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The detection of cephalometric landmarks in radiographic imagery is pivotal to an extensive 

array of medical applications, notably within orthodontics and maxillofacial surgery. 

Manual annotation of these landmarks, however, is not only labour-intensive but also subject 

to potential inaccuracies. To address these challenges, we propose a robust, fully automated 

method for detecting soft-tissue landmarks. This innovative method effectively integrates 

two disparate types of descriptors: Haar-like features, which are primarily employed to 

capture local edges and lines, and spatial features, designed to encapsulate the spatial 

information of landmarks. The integration of these descriptors facilitates the construction of 

a potent classifier using the AdaBoost technique. To validate the efficacy of the proposed 

method, a novel dataset for the task of soft-tissue landmark detection is introduced, 

accompanied by two distinct evaluation protocols to determine the detection rate. The first 

protocol quantifies the detection rate within the Mean Radial Error (MRE), while the second 

protocol measures the detection rate within a predefined confidence region R. The conducted 

experiments demonstrated the proposed method's superiority over existing state-of-the-art 

techniques, yielding average detection rates of 76.7% and 94% within a 2mm radial distance 

and within the confidence region R, respectively. This study's findings underscore the 

potential of this innovative approach in enhancing the accuracy and efficiency of 

cephalometric landmark detection. 
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1. INTRODUCTION

Cephalometric analysis has attracted considerable attention 

from dentists, orthodontists, and oral and maxillofacial 

surgeons in recent decades, providing crucial insights into 

patients' bony, dental, and soft tissue structures. This analysis 

is routinely used as a diagnostic tool for an array of conditions, 

such as obstructive sleep apnea [1] and mandible/lower jaw 

diagnosis [2]. 

Clinically, cephalometric analysis typically necessitates the 

manual marking of all anatomical landmarks on a 2D 

cephalometric X-ray image, followed by the calculation of 

pertinent linear and angular measurements using instruments 

such as protractors. However, this manual process can be 

laborious, time-consuming, and susceptible to both random 

and systematic errors. The advancements in imaging 

technology and computer vision techniques provide an 

opportunity to circumvent these limitations by replacing 

traditional marking practices with automated ones. 

Existing approaches to cephalometric landmark detection 

can be broadly classified into two categories: Knowledge-

based and AI-based approaches [3]. The former leverages pre-

existing models to construct a knowledge base, thereby 

facilitating the resolution of complex problems. The simplest 

technique in this category is edge-based detection, where pre-

defined edges are utilized to ascertain the location of the 

landmarks. For instance, Liu et al. [4] unveiled a method to 

detect 13 cephalometric landmarks using an edge-based 

technique, which was tested on a modest set of 10 

cephalograms and compared to manual identification 

techniques. 

Several alternative methods have been proposed in the same 

vein, including studies [5, 6]. However, these edge detection-

based approaches generally assume that all cephalometric 

landmarks can be located on, or around, the edges - an 

assumption that does not hold true for all types of 
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cephalometric landmarks. Conversely, other studies have 

applied active model-based approaches, such as the active 

shape model (ASM) [7] and the active appearance model 

(AAM) [8]. 

In the AI-based category, various techniques have been 

employed to detect cephalometric landmarks, including 

Random Forest (RF) [9] and Support Vector Machine (SVM) 

[6]. In light of the remarkable success of machine learning in 

computer vision [10-12] and medical image analysis [13-15], 

researchers have begun to apply deep learning models for 

cephalometric landmark detection. For instance, Arık et al. [16] 

introduced a deep learning model for cephalometry landmark 

detection using convolutional neural networks, which was 

capable of detecting 19 landmarks with an average detection 

rate of 76%. However, due to the small size of the training data 

(only 150 images for training and 250 images for testing), the 

accuracy was somewhat constrained. 

Despite significant strides in cephalometric landmark 

detection, the majority of efforts are concentrated on hard-

tissue cephalometric analysis. In contrast, effective 

orthognathic surgery requires the examination of both hard 

and soft tissue cephalometric data. Furthermore, no public 

dataset exists currently for the analysis of soft tissue landmarks. 

To bridge this gap, we introduce an efficient AdaBoost-based 

method for soft-tissue landmark detection in this paper. The 

proposed method amalgamates several desirable properties, 

such as simplicity (by using the AdaBoost model to construct 

a potent classifier), efficiency (through the use of two different 

types of features, namely, Haar-like and spatial features), and 

low computational cost (by developing a cascade classifier and 

confining the search to candidate regions). Additionally, we 

introduce a novel dataset dedicated to the analysis of soft-

tissue cephalometric landmarks. 

The remainder of this paper is structured as follows: Section 

2 offers an overview of our proposed dataset. Section 3 

elaborates on the proposed method for soft-tissue landmark 

detection. Experimental results are presented in Section 4. 

Finally, the paper concludes with Section 5. 

 

 
 

Figure 1. Samples from the dataset along with annotated 

landmarks 

2. SOFT TISSUE CEPHALOMETRIC DATASET 

 

In this section, we present our proposed soft tissue 

cephalometric dataset. Unlike the existing datasets, which 

proposed mainly focus on hard tissue landmarks, our dataset 

is dedicated to analyzing the landmarks of soft tissue.  

The dataset contains 252 cephalometric X-ray images 

collected from male and female patients between ages 18 to 28 

years. These images were captured by Cranex D digital X-ray 

unit, version 3 (Soredex Co., Tuusula, Finland), with 

resolution 2880 × 2304 and stored in PNG format. The 

annotation process includes 11 soft tissue landmarks manually 

marked in each x-ray image and reviewed by medical experts 

in the field of dentistry. Initially, the dataset was annotated by 

four examiners with different degrees of expertise, two juniors 

and two experts. Then, the annotated dataset was revised by a 

medical expert (orthodontist) with 20 years experience in the 

field of dentistry. Figure 1 shows samples from the dataset 

along with annotated landmarks. 

 

 

3. PROPOSED METHOD 

 

3.1 Overview 

 

In this section, we describe our proposed method for sot-

tissue landmark detection in 2D lateral cephalograms. Figure 

2 shows the pipeline of our proposed method, which consists 

of two phases. 

 

 
 

Figure 2. Pipeline of our proposed method 
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Training phase: where AdaBoost classifier is trained to 

build a strong classifier from those weak classifiers generated 

from landmark local descriptor. The resulted classifier is then 

restructured to form a Cascade classifier, which allows to 

reduce the computational time, dramatically. Note that 

AdaBoost model is a binary-based classifier which means that 

we need a classifier for each landmark. To achieve that, 

training images are firstly enhanced and then patched 

according to the examined landmark j (1≤j≤11) into two 

groups. The first group (+ve patches) represent patches 

centered by landmark j, while the second group (-ve patches) 

represents those patches defined randomly and do not include 

landmark j. After that, landmark local descriptors are defined 

from both groups, resulting in +ve descriptors and -ve 

descriptors. Finally, these descriptors are used to feed the 

AdaBoost Model for training (cascade training) and generating 

a trained model for landmark j. 

Testing phase: in this phase, each trained model is used to 

detect the location of a certain landmark. To detect all 

landmarks, image enhancement is firstly applied on the input 

image followed by image patching. For each patch p in the 

input image, the landmark local descriptor dp is defined and 

classified by Nth trained classifiers. Each classifier j decides 

either the examined descriptor dp represents the landmark j or 

not.  

The next subsections explain the proposed method in details. 

 

3.2 X-ray image pre-processing 

 

In general, x-ray images are characterized by low intensity, 

high noise, poor contrast and weak representation of 

boundaries, especially for soft tissues, which can dramatically 

affect the information of the image. In this work, we apply 

Adaptive Gamma Correction [17] method to enhance the 

quality of x-ray images. This method is basically modifying 

the value of V component of HSV color model by applying 

Adaptive Gama Correction (AGC) with Weighting 

Distribution (WD). This was done by firstly defining 

Weighted Cumulative Distribution Function from Cumulative 

Distribution Function using Weighted Distribution model and 

then modifying Gama parameter based on Weighted 

Cumulative Distribution Function. 

Mathematically, the Weighted Distribution model (wd) is 

defined as bellows: 

 

𝑤𝑑(𝑖) = 𝑝𝑑𝑓𝑚𝑎𝑥 (
𝑝𝑑𝑓(𝑖) − 𝑝𝑑𝑓𝑚𝑖𝑛

𝑝𝑑𝑓𝑚𝑎𝑥 − 𝑝𝑑𝑓𝑚𝑖𝑛

)

𝛼

 (1) 

 

where, pdf(i) represents the probability density function at 

intensity i while pdfmin and pdfmax represent the maximum and 

the minimum 𝑝𝑑𝑓  of the statistical histogram, respectively. 

Parameter α is used to adjust the distribution of wd. pdf(i) can 

be formulated as pdf(i)=ni/N, where ni and N are number of 

pixels having intensity value i and total number of pixels in the 

image, respectively. 

Now, Weighted Cumulative Distribution Function (CDF) is 

defined as bellows: 

 

𝑐𝑑𝑓𝑤(𝑖) = ∑ (
𝑤𝑑(𝑖)

∑ 𝑤𝑑
)

𝑖𝑚𝑎𝑥

𝑖=0

 (2) 

 

where, ∑ 𝑤𝑑  represents the sum of Weighted Distributions 

w.r.t the intensity levels (from i=0 to imax). Finally, the value 

of Adaptive Gamma γ is derived from cdf and used to 

transform pixel intensities as T(i). Both γ and T(i) are 

expressed by: 

 

𝛾 = 1 − 𝑐𝑑𝑓𝑤(𝑖) 

𝑇(𝑖) = 𝑖𝑚𝑎𝑥 (
𝑖

𝑖𝑚𝑎𝑥

)
𝛾

 
(3) 

 

3.3 Landmark local descriptor 

 

The local descriptors of each landmark include two different 

types of features. The first one is Haar-like feature, dedicated 

to capture local edges and line within a patch. In contrast, the 

second one (spatial feature) is dedicated to represent the 

location of the landmark. 

 

3.3.1 Haar-like features 

Haar-like features have been widely applied in many object 

detection problems [18]. These features are characterized by 

simplicity and the ability to present edges and lines effectively. 

Note that all landmarks (soft-tissue-landmarks) are mainly 

located on the edges of soft tissues, making this type of feature 

ideal to represent the landmarks.  

 

 
 

Figure 3. Five Haar-like templates. The background of 

templates shown in gray color while white and black 

rectangles are used to calculate the corresponding feature in 

the patch 

 

In our method, five different templates are used to build 

Haar-like features as illustrated in Figure 3. The value of Haar-

like feature within a template can be defined by calculating the 

difference between the sum of the pixels within white 

rectangles and the sum of the pixels within black rectangles. 

In practice, defining Haar-like features from the image may 

lead to high computational cost. However, using integral 

image instead of standard image allows to define these features 

at a low computational cost. The integral image II at location 

(x, y) is defined as the sum of pixels located before x and y 

position as bellows: 

 

𝐼𝐼(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥′, 𝑦′)

𝑦

𝑦′=1

𝑥

𝑥′=1

 (4) 

 

3.3.2 Spatial features 

Spatial features are dedicated to represent the location of 

landmarks with respect to the image size. Although the 

simplicity of these features, they provide valuable information 

that helps to discriminate landmarks from each other. For 

example, Tri landmark is located in the upper part of the face 

(Forehead) while Me landmark is located in the lower part of 

the face (Chin). Spatial features is formulated as (x, y) location 

of the landmark normalized according to size of the image as 

follows: 

 

𝑥′ =
𝑥

𝑤
× 100 

𝑦′ =
𝑦

ℎ
× 100 

(5) 
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where, w and h are image width and height, respectively. 

 

3.4 Feature selection and classification 

 

To build a strong classifier, AdaBoost model [19] is used to 

select those effective(weak) classifiers and combine them to 

form our strong classifier. Each weak classifier is constructed 

from a single feature with trained threshold values. Given a 

training set, the threshold values of a weak classifier are 

trained to minimize the number of misclassified samples. In 

more details, two threshold values are used in each classifier, 

representing the boundaries between positive and negative 

classes as shown in Figure 4. Mathematically, the output of 

each. 

Classifier can be represented as: 

 

ℎ𝑖(𝑥) = {
1   𝑖𝑓 𝜃𝑖𝑙 ≤ 𝑓𝑖(𝑥) ≤ 𝜃𝑖𝑢

−1          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (6) 

 

where, hi(x) represents the output of classifier hi at sample x 

and can be either 1 for positive class or −1 for negative class. 

fi(x) is denoted as the feature value of sample x in the feature 

vector hi while θil and θiu are denoted as the lower and higher 

bound thresholds, respectively. 

However, starting with a weak classifier (better than a 

random guess), the AdaBoost model boosts the current 

classifier by selecting and adding more weak classifiers 

toward decreasing the error rate. Although boosting process 

select only those effective features, many features are used to 

build a strong classifier. Defining and processing these 

features during the testing phase may lead to high 

computational cost. To overcome this issue, all selected 

classifiers are restructured to form a cascade classifier which 

is a decision tree allows to reject those unpromising regions 

(non-landmark regions) at early stages. Thus, only promising 

regions receive more processing through several stages. Figure 

5 gives schematic illustration of cascade classifier. 

 

 
 

Figure 4. Boundaries between positive and negative classes 

through two thresholds 

 

 
 

Figure 5. Schematic illustration of cascade classifier 

3.5 Optimizing landmarks detection 

 

In this section, we propose a procedure to improve the speed 

of landmark detection in addition to the detection rate. Unlike 

hard-tissue landmarks, all soft-tissue landmarks are located on 

the out boundaries (edges) of the soft- tissues as shown in 

Figure 1. This fact can help us to limit our search around those 

soft-tissue edges and exclude other regions. Practically, 

defining soft-tissue edges is not an easy task. For simplicity, 

we search for those candidate regions that may include all 

possible soft-tissue edges. Even by including other regions, 

such as part of hard-tissue edges, it is still much better than 

considering the whole image. To define the candidate regions, 

three main steps are applied on the input image (Figure 6(a)):  

1. Build a mask for soft-tissue regions (Figure 6 (b) to (d)).  

2. Define Canny edges [20] (Figure 6 (e)). 

3. Apply the mask on the Canny edges to get the candidate 

regions (Figure 6 (f) and (g)).  

The mask of candidate regions is defined by first apply hard 

binarization to detect hard-tissue regions (Figure 6 (b)). The 

resulted mask is then inverted to exclude hard-tissue regions 

(Figure 6 (c)). Finally, unwanted regions are excluded by reset 

any region horizontally located before hard-tissue region 

(Figure 6 (d)). 

 

 
 

Figure 6. Proposed schema to detect candidate regions. (a): 

the input image. (b): the hard binarization. (c): the inverse of 

(b). (d): excluding regions horizontally located before hard-

tissue. (e): Canny edges. (f): applying the mask (d) on Canny 

edges(e). (g): candidate regions presented on the image 

(green color) 

 

 

4. EXPERIMENTAL RESULT 

 

4.1 Evaluation protocol 

 

Our landmark detection method has been evaluated through 

10 folds cross validation, which is widely used in machine 

learning based methods [10, 21]. The dataset is divided into 10 

folds, from F1 to F10, where one fold (outer fold) is used for 

the testing phase while the reset are used for the training phase. 

The whole dataset was evaluated by repeating this process 

under different settings (outer fold selection) to cover all 

possible options. 
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To evaluate the performance of our proposed method, two 

approaches have been applied here. The first approach 

assumes that a landmark is correctly detected if it is located 

(by the system) within a circular region with radial distance r 

around the reference location (the actual location of the 

landmark). 

In the second approach, a confidence region is defined for 

each landmark by analyzing its locations along different 

anatomical structures [22]. To achieve that, 27 cephalometric 

images (including males and females) are selected to be 

annotated by four examiners, two of them have high clinical 

orthodontic experience. The annotated images (108 

cephalometric images) are then revised by a medical expert 

(orthodontist) with long experience to ensure that the 

landmarks are located within the correct anatomical structures. 

For each landmark, the confidence region is represented as an 

ellipse [22] which includes the variations in the landmark 

localization and formulated by a confidence limit α as follows: 

 

𝛼 = 𝐶𝐻𝐼2

(
𝑥
𝜎𝑥

)
2

− 2𝜌 (
𝑥
𝜎𝑥

.
𝑦

𝜎𝑦
) + (

𝑦
𝜎𝑦

)

1 − 𝜌2
 

(7) 

 

where, CHI represents a function that returns the probability α 

for the chi-square distribution with two degrees of freedom (x 

and y coordinates). The variable ρ is denoted as the correlation 

between x and y while the remaining variables, σx and σy, are 

denoted as the standard deviations of x and y, receptively.  

Figure 7 illustrates the confidence ellipse for each landmark 

at α=0.01 (equivalent to 99% confidence level). The red points 

in each ellipse represent the locations of the examined 

landmarks, identified on 27 images by three examiners. 

 

4.2 Landmark detection results 

 

Table 1. Mean radial error (MRE), standard deviation (SD) 

and detection rates of each landmark 

 

Landmark 
MRE 

(mm) 

STD 

(mm) 

Detection Rates  

(2mm) (3mm) (4mm) 

1:Tri 0.86 0.64 97.6% 99.6% 100% 

2:G 3.83 5.95 47.3% 63.1% 75.0% 

3:N 5.38 7.50 69.8% 69.8% 80.5% 

4:Prn 0.88 0.70 95.6% 99.6% 100% 

5:Cm 1.35 0.99 84.6% 90.9% 98.0% 

6:Sn 1.27 0.97 88.1% 94.4% 98.4% 

7:Ls 1.14 0.98 91.3% 97.6% 99.2% 

8:Li 1.44 2.36 93.7% 96.4% 97.6% 

9:Sm 3.72 8.14 75.4% 86.1% 88.1% 

10:Pg 2.98 2.07 45.6% 57.8% 70.2% 

11:Me 4.33 6.78 55.1% 65.5% 72.6% 

Avg 2.47 3.37 76.7% 83.7% 89.1% 

 

We have assessed the performance of the proposed method 

using both predefined approaches (previous section), circular 

region with r radius and confidence ellipse. Table 1 reports the 

mean redial error (MRE) and standard deviation (SD) for each 

landmark along with the detection rate at r=2mm, 3mm and 

4mm. The average MRE and SD of all landmarks are 2.47 and 

3.37, receptively. The highest MRE rates are reported by N and 

Me landmarks, as these landmarks are located in different 

anatomical structures with high variations. We can notice from 

Table 1 that our method, with 2mm error margin, achieved 

76% average detection rate of all landmarks (averaged over 10 

folds/runs). The highest detection rate (97.6%) was reported 

by Tri landmark while the lowest detection rate (45.6%) was 

reported by Pg landmark. By increasing the error margin to 

3mm and 4mm, the average detection rates of all landmarks 

are improved to reach 83.7% and 89.1%, respectively.  

Table 2 shows the parameters of confidence ellipses along 

with reliability at each landmark. The values of semi minor 

axis are ranged from 0.77mm to 3.91mm with 1.76mm 

average value. In contrast, the values of semimajor axis are 

ranged from 1.92mm to 13.46 with 4.54 average value. We can 

notice that Sm landmark has the smallest confidence ellipse 

while G and Pg landmarks have the largest confidence ellipse. 

The average detection rate (reliability) of all landmarks within 

the confidence ellipse was 94% where Tri, G, Prn, Cm and Me 

achieved the highest reliability (100%) while Sm achieved the 

lowest reliability (77.8%). 

 

Table 2. Parameters of confidence ellipse (Angle, Semimajor 

Axis and Semimajor Axis) along with Reliability at each 

landmark 

 

Land. 
Angle 

(deg)* 

Semiminor 

Axis(mm) 

Semimajor 

Axis(mm) 
Reliability 

1:Tri 67.9 1.09 2.25 100% 

2:G 87.2 1.73 13.46 100% 

3:N 87.3 1.06 4.63 81.5% 

4:Prn -15.6 0.87 2.63 100% 

5:Cm -59.6 1.58 2.55 100% 

6:Sn -43.5 2.40 2.51 96.3% 

7:Ls 75.4 0.82 2.21 96.3% 

8:Li -38.6 3.08 3.61 92.6% 

9:Sm -16.5 0.77 1.92 77.8% 

10:Pg -23.5 3.91 8.36 92.6 

11:Me -75.5 2.00 5.80 100% 
* The angle in degree between the x-axis and the semimajor Axis 

 

4.3 Comparative results 

 

For comparison, our method was compared with recent 

state-of the-art methods for the task of soft-tissue landmark 

detection. Figure 8 reports the performance of our method 

along with other methods based on the detection rate (within 

2mm) and mean radial error of four common landmarks (Sn, 

Ls, Li and Pg). In the case of the detection rate, the average 

reported results of our method and study [23] are relatively 

close for the common landmarks. In contrast, the reported 

results based on the mean radial error shows that our method 

achieved lower error rates compared to study [24] in all 

common landmarks. It is worth noting that the evaluation 

protocol was done under different settings, e.g., different 

training datasets. Nevertheless, it still gives a standard 

evaluation of our method compared to other methods. 

Table 3 reports the performance of our method along with 

study [25] based on the reliability of detection within 

predefined confidence regions. In our method, these regions 

were defined for each landmark using 27 cephalometric 

images annotated by four examiners (more details in Sec 4.1). 

In contrast, study [25] defined these regions using 10 

cephalometric images annotated by 10 examiners. We can 

notice that our method achieved 94% reliability rate in average 

to detect 11 landmarks, while study [25] achieved 72% 

reliability rate in average to detect 9 landmarks.
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Figure 7. Confidence ellipses for soft-tissue landmarks 

 

 
 

Figure 8. Performance comparison based on the detection 

rate (within 2mm) and the mean radial error for selected 

landmarks 

 

Table 3. Performance comparison based on the Reliability 

(detection rate within the confidence region) 

 
 This Work [11] 

Evaluation 

protocol 

27 cephalometric images 

annotated by four 

examiners 

10 cephalometric images 

annotated by 10 

examiners 

Landmark   

1:Tri 100% - 

2:G 100% 57% 

3:N 81.5% 83% 

4:Prn 100% 52% 

5:Cm 100% - 

6:Sn 96.3% 97% 

7:Ls 96.3% 51% 

8:Li 92.6% 78% 

9:Sm 77.8% 86% 

10:Pg 92.6% 82% 

11:Me 100% 61% 

Avg 94% 72% 

 

 

5. CONCLUSIONS 

 

In this work, we presented an automated soft-tissue 

landmark detection system for 2D cephalometric images. 

Unlike other landmark detection methods, our method focuses 

on detecting soft tissue landmarks by integrating two different 

types of features (Haar-like and spatial features) along with 

cascade classifiers. Due to the high similarity between soft-

tissue landmarks, spatial descriptor plays an important in 

improving the discrimination between different landmarks. To 

evaluate the performance of our method, we also presented a 

new dataset for the task of soft-tissue landmark detection.  

The experimental results demonstrate the effectiveness of 

the proposed method, with a mean radial error (MRE) of 2.47 

and a detection rate of 76% for a 2mm error margin. By 

increasing the error margin to 3mm and 4mm, the detection 

rates improve to 83.7% and 89.1%, respectively. Additionally, 

the reliability analysis based on confidence ellipses shows 

promising results, with an average detection rate of 94% 

within the predefined confidence regions. 

Future avenues of work include extending our method by 

applying more sophisticated descriptor, such as Curvelet 

descriptor, instead of Haar-like descriptor, and expanding the 

size of our dataset (by involving additional samples). In 

addition to that, we intend to extend our experiments to cover 

the detection of both soft and hard tissue. 
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