from multiple datasets on plant stress. The traditional 

architectures used for comparisions in this work are 

contemporary versions with attention mechanisms and 

lightweight constructions. Because each model has a unique 

method for identifying illness, comparing the findings is 

helpful. The model’s parameters are also used in the CrossViT 

model. ViT is more successful at managing attention than 

CNNs’ internal controls. 

 

 
 

Figure 13. Average specificity results 

 

 
Figure 14. Total training time 

 

 

5. CONCLUSION 

 

In our proposed work, we introduced a novel approach for 

biotic stress categorization and disease severity assessment 

using a multi-output image-based convolutional neural 

network. Our proposed procedure encompasses the entire 

workflow, starting from image acquisition to deep network 
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training and assessment. We incorporate several innovative 

techniques to improve the efficiency of the model. 

A crucial aspect of our research is the integration of mean 

shifting clustering and active contour models for accurate 

plant leaf segmentation in natural environments. This 

segmentation technique enables the visualization of complex 

leaf structures and enhances the understanding of defected 

patterns. We evaluate the efficiency of segmentation through 

the automatic initialization of contour models and gradient 

flow calculations. 

To automatically extract discriminative characteristics 

from damaged leaves, we utilize a shared architecture based 

on the multi-task learning paradigm. Our approach combines 

the strengths of Multi-scale Vision Transformers and 

traditional Deep Neural Networks, resulting in an architecture 

called MCViT. This architecture efficiently extracts both local 

and global features, enabling accurate stress analysis from the 

input images. 

We evaluate our model’s performance against various CNN 

models, and the EfficientNetB0 network and InceptionV3 

network achieve the most promising outcomes. For the 

PlantVillage dataset, the hybrid DCNN-CrossViT (DCNN-

MCViT) model achieves an accuracy of 99.51%, 

outperforming conventional methods such as InceptionV3, 

ResNet50, VGG16, and AlexNet classifiers. The average 

classification accuracy for the DCNN-CrossViT (DCNN-

MCViT) model is 99.82% for the DiaMOS Plant Dataset. 

To further enhance our model and improve its 

representation, we anticipate expanding the current dataset in 

future studies. This expansion will contribute to the model’s 

correctness and robustness. Additionally, extending the 

interoperability of our research to include more factors 

responsible for biotic stress will contribute to a more 

comprehensive assessment of plant health. 

In conclusion, our research provides a key analysis of stress 

detection and severity estimation by establishing a bridge 

between plant pathology and precision agriculture. By 

introducing novel techniques and architectures, we enhance 

the accuracy and efficiency of biotic stress categorization. We 

anticipate that our work will serve as a foundation for future 

studies and applications in the field of plant health assessment, 

aiding in the development of sustainable and efficient 

agricultural practices. 
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