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Laboratory safety education is fundamental to the smooth conduct of scientific research. 

Traditional educational models are often limited in interactivity and real-time feedback and 

they struggle to satisfy the increasing needs of laboratory safety management. This study 

aims to enhance the interactivity and efficacy of laboratory safety education by adopting 

machine learning-enhanced image processing technologies. To cope with the noise issue in 

hazardous behavior data within laboratories, wavelet threshold denoising is applied to 

significantly improve data usability. To deal with the imbalance in data samples of 

laboratory hazard behaviors, an adaptive boundary data augmentation algorithm is 

introduced to balance the dataset and strengthen the model's generalization capability. A 

breakthrough in extracting spatio-temporal features of hazardous behaviors in laboratories 

is achieved through an improved Spatio-Temporal Graph Convolutional Network (ST-

GCN) model, enabling effective recognition and classification of hazardous behaviors. The 

outcome attained in this study has important implications for enhancing the interactivity and 

practicality of laboratory safety education and it can expand new research directions for the 

application of machine learning in the field of image processing. 
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1. INTRODUCTION

To cope with the frequent occurrences of laboratory safety 

incidents, effective laboratory safety education has become a 

particular important matter. Conventional methods of 

laboratory safety education often rely on text book or the 

instruction given by teachers, and they generally lack 

interactivity and real-time feedback [1-5]. Against this 

backdrop, machine learning-enhanced image processing 

technologies give us a new perspective for laboratory safety 

education. Real-time monitoring and analysis of hazardous 

behaviors in laboratories are carried out, making it possible to 

immediately identify potential safety risks, thereby enhancing 

the effectiveness and efficiency of safety education [6-8]. 

The great advancements in artificial intelligence in recent 

years have led to good achievements in image recognition and 

processing through machine learning. The application of these 

technologies has not only markedly improved the accuracy 

and speed of data processing but also enhanced the experience 

of interactive learning [9-13]. In case of laboratory safety 

education, the integration of machine learning and image 

processing techniques plays an important role, as it makes the 

effective identification and analysis of hazardous behaviors in 

laboratories possible, thereby providing learners with more 

intuitive and dynamic educational materials, which is of high 

theoretical and practical values [14-16]. 

However, existing studies about processing the data of 

laboratory hazard behaviors show some disadvantages, as the 

complex laboratory environments often results in noise-

contaminated data of hazardous behaviors, and this can affect 

the accuracy of data analysis results [17-20]. Besides, the 

scarcity of certain types of hazardous behavior data can cause 

imbalance to datasets, potentially affecting the generalization 

capability and recognition effectiveness of the models, and 

these challenges would limit the application effect of machine 

learning methods in laboratory safety education [21-26]. 

To promote the application of machine learning techniques 

in laboratory safety education, this paper has three focuses. 

Firstly, the paper discusses the noise in hazardous behavior 

data from laboratories, and uses wavelet threshold denoising 

to pre-process the data, so as to effectively improving data 

quality. Secondly, to deal with data imbalance, an adaptive 

boundary data augmentation algorithm is applied to balance 

the dataset. Finally, by utilizing an improved ST-GCN model, 

spatio-temporal graphs of hazardous actions in laboratories are 

constructed, facilitating accurate extraction of spatio-temporal 

features and enabling efficient recognition and classification 

of hazardous behaviors. The in-depth exploration of these 

research aspects not only enhances the interactivity and 

efficacy of laboratory safety education but also provides new 

technical pathways and theoretical foundations for research in 

related fields, underscoring the significant value and 
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application prospects of this study. 

 

 

2. NOISE REDUCTION IN LABORATORY SAFETY 

EDUCATION HAZARDOUS BEHAVIOR DATA 

 

The core objective of laboratory safety education is to 

reduce the risk of accidents and ensure personnel safety. In this 

context, the use of machine learning-enhanced image 

processing technologies for hazardous behavior recognition 

not only facilitates real-time monitoring but also enables the 

prevention of potential safety hazards through historical data 

analysis. However, data preprocessing, particularly noise 

reduction, becomes a crucial step in ensuring the accuracy and 

reliability of machine learning models. The reasons and 

necessity for noise reduction in data are outlined below: 

The primary reason is the complexity of laboratory 

environments, where noise is often introduced into the image 

and video data captured by monitoring devices due to various 

factors. Noise in the data can interfere with the training process 

of machine learning models, reducing their capability to 

recognize actual hazardous behaviors. 

Wavelet threshold denoising is an effective technique for 

signal noise reduction. Initially, signals in the time domain are 

transformed to the wavelet domain using wavelet transform. 

This transform provides localized information in time and 

frequency, enabling better representation of signal 

characteristics in the wavelet domain. In this domain, noise 

and useful information within the signal are separated. Noise 

typically manifests as small amplitudes in the wavelet 

coefficients, while significant features of the signal correspond 

to larger coefficients. By setting an appropriate threshold, 

coefficients smaller than this threshold can be considered 

noise and suppressed, while those larger are retained. 

 

 
 

Figure 1. Process flow of noise reduction in hazardous 

behavior data for laboratory safety education 

 

The selection of a suitable wavelet threshold function is 

critical in ensuring effective noise reduction and preserving 

behavioral characteristics. Figure 1 gives the flow of noise 

reduction in hazardous behavior data for laboratory safety 

education. Wavelet threshold functions are categorized into 

hard and soft thresholds, each with distinct features and 

applicable scenarios. In hard thresholding, the treatment of 

wavelet coefficients follows a simple rule. A coefficient is 

retained if its absolute value exceeds the threshold; otherwise, 

it is set to zero. This means hard thresholding is an "all-or-

nothing" approach, potentially introducing sudden transitions 

in the denoised signal, which can cause additional distortion in 

certain scenarios. Soft thresholding is more subtle, not only 

zeroing coefficients below the threshold but also reducing 

those above it. Specifically, coefficients above the threshold 

are reduced by the threshold value; those below the negative 

threshold are increased by it, and if a coefficient's absolute 

value is at or below the threshold, it is set to zero. This method 

ensures smooth continuity at the threshold point, reducing 

signal distortion caused by hard thresholding but may also lead 

to some loss of signal detail. Assuming the estimated wavelet 

coefficients are denoted as Q^
kj, the decomposed wavelet 

coefficients as Qkj, the sign function as sgn(), and the threshold 

as η, the following expressions give formulas for hard and soft 

threshold functions: 
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In traditional wavelet threshold denoising methods, the 

determination of the threshold is often related to the root mean 

squared error (RMSE) of the wavelet coefficients and the 

number of sampling points. However, when applied to noise 

reduction in hazardous behavior data for laboratory safety 

education, this traditional method of threshold selection may 

not be suitable. The main reason is that laboratory safety 

monitoring often involves dynamic scenes, where hazardous 

behaviors are variable and complex. Traditional wavelet 

threshold methods may not adapt well to such dynamic 

changes, as they are typically designed for relatively static or 

steady-state noise. Also, the characteristics of hazardous 

behavior signals may vary with time, environmental 

conditions, and operational methods during the experiment. 

The threshold needs to be adaptable to these changes to ensure 

effective denoising. Assuming the RMSE of noise is 

represented by δ, the number of signal sampling points by B, 

the decomposition scale by k, and the root mean squared error 

of the wavelet coefficients at the k-th level by δk, the following 

equations provide the commonly used threshold expressions 

in traditional wavelet threshold denoising: 

 

2ln B =  (3) 

 

( )2ln ln 1k k B k = +  (4) 

 

Considering the specific needs of hazardous behavior 

recognition in laboratory safety education, this paper 

introduces an exponential function concept to improve the 

threshold function. With the form of an exponential function, 

the threshold becomes more sensitive to local features of the 

signal, allowing for adaptive threshold adjustment to better 

accommodate changes in signal characteristics. At the same 
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time, it enables better preservation of signal details during 

denoising, especially those subtle features crucial in safety 

monitoring. Assuming the sign function is represented by 

sgn(Qkj), the expression is as follows: 
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From the above equation, it is clear that when Qkj>0, the 

value is m, and when Qkj<0, the value is -1. When |Qk,j|=η, 

Q^
kj=0, at this point the threshold function is continuous at 

|Qk,j|=η, addressing the issue of discontinuities present in hard 

threshold functions. As |Qk,j approaches infinity, Q^
k,j infinitely 

approaches |Qk,j|, avoiding the issue of soft threshold functions 

compressing some wavelet coefficients with a fixed value. By 

appropriately selecting the wavelet function and threshold, the 

denoising process can remove noise while retaining as much 

as possible the key features of hazardous behavior, which is 

crucial for subsequent behavior recognition and assessment. 

 

 

3. BALANCING HAZARDOUS BEHAVIOR DATA IN 

LABORATORY SAFETY EDUCATION 
 

In the context of laboratory safety education, utilizing 

machine learning-enhanced image processing technologies to 

identify hazardous behaviors is a promising research direction. 

However, the training of machine learning models requires a 

large amount of data. If a dataset contains an too much of s 

certain category and too little of others, the model may become 

biased towards the category with more samples. Via the 

balancing treatment, the sample count of each category 

becomes equal, which enables the model to fairly learn the 

characteristics of each kind of the behavior, thereby enhancing 

the model’ ability in recognizing hazardous behaviors that are 

not that common. 

This paper attempts to propose an adaptive boundary data 

augmentation algorithm for balancing hazardous behavior data 

of the laboratory safety education environment. Objective of 

this algorithm is to balance the dataset by creating different-

type samples on the edge or boundary, so as to strengthen the 

model's ability to recognize hazardous behaviors of minority 

classes. At first, the algorithm identifies boundary samples in 

the dataset, such as those near the dividing line between 

different categories. In terms of laboratory safety education, 

these boundary samples may be the initial or atypical 

manifestations of some hazardous behaviors, and this step is 

crucial for training a model that can accurately identify various 

hazardous behaviors. After the boundary samples are 

identified, the algorithm creates new data points based on 

these samples. In this way, new variants between known 

categories are generated, enriching the dataset and helping the 

model learn to better differentiate between different types of 

behaviors. Besides generating random samples, the algorithm 

can do it adaptively based on the current performance of the 

model, and this means that if the model performs poorly on a 

particular category, the algorithm will prioritize generating 

more boundary samples for this category to enhance its 

recognition ability in that class. By adding newly generated 

boundary samples in categories with less samples, the 

algorithm can help balance the entire dataset, which is very 

important for training machine learning models as it prevents 

the model from being overly biased towards categories with 

more samples, in this way, it ensures a good recognition ability 

across all categories. 

For hazardous behavior recognition in laboratory safety 

education, some behaviors might be relatively rare, but the 

importance of recognizing these behaviors can be very high. 

In such cases, ordinary data augmentation methods might not 

suffice to generate enough minority class samples to improve 

the model's performance. Therefore, an adaptive method is 

required to generate data more targetedly, and "sampling 

weight" is a part of this method. Assuming the sum of 

distances of a minority class sample to each of its k-nearest 

neighbors of the same class is represented by f1, the number of 

nearest neighbors in the sample set for any minority class 

sample is denoted by j1, and the number of nearest neighbors 

that are majority class samples is denoted by j2, the paper 

calculates the sampling weight q for minority class boundary 

samples through the following equation: 

 

1
1
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q j
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The detailed steps of the adaptive boundary data 

augmentation algorithm are described as follows: 

(1) In the context of laboratory safety education, hazardous 

behavior datasets often exhibit significant category imbalance. 

For example, behaviors like “non-compliance with procedures” 

or “failure to use personal protective equipment” might be less 

common, yet they are crucial to identify and prevent in safety 

education. To calculate the imbalance, first collect the sample 

numbers for each category of hazardous behavior, then 

determine the sample count for each category. After that, 

calculate the ratio of the smallest class sample size to the 

largest class sample size to determine the imbalance ratio. At 

last, assess the overall imbalance of the existing dataset. 

Assuming: the original training set is represented by Y, the 

minority set is represented by B, its sample count is 

represented by b, the majority set is represented by L, and its 

sample count is represented by l, the imbalance degree of the 

sample set Y is represented by β, then its value can be 

calculated using this formula: 

 

l

b
 =  (7) 

 

After determining the degree of imbalance, calculate how 

many new samples need to be synthesized for each minority 

class to achieve the desired level of balance. This often 

involves setting a target balance ratio, such as aiming for an 

equal number of samples in each category or reaching a 

specific ratio. First, determine the target balance ratio, then 

calculate the number of samples to be synthesized for each 

minority class, which can be done by multiplying the target 

ratio by the number of majority class samples. Considering the 

complexity of the model and training costs, a limit might be 

set to restrict the number of synthesized samples. Assuming 

the oversampling rate 1<e≤β, the formula for calculating the 

number of new samples A needed in the training set is given 

as: 

 

( )1A b e=  −  (8) 

 

(2) To identify which samples in the minority class are 

boundary samples, i.e., those close to the majority class 
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samples, calculate the K-nearest neighbors (KNN) for every 

minority class in the training set using KNN. For each minority 

class sample in the training set, use the KNN algorithm to 

identify its closest K samples. The choice of K is crucial; too 

small a K might lead to excessive influence of noise data, while 

too large a K might make the boundary samples less sensitive. 

In the context of laboratory safety education, this might 

involve calculating similarities in parameters related to 

experimental operations, such as operational distance, action 

sequences, etc.  

(3) In laboratory safety education, boundary samples refer 

to those that might be easily mis-classified. Identify boundary 

samples using KNN results. Then calculate the k-nearest 

neighbors for each minority class boundary sample, where k 

may be smaller than the K used in the previous step. This is 

because, at this stage, the focus is more on those samples 

adjacent to the majority class. By analyzing the characteristics 

of boundary samples, a deeper understanding of hazardous 

behaviors in the laboratory can be gained, such as which 

operational steps are most likely to lead to safety accidents. To 

determine how many new samples need to be synthesized for 

each boundary sample, calculate the number of new minority 

class samples to be synthesized. Assign a sampling weight to 

each boundary sample, which can be based on the number of 

majority class neighbors or their average distance to the 

majority class. Combine the sampling weight with the total 

number of samples needed for the minority class to allocate 

the number of new samples to be synthesized for each 

boundary sample. The formula for calculating the number of 

new minority class samples Batb to be synthesized is: 

 

atbB q A=   (9) 

 

(4) The final step is to add the newly synthesized minority 

class samples to the original training set to achieve balance 

between classes. That is, to use data augmentation to 

synthesize new sample points based on each boundary sample 

and its neighbors. The synthesized new samples should be able 

to reflect real hazardous operations in the laboratory as much 

as possible, such as simulating possible variable fluctuations 

or operational errors during the experiments. Then, merge the 

newly synthesized minority class samples with the original 

training set to ensure a more balanced dataset across all 

categories. 
 

 

4. HAZARDOUS BEHAVIOR RECOGNITION IN 

LABORATORY SAFETY EDUCATION BASED ON 

IMPROVED ST-GCN 
 

As stated above, accurately identifying and classifying 

hazardous behaviors in laboratory safety education is very 

important, as it can prevent accidents and enhance overall 

safety. Conventional monitoring methods generally rely on 

manual observations or basic video analysis, however, these 

methods may not be precise enough and they can’t give real-

time feedback. So the application of advanced computer vision 

and machine learning technologies in monitoring laboratory 

safety has turned into a particularly important matter. The ST-

GCN is a deep learning model specifically designed for 

processing graph-structured data, and it can give excellent 

performance in action recognition. The model models the 

movements of human skeleton in spatio-temporal graphs 

through graph convolutional networks, so as to effectively 

capture the relationships between different body parts and the 

temporal evolution of the movements of students. To enable 

the hazardous behavior recognition model in laboratory safety 

education to focus more on identifying specific actions or 

behavior patterns that may lead to accidents, such as improper 

handling of chemicals or incorrect instrument operation, this 

paper improves the model by integrating attention 

mechanisms and expanding temporal convolution networks 

into the structure based on ST-GCN. Figure 2 presents the 

architecture of the hazardous behavior recognition model for 

laboratory safety education. 

 

 
 

Figure 2. Architecture of hazardous behavior recognition model for laboratory safety education 

 

 
 

Figure 3. Dimensional changes of model input data 

Initially, a spatio-temporal graph is constructed using the 

spatial configuration of human body joints and their changes 

over time. In this graph, nodes represent key points of the body, 

edges represent connections between nodes in space, and the 

state of the nodes changes over time. In the spatial dimension, 

the graph convolutional network learns the relationships 

between each joint and its adjacent nodes. This allows for 

capturing the interactions between body parts, which is crucial 

for identifying specific hazardous movement patterns. To 

capture the temporal evolution of movements, the model 

extends temporal convolutions. This extension enables the 

network to better handle long-term dependencies in action 

sequences and recognize hazardous behaviors that are defined 
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through a series of continuous movements. 

Specifically, a single partitioning approach is used to divide 

the human body into several joints, each potentially 

corresponding to a body part. The single partitioning method 

means each joint is divided into an independent part, while 

adjacent joints represent connections between different body 

parts. The output of the feature map is usually realized in the 

form of a matrix, containing features of each joint of the 

human body. In the ST-GCN framework, these features 

include the position coordinates of the nodes and possibly 

other attributes. Figure 3 shows the changes in the dimensions 

of the model input data. Assuming the output feature map is 

represented by dOUT, the input feature map by dIN, the 

connections between human joints by the adjacency matrix 

represented by S, the self-connection between joints by the 

identity matrix represented by U, and the normalized 

adjacency matrix by Suu=Σk(Suk+Uuk), then: 

 

( )
1 1

2 2
OUT k INd S U d Q

− −

= +   (10) 

 

In ST-GCN, the adjacency matrix is used to represent 

connections between joints. Distance partitioning is usually 

based on the physical distance between joints, while spatial 

configuration partitioning depends on the relative position of 

the joints in space. Decomposing the adjacency matrix reveals 

the spatial relationships between joints. If the adjacency matrix 

(S+U) is decomposed into several matrices Sk, then: 

 

( ) kk
S U S+ =  (11) 

 

Combining the above two formulas yields: 

 
1 1

2 2
OUT k k IN

k

d S d Q
− −

=    (12) 

 

Using the graph convolutional network, the model can learn 

the spatial features of the joints. This step is achieved by 

applying convolution operations on the adjacency matrix, 

capturing the interactions and interconnected relationships 

between different body parts. The extraction of temporal 

features is accomplished by analyzing the human skeletal data 

in consecutive frames. ST-GCN treats the continuous state of 

joints in a time series as a whole, capturing the development 

and changes of movements over time through temporal 

convolutional layers, applying a π×1 convolution operation on 

dOUT. Assuming the convolution kernel size is represented by 

π and the activation function by δ, the computation formula is: 

 

( )OUTd d =   (13) 

 

In the context of laboratory safety education, certain joints 

(such as hands or heads) may be more critical than others, as 

they are more likely to be involved in hazardous operations. 

Temporal and spatial attention mechanisms can help the model 

focus on these critical joints for understanding hazardous 

behaviors, thereby improving recognition accuracy. Figure 4 

shows the architecture of the improved ST-GCN module. 

In the field of laboratory safety education, the introduction 

of a temporal attention mechanism aims to endow the model 

with the ability to recognize and differentiate the importance 

of joint movements at different time steps. In the context of 

laboratory safety education, this means the model needs to 

identify which sequences of movements might lead to safety 

risks. Assume the input to the e-th spatio-temporal module is 

represented by Ce-1=(c1,c2,...,cYe-1)∈EB×Ve-1×Ye-1. The number of 

channels in the network input data is Ve-1, the length of the time 

dimension of the input data is represented by Ye-1, the number 

of frames in the action sequence by Yp, and the activation 

function by Relu. The spatial matrix is represented by A∈EB×B, 

and the expression for the spatial attention matrix of joint C at 

frame y is given by: 

 

( ) ( )( )1 1

1 2 3Relu
Y

e e
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In the context of laboratory safety education, when using 

graph convolutional networks to identify and analyze students' 

actions, further extraction of spatial features of the joints in the 

network is required. First, construct a graph structure of the 

joints, then, initialize spatial attention weights and extract 

node features through graph convolution operations. Graph 

convolution utilizes the neighborhood information of nodes, 

aggregating information according to the weight of the nodes. 

Use one or more spatial attention heads to calculate each 

node's attention score for its neighboring nodes. After that, 

normalize the calculated attention scores so that the sum of 

attention scores for all neighboring nodes of each node equals 

1, and aggregate the features of the neighboring nodes based 

on each node's attention score to update the current node's 

feature representation. Assuming the spatial attention matrix 

is represented by A′∈EB×B, and multiplied with S+U and Sk to 

obtain (S+U)⊗A′ and Sk⊗A′, thus reasonably allocating the 

attention of joints in the network. The transformation formula 

for the output feature map is given by: 
 

( )( )
1 1

2 2
IN INd S U A d Q

− −

=  +    (16) 

 

( )
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2 2
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k

d S A d Q
− −

=     (17) 

 

The goal of the spatial attention mechanism is to enable the 

model to better understand and analyze the spatial 

relationships between joints and the importance of each joint 

in space. Suppose different frames of the same joint cuk are 

represented by Z, the learning parameters by Cr, nr∈EYe-1Ye-1, 

W1∈EB, W2∈EVe-1×B, W3∈EVe-1. The time-related matrix is 

represented by R∈EYe-1Ye-1. The degree of interrelation between 

nodes in different frames is represented by Ru,k, normalized to 

obtain the time attention matrix represented by R'∈EYe-1Ye-1. 

The calculation methods for its time-related matrix and time 

attention matrix are as follows: 
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In the context of laboratory safety education, the temporal 
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features of action sequences are crucial, as they can capture 

the sequence and duration of actions and identify key moments 

that might lead to accidents. The temporal attention 

mechanism can identify which time steps are crucial in 

performing safe operations, for instance, the change in 

temperature when heating chemicals or the specific moments 

when mixing reactants. By emphasizing the data of these 

critical moments, the model can be more focused on 

recognizing and interpreting actions that might lead to safety 

issues. Therefore, in this case, the normalized time attention 

matrix is applied directly to the input data of the current layer. 

That is, R'∈EYe-1Ye-1 is applied to the input data of the current 

layer, as follows: 
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Laboratory safety operations often involve a series of 

complex movements that unfold over time and contain 

important sequential information. Additionally, certain actions 

in safety education may require long preparation and 

procedural operations. Extended temporal convolution can 

better understand these dynamic changes and help the model 

capture these long-term dependencies, rather than just short-

term action sequences. Suppose the residual connection is 

represented by D, the input to the b-th layer of temporal 

convolution by db-1
IN, the set of convolutional kernels by Г, 

and the activation function by δ, the transformation formula 

for the output of the extended temporal convolutional network 

is given by: 

 

( )1 1,b b b

OUT IN m INd d D d− −

= +   (21) 

 

( ) ( )1 1

* *, b b

m IN m IND d d− − =    (22) 

 

 
 

Figure 4. Improved ST-GCN module architecture 
 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Analyzing the data in Table 1, we can observe the impact of 

different wavelet decomposition levels and threshold rules on 

the noise reduction of laboratory hazardous behavior data. 

Signal-to-Noise Ratio (SNR) is an indicator of signal quality, 

with a higher SNR generally indicating better signal quality. 

Mean Square Error (MSE) measures the deviation of predicted 

values from true values, with a lower MSE meaning higher 

prediction accuracy. The trends in SNR and MSE suggest that 

as the number of wavelet decomposition levels increases, the 

noise reduction effect overall improves, proving the 

effectiveness of wavelet threshold denoising in processing 

laboratory hazardous behavior data. To choose the most 

suitable threshold rule and wavelet decomposition level, it is 

evident that different combinations of rules and levels impact 

noise reduction differently and should be selected based on 

specific circumstances. For instance, the Rigrsure rule shows 

balanced and stable noise reduction performance as levels 

increase, indicated by improvements in both SNR and MSE. 

Thus, wavelet threshold denoising is effective in 

preprocessing laboratory hazardous behavior data. 

Appropriate selection of threshold rules and decomposition 

levels can significantly improve data SNR while reducing MSE. 

However, a balance between enhanced noise reduction 

performance and computational complexity must be found. 

Figure 5 shows the sample sets before and after processing 

by the adaptive boundary data augmentation algorithm. The 

upper image (before processing) shows two categories of data: 

one concentrated on the left side (marked in green), and the 

other distributed across the right side of the chart. In the upper 

image, the number of data points on the left is significantly 

less than those on the right, indicating a clear imbalance in the 

dataset. In the lower image (after processing), new samples 

(marked in red) have been added to increase the number of the 

left-side data category. These new samples are distributed 

around the original data points, maintaining the original 

distribution characteristics while increasing the data volume. 

This treatment increases the number of data points on the left, 

thus reducing the imbalance between categories. It can be 

concluded that the adaptive boundary data augmentation 

algorithm effectively mitigates data imbalance by increasing 

the number of minority class samples, while maintaining the 

characteristics of the original data distribution. This method is 

beneficial for improving machine learning model training, 

especially in balancing hazardous behavior data in laboratory 

safety education, contributing to the accuracy of hazardous 

behavior recognition. 

Behaviors 1-8 in Table 2 represent eight hazardous 

behaviors: not wearing personal protective equipment, 

incorrect equipment operation, incorrect posture, not closing 

containers, crowded work spaces, presence of food and 

beverages, dangerous chemical handling, and lingering in 

hazardous areas. Analyzing the results in Table 2 for 

hazardous behavior pattern recognition in different laboratory 

scenarios, model performance is assessed by observing Recall 
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Rate (R), Precision Rate (P), and F1 Score. For Test Set A, the 

model shows relatively high recall rates, precision rates, and 

F1 scores for all behavior patterns, with most indicators above 

90%, especially for Behaviors 2, 3, 4, 5, 6, and 7, where F1 

scores exceed 97%. For Test Set B, the model exhibits 

significant variations in recognition performance across 

different behavior patterns. Particularly, Behaviors 1 and 2 

have relatively lower recall and precision rates, with Behavior 

1 having the lowest F1 score of 67.45% among all patterns. 

However, Behavior 3 achieves a 100% recall rate, and 

Behaviors 5, 7, and 8 have F1 scores over 90%, indicating that 

the model still maintains high recognition effectiveness in 

certain behavior patterns. The results from Test Sets A and B 

suggest that the improved ST-GCN model may exhibit 

fluctuating recognition performance in different scenarios but 

overall demonstrates good performance, effectively 

recognizing hazardous behavior patterns in laboratories. Some 

behavior patterns show reduced recognition performance in 

Test Set B compared to Test Set A, possibly due to the 

complexity of the scene, difficulty of behavior patterns, or 

coverage of training samples. It can be concluded that the 

laboratory safety education hazardous behavior recognition 

method proposed in this paper, based on the improved ST-

GCN model, demonstrates good performance in two different 

test sets, especially excelling in Test Set A. Despite some 

decrease in recognition of certain behavior patterns in Test Set 

B, the overall recognition effect remains stable, indicating the 

model's robustness and generalization capability. Therefore, 

the model can be considered an effective tool for enhancing 

the recognition and classification of hazardous behaviors in 

laboratory safety education. 

 

Table 1. Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) under different wavelet decomposition levels and threshold 

rules 

 

Threshold 

Rule 

Wavelet Decomposition Levels (SNR/MSE(×10-2)) 

1 2 3 4 5 6 7 8 9 10 

Rigrsure 
54.12 57.85 60.12 62.35 64.58 65.24 65.87 65.12 65.24 65.89 

1.42 0.68 0.38 0.22 0.16 0.13 0.13 0.13 0.13 0.13 

Heursue 
54.36 57.66 60.14 62.55 62.39 61.22 65.87 65..23 65.87 65.12 

1.31 0.68 0.37 0.22 0.16 0.14 0.13 0.13 0.13 0.13 

Sqtwolg 54.28 57.42 60.23 62.59 64.51 63.87 63.25 63.12 63.45 63.89 

63.2 1.29 0.67 0.37 0.22 0.17 0.17 0.21 0.23 0.28 0.28 

Minimacxi 
54.78 54.12 57.63 60.23 63.58 63.47 64.21 64.25 64.33 64.21 

1.31 0.69 0.37 0.21 0.15 0.14 0.14 0.18 0.21 0.21 

 

Table 2. Performance evaluation of hazardous behavior pattern recognition in different laboratory scenarios 

 
Test Set Sample Number Behavior Pattern Recall Rate R Precision Rate P F1 Score 

Test Set A 2563 

Behavior 1 92.11% 97.89% 98.99% 

Behavior 2 99.04% 99.04% 99.06% 

Behavior 3 97.88% 98.25% 98.36% 

Behavior 4 97.82% 97.56% 97.46% 

Behavior 5 98.78% 94.10% 98.73% 

Behavior 6 96.32% 95.14% 98.36% 

Behavior 7 98.64% 97.56% 97.46% 

Behavior 8 99.12% 92.32% 94.67% 

Test Set B 2651 

Behavior 1 62.35% 72.58% 67.45% 

Behavior 2 64.23% 95.36% 78.23% 

Behavior 3 100% 73.77% 84.23% 

Behavior 4 93.68% 80.69% 88.99% 

Behavior 5 89.14% 98.62% 98.26% 

Behavior 6 91.24% 92.47% 91.02% 

Behavior 7 93.44% 96.37% 95.77% 

Behavior 8 92.74% 90.87% 92.97% 

 

 
 

(1) Before balancing treatment (2) After balancing treatment 

 

Figure 5. Sample sets before and after processing by the adaptive boundary data augmentation algorithm 
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Figure 6. Recall rates for behavior recognition by the model 

 

 
 

Figure 7. Precision rates for behavior recognition by the model 
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From Figure 6, it is observed that the model exhibits high 

recall rates for all categories of hazardous behaviors, 

indicating its strong performance in recognizing most of these 

behaviors. The recall rate for Behavior 3 is as high as 97.6%, 

for Behavior 2 it is 94.2%, and for Behavior 4, 93.4%. 

However, some categories, particularly Behaviors 5 and 8, 

have relatively lower recall rates, at 77.0% and 72.3% 

respectively. This suggests that the model's effectiveness in 

recognizing these two types of behaviors is somewhat inferior 

compared to other categories. Figure 7, also a confusion matrix, 

focuses on displaying the precision rates (Positive Predictive 

Value, PPV) and false discovery rates (FDR) for different 

categories of behavior recognition. In classification problems, 

precision rate measures how many of the predictions identified 

as a particular class are correct, while the false discovery rate 

measures the proportion of incorrect identifications for that 

class. From Figure 7, it is understood that the values on the 

diagonal represent the precision rates for each behavior 

category. For example, the precision rate for Behavior 3 is 

95.4%, for Behavior 2 it is 93.9%, and both Behaviors 6 and 7 

have precision rates above 90%, at 90.2% and 90.4% 

respectively. This indicates that the model’s predictions are 

highly accurate for these categories; when the model identifies 

a behavior as belonging to these categories, it is likely correct. 

It can be concluded that the laboratory safety education 

hazardous behavior recognition model proposed in this paper 

shows high precision rates in most categories, especially in 

recognizing Behaviors 3, 2, 6, and 7. However, the precision 

rates for Behaviors 5, and particularly for Behavior 8, need 

improvement. Enhancing recognition of these behaviors may 

involve adjustments to the model structure or further 

optimization of training data. Overall, the precision rates of 

this model demonstrate its effectiveness and practicality, 

especially in the application within the field of laboratory 

safety education. Nonetheless, optimizing the model to further 

improve precision rates is crucial for enhancing hazardous 

behavior recognition. 

 

 
 

Figure 8. Accuracy and macro average F1 values of different 

recognition models 

 

Figure 8 lists the performance evaluation results of five 

different behavior recognition models—Random Forest (RF), 

Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM) networks, 

and the model proposed in this paper, in terms of macro 

average F1 value and accuracy. The proposed model surpasses 

the RF, CNN, RNN, and LSTM models in both macro average 

F1 value and accuracy. It not only shows the best overall 

accuracy but also achieves a good balance among different 

categories, which is critically important in practical 

applications, as it indicates the model's balanced recognition 

capability across all categories. 

Figure 9 demonstrates the model's minimum classification 

error on different numbers of samples in laboratory safety 

education hazardous behavior recognition, evaluating the 

impact of increasing training samples on classification error. 

With a lower data volume, the model can achieve smaller 

classification errors, showing its excellent learning capability 

and adaptability. When the data volume increases to a certain 

amount, improvement of the model gets gradual, and this may 

suggest that the model has reached its peak learning ability, or 

the extra data does not provide enough new information to 

further enhance the performance of the model. After that, the 

model shows further performance improvement with a larger 

data volume, indicating its ability to learn from more data and 

strengthen its generalization ability. In this way, the proposed 

model reaches lower minimum classification errors on datasets 

of various sizes and shows stability and improvement in 

performance with more data. These results prove that the 

proposed model’s potential of being used as a useful tool in 

laboratory safety education, and it can help institutions more 

accurately identify and prevent potential hazardous behaviors, 

thereby improving the overall safety levels. 

 

 
 

Figure 9. Analysis of model errors 

 

 

6. CONCLUSION 

 

This study centers on using and optimizing machine 

learning techniques to enhance the recognition of hazardous 

behaviors in laboratory safety education. In the beginning, this 

paper discussed the noise problem with the data of laboratory 

hazardous behaviors and adopted wavelet threshold denoising 

methods to pre-process the raw data. This method can 

effectively improve data quality, and had laid a good 

foundation for subsequent model training and analysis. Then, 

this paper tackled the data imbalance problem, a common 

challenge in machine learning, especially in the field of safety 

education, through the introduction of an adaptive boundary 

data augmentation algorithm, in this way, the dataset had been 

balanced, an even representation of each behavior pattern in 

the model training had been ensured, and the model's ability to 

recognize minority classes had been enhanced. After that, this 

paper improved the ST-GCN model to construct spatio-

temporal graphs of laboratory hazardous actions, and our 
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innovative approach enables the model to accurately extract 

spatio-temporal features and achieve efficient hazardous 

behavior recognition and classification. An evaluation of the 

comprehensive performance shows that our proposed model 

outperformed conventional machine learning methods and 

some existing deep learning models (such as RF, CNN, RNN, 

and LSTM) in terms of macro average F1 value and accuracy. 

These results can demonstrate the effectiveness and 

superiority of the proposed model in fulfilling the task of 

laboratory hazardous behavior recognition. At last, by 

analyzing the classification errors attained based on datasets 

of different sizes, we can see that the proposed model achieved 

a low error rate with sufficient training samples and showed 

stability and improvement in its performance as the sample 

size increased, verifying its good generalizability and 

practicality. 

Findings of this study are of high practical application value 

in the field of laboratory safety education. Via effective 

preprocessing of data, discussing the issue of data imbalance, 

and using the improved ST-GCN model to accurately extract 

spatio-temporal features, the proposed method shows obvious 

advantages in recognizing laboratory hazardous behaviors, 

and it provides a new solution for laboratory safety 

management, helping to reduce the occurrence of safety 

accidents and protect the safety of laboratory personnel. 
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