
Enhancing Drowning Surveillance with a Hybrid Vision Transformer Model: A Deep 

Learning Approach 

Yingying Zhang1 , Yancheng Li2 , Qiang Qu3 , Huai Lin2 , Dewen Seng2*

1 College of Entrepreneurship, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China 
2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China  
3 Chemical, Mineral and Petroleum Laboratory, Zhanjiang Customs Technology Center, Zhanjiang 524022, China  

Corresponding Author Email: sengdw@hdu.edu.cn

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.400647 ABSTRACT 

Received: 8 July 2023 

Revised: 26 October 2023 

Accepted: 3 November 2023 

Available online: 30 December 2023 

Annually, drowning claims the lives of approximately 372,200 individuals worldwide, 

averaging 40 fatalities per hour. In response, various technological advancements have been 

explored, including deep learning-based video and image processing, and wearable devices 

integrated with human pulse sensors and Light emitting diode (LED)/Liquid-crystal display 

(LCD) technologies. Despite these efforts, existing solutions have yet to fully address the 

challenge of accurate drowning detection. This study introduces a novel approach, 

leveraging a hybrid model that combines a traditional Vision Transformer (ViT) with plain 

Convolutional Neural Networks (CNNs). This model demonstrates a notable accuracy of 

91.5% on a specialized dataset comprising 14,736 images of swimming and drowning 

scenarios, surpassing conventional methods in efficiency and size. In contrast to larger 

models like Swin-B, which comprises 88M parameters and achieves a marginally higher 

accuracy of 92.3%, the proposed model maintains high performance with only 5.9M 

parameters. The model's development involved pre-training on the ImageNet1K dataset, 

followed by fine-tuning using the specifically curated local dataset. The resultant system 

offers a cost-effective, efficient, and compact solution for drowning detection, suitable for 

various applications. This advancement in drowning surveillance technology highlights the 

potential of integrating ViT with CNNs in creating effective, resource-efficient models for 

critical real-world applications.  
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1. INTRODUCTION

The persistent challenge in drowning detection has been 

acknowledged as an unsolved issue in public safety [1], 

predominantly due to the prohibitive costs associated with 

existing methodologies. The primary objective of this study is 

the development of a cost-effective and feasible solution. This 

paper introduces a novel method characterized by its reduced 

parameter size of 5.9M and an accuracy rate of 91.5% on a 

locally sourced dataset. This method employs a deep learning 

approach, specifically utilizing the ViT model [2]. Prior to 

delving into the specifics of this approach, it is imperative to 

evaluate the limitations and benefits of the currently prevalent 

methods in drowning detection. 

In this case, two primary categories of methods are 

identified: wearable equipment-based approaches and 

computer vision-based techniques. Wearable equipment 

methods, while boasting high accuracy (near 100%) and a low 

rate of false positives due to their mechanical nature, are 

significantly hindered by their cost implications. The efficacy 

of this approach is contingent upon each swimmer in a pool 

being equipped with the requisite electronic device, leading to 

a cost escalation proportional to the number of swimmers. 

Conversely, computer vision methods, while less financially 

burdensome in terms of equipment, incur substantial 

computational costs, primarily due to the need for substantial 

Graphics Processing Unit (GPU) resources. 

Wearable equipment methods guarantee virtually risk-free 

swimming environments provided that all individuals in the 

pool comply with the equipment usage [3]. This method's 

reliance on individual compliance poses a logistical challenge, 

alongside the escalating costs with increasing user numbers. 

The study aims to address these concerns by proposing a 

method that mitigates the cost and resource limitations of 

existing approaches. 

The advent of computer vision methods, a relatively recent 

development in the field, predominantly leverages machine 

learning and deep learning techniques for drowning detection. 

This includes approaches like Gaussian mixture models [4], as 

well as deep learning-based methods such as Mask R-CNN [5] 

and BR-YOLOv4 [6]. A notable shift towards computer vision 

methods in drowning detection research is observed. An 

analysis via Google Scholar, using 'drowning detection' as a 

keyword with a filter for publications post-2023, yielded 1,870 

results, with over 1,000 relating specifically to computer 

vision approaches. This trend underscores the increasing 

prominence of deep learning in the domain of drowning 

surveillance. Two primary factors contribute to the 
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ascendancy of deep learning in drowning detection. Firstly, the 

inherent efficacy and versatility of computer vision as a tool 

are undeniable. Secondly, the field of computer vision is 

marked by rapid advancements, with new and more potent 

methodologies being reported regularly. Such continual 

progress offers substantial opportunities for enhancing the 

effectiveness, speed, and precision of drowning detection 

systems. 

The benefits of employing computer vision methods in 

drowning detection are twofold. One significant advantage is 

cost-effectiveness. The expense associated with deploying 

computer vision-based systems is primarily dependent on the 

size of the swimming area and the number of pools, rather than 

the number of swimmers. This feature ensures that costs do 

not escalate disproportionately with increased user numbers. 

Furthermore, computer vision methods offer modular 

flexibility, allowing for algorithmic or model adjustments 

contingent on the capabilities of the existing hardware 

infrastructure. In stark contrast, wearable equipment methods 

lack such adaptability, as any modifications post-manufacture 

are not feasible. 

However, the application of computer vision methods is not 

without its drawbacks, which can be broadly categorized into 

two areas. The first pertains to the escalating costs and 

complexity associated with advanced GPUs. The increasing 

integration and sophistication of GPUs, coupled with the rising 

complexity and parameter count of contemporary models, 

present significant financial challenges. These factors often 

preclude laboratories, companies, and individuals from 

training their own models due to budget constraints in 

acquiring advanced GPUs. The second limitation lies in the 

accuracy of these methods. Even the most advanced models in 

the field of computer vision, such as the Swin-L model, 

struggle to surpass a 95% accuracy threshold, with most 

models' accuracy ranging between 90% and 94%. In the 

context of drowning detection, where accuracy equates to 

human lives, even a minor shortfall in detection capability can 

have grave consequences. This concern underpins the critical 

need for improvements in this domain. 

This paper presents three key contributions to the field of 

drowning detection. Firstly, a hybrid ViT model is introduced, 

which requires a low computational budget and achieves an 

accuracy of 91.5% on a locally curated dataset. Secondly, the 

paper details a novel approach named Multiple Windows 

Surveillance Drowning Detection (MWSDD). This method 

employs multiple surveillance windows to monitor a single 

area, enhancing the accuracy of the detection system. This 

concept parallels the principle of distributed computing, where 

multiple low-powered units combine to form a highly capable 

system. Further elaboration on this method is provided in 

Section 3. Thirdly, a strategic integration of human oversight 

with the drowning detection system is proposed. This synergy 

aims to mitigate the risks associated with potential lapses in 

automated detection, thereby enhancing overall safety and 

reliability. 
 

 

2. RELATED WORKS 
 

2.1 ViT 

 

The ViT was adapted from the Transformer architecture, 

initially proposed by Vaswani et al. for the field of natural 

language processing [7]. The original ViT maintains the 

fundamental architecture of the Transformer, with 

modifications made primarily to accommodate image inputs. 

In this adaptation, images are segmented into fixed-size 

patches, each linearly embedded and augmented with 

positional embeddings. This process is executed using a 

single-layer CNN equipped with a fixed-size, learnable 

convolution kernel. Despite these modifications, the core 

components of the ViT architecture closely mirror those of the 

original Transformer. However, the integration of a learnable 

CNN network in ViT has been associated with potential 

training instabilities, as elaborated in literature [8]. 

ViT has been recognized for its effectiveness and utility in 

various computer vision tasks, with several variants emerging 

as state-of-the-art models. Notwithstanding their capabilities, 

these advanced models often entail substantial resource 

demands, particularly in terms of time, computational power, 

and GPU memory. For instance, training a ViT-huge model 

from scratch necessitates approximately 2,500 TPUv3-core-

days for pre-training, rendering it prohibitively expensive for 

most research laboratories. To mitigate the high resource 

requirements of ViT models, this study references the 

approach used in LeVit [9], incorporating plain CNNs and 

pooling layers. This adjustment reduces the number of 

transformer blocks in the ViT model, thereby decreasing both 

the parameter count and model size while maintaining stable 

accuracy. Furthermore, patch projection layers in the ViT are 

substituted with plain CNNs and pooling layers, enhancing the 

model's pre-training stability [8].  

Figure 1 illustrates a comparative analysis of the structural 

differences among the original ViT, MoCo v3, and the 

proposed model.  

It is observed that the increasing complexity and size of 

deep learning models present significant financial barriers, 

limiting their accessibility to well-funded organizations and 

research entities. As deep learning technology advances, the 

trend towards larger models with increasing parameter sizes 

continues, necessitating the development of more accessible 

and efficient alternatives. 

 

 
 

Figure 1. Model structure comparison between original ViT, 

MoCo v3 and our model 

 

2.2 MoCo v3 

 

MoCo v3, a variant of the ViT model, is documented in 

literature [8]. This model, based on ViT-L, has achieved an 

accuracy of 84.1% on ImageNet-1K and has contributed 

significantly to the understanding of training instabilities in 

ViT models. The integration of MoCo v3 principles is aimed 

at enhancing both the stability and accuracy of the proposed 

model. The fundamental issue in the stability of ViT models 
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has been identified as the learnable patch projection layer. 

MoCo v3 addresses this by replacing the learnable layer with 

a fixed, random patch projection layer. To elaborate, the patch 

projection layer in question is a CNN layer with a 768×16×16 

convolution kernel. This kernel is capable of compressing a 

16×16 image into a singular patch while increasing the channel 

layers to 768. The hypothesis posited is that the substantial size 

of the learnable convolution kernel contributes to the training 

instability. Drawing inspiration from MoCo v3, a modification 

is introduced to the ViT models by segmenting the large kernel 

into smaller units. This adaptation has not only resolved the 

stability issues but has also resulted in an incremental 

improvement in accuracy. 

Figure 1 presents a detailed comparison between the 

structural elements of the proposed model and other existing 

models, highlighting the modifications and their implications 

in terms of stability and performance. 
 

2.3 LeViT 
 

The LeViT model, another variant of the ViT, is explored in 

literature [9]. It stands out for achieving an accuracy of 87.6% 

on ImageNet-Real. The structure of the LeViT model is 

particularly notable; it integrates additional convolutional 

layers before the ViT segment. This integration has been 

observed to significantly enhance accuracy, especially in 

smaller-scale models or scenarios where transformer blocks 

have limited data for learning. The functionality of the LeViT 

model aligns closely with the objectives of this research, 

which prioritizes the development of a compact model that 

maintains relatively high accuracy. 
 

2.4 Related models 
 

Various methods in the realm of deep learning for computer 

vision have been explored in papers [10, 11], each presenting 

different approaches. A commonality among these methods is 

their primary focus on improving accuracy. However, the 

focus of this research diverges from this trend, emphasizing 

the necessity of finding a balance between cost and accuracy. 

The aim is to develop a model that not only achieves high 

accuracy but also remains accessible and affordable, 

addressing a gap in the current landscape of drowning 

detection technologies. 

 

 

3. PROBLEMS AND METHODS 

 

3.1 Problems 

 

In the initial phase of this research, two primary challenges 

were encountered. The first challenge involved reducing 

operational costs while maintaining, or ideally improving, the 

accuracy of the drowning detection system. The second 

challenge was to establish a reliable contingency plan for 

situations where the detection system might fail, ensuring 

timely rescue of individuals at risk of drowning. Solutions to 

these challenges have been systematically addressed: the first 

challenge is resolved through the methodologies detailed in 

Sections 3.2 and 3.3, while the second challenge is addressed 

in Section 3.4. 

 

3.2 Method and model 

 

In contrast to existing methods, an image classification 

approach, as opposed to object detection, was employed in this 

study. This decision broadened the range of applicable models, 

offering advantages in terms of speed, training efficiency, and 

potentially higher accuracy. 

 

 
 

Figure 2. The main structure of our model 

 

 
 

Figure 3. Details of convolution layers and pooling layers 
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A thorough comparison with prevalent backbone models 

such as Swin Transformer, DeiT, R-50, and R-100 was 

conducted. The original ViT model was ultimately selected as 

the backbone for its simplicity and efficiency. The Swin 

Transformer, though robust, was deemed excessively large 

and inflexible for scale adjustments. DeiT's complexity and 

size exceeded the desired compactness of the study's model. 

While the traditional CNNs like R-50 demonstrated 

commendable performance, a comparative analysis revealed 

that a pre-trained R-50 achieved 91.6% accuracy with 27M 

parameters. In contrast, the proposed model, inspired by 

MoCo v3 and LeViT, attained a comparable 91.5% accuracy 

with only 5.9M parameters, signifying a substantial reduction 

in computational resource requirements. 

The model's architecture is influenced by MoCo v3, 

wherein four smaller convolution layers and three pooling 

layers were integrated to replace the original 768×16×16 

convolution kernel. This modification was aimed at resolving 

ViT's training instability and enhancing accuracy. 

Additionally, LeViT inspired the detailed design of these 

convolution layers. The concept involved bundling two 

convolution layers into a single unit, resulting in two bundled 

layers. Each of these layers contains two convolution layers 

devoid of residual links [12], equipped with learnable 3×3 

convolution kernels. To maintain the input size stability, 

padding was utilized during convolution computations. 

Further specifics of this layered structure can be found in 

Figures 2 and 3. Integrating this convolution layer structure 

into the original ViT significantly improved accuracy for 

smaller ViT models. These models exhibit faster training and 

response times with only a slight compromise in accuracy, 

aligning with the project's objectives. 

 

3.3 MWSDD 

 

The implementation of the MWSDD system prompted a 

critical examination of potential blind spots in surveillance 

coverage. A notable issue identified was the presence of blind 

splits at the borders between two adjacent monitoring areas 

when utilizing a single camera per area. These splits could 

potentially result in the MWSDD system failing to detect 

swimmers in distress if they were located precisely at these 

border areas. To address this challenge and enhance the 

system's reliability, an overlapping strategy was adopted. 

Specifically, a 50% overlap of the visual field between 

neighboring cameras was implemented, effectively 

eliminating blind splits. This approach not only rectifies the 

initial flaw but also establishes a double-check security 

mechanism, significantly improving the accuracy of the 

MWSDD system. For a detailed illustration of this overlapping 

technique and its benefits, refer to Figures 4 and 5. It is 

important to note that increasing the overlap area further could 

yield higher accuracy, albeit at an increased cost.  

Figure 4 presents a comparative visualization of 

surveillance coverage in a swimming pool. The left image 

depicts the original swimming pool without any camera 

surveillance, serving as a baseline for comparison. The right 

image illustrates the same pool monitored by 16 cameras. Here, 

the distribution of the cameras and their individual fields of 

vision are delineated, clearly highlighting the blind splits 

located at the borders of each camera's monitoring range. 

These blind splits are critical areas where the MWSDD 

system's effectiveness is compromised, as they represent zones 

potentially missed by the surveillance network, MWSDD 

system, showcasing a significant advancement in drowning 

detection surveillance. 

 

 
 

Figure 4. The blind zone of cameras without MWSDD 

mechanism 

 

 
 

Figure 5. Details of MWSDD mechanism 

 

Figure 5 provides a visual comparison to demonstrate the 

enhancement in surveillance coverage. Left image depicts the 

original swimming pool without surveillance for baseline 

reference. The right image shows the same pool equipped with 

32 cameras, each designed to have a 50% overlap in the field 

of vision with the camera to its left. This configuration 

effectively addresses the issue of blind splits, as illustrated in 

Figure 4, by ensuring continuous and comprehensive 

monitoring coverage across the pool. The overlapping strategy 

depicted here is integral to the improved functionality and 

accuracy of the MWSDD system.  

 

3.4 Combination of system and human 

 

This section addresses a critical limitation of the MWSDD 

system: its inability to achieve 100% accuracy. It is recognized 

that reliance solely on the MWSDD system could result in 

missed detections, potentially leading to fatal drowning 

incidents, an outcome that is imperative to avoid. To mitigate 

this risk, an integrated approach combining the MWSDD 

system with human oversight has been developed. 

The proposed strategy involves a multi-tiered alarm process, 

supplemented by human surveillance. Initially, when the 

MWSDD system identifies a potential drowning incident, an 

alarm is triggered, and a designated staff member is tasked 

with immediately alerting a lifeguard. In instances where the 

system briefly detects a potential drowning but then returns to 

a normal state, the staff member is required to conduct a 

thorough review of all monitored areas to confirm the absence 

of any ongoing distress. Additionally, as a routine precaution, 

all monitors are to be systematically checked by the staff at 

three-minute intervals. This integrated approach of 
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technological surveillance and human vigilance significantly 

reduces the likelihood of drowning incidents. The 

implementation of this system requires only two staff 

members per swimming pool to maintain continuous and 

effective monitoring. 

 

 

4. EXPERIMENT 

 

4.1 Experiment setup 

 

The specifics of the hardware setup utilized in this study are 

delineated in Table 1. The experiment was conducted using the 

timm PyTorch library [13] as the primary codebase. For 

accessing pre-training datasets, the PyTorch Datasets library 

was employed. 

 

Table 1. Hardware implementation 

 
Components Implementations 

CPU AMD Ryzen 7 5800X 8-Core Processor 

GPU NVIDIA GeForce RTX 3070 8GB 

MEMORY 32GB 

 

4.2 Datasets and metrics 

 

Medium-scale image datasets were selected for the pre-

training of models. These include ILSVRC-2012 (ImageNet-

1k), Oxford-IIIT-Pets [14], CIFAR-100 [15], Oxford Flowers-

102 [16]. The decision to utilize medium-scale datasets, as 

opposed to larger ones, was based on a balance between 

dataset size and pre-training time. Larger datasets, such as 

ImageNet-21k and JFM, were deemed prohibitively time-

consuming for the purposes of this research. ImageNet-1k 

comprises approximately 1.3 million training images across 

1000 object categories, while ImageNet-21k contains around 

14 million images in approximately 21,000 distinct object 

categories [17]. 

 

Table 2. Swimming and drowning datasets details 

 
Classes Size Split Strategies 

Total 14,736 80% test, 20% validate 

Swimming 7,235 80% test, 20% validate 

Drowning 387 80% test, 20% validate 

Out of pool 4,351 80% test, 20% validate 

Diving 2,763 80% test, 20% validate 

 

For dataset division, the methodology outlined in literature 

[13] was adhered to. The primary metric for evaluating model 

performance is top-1 classification accuracy. For the fine-

tuning phase, a local dataset consisting of roughly 14,736 

images depicting various activities such as swimming, 

drowning, poolside scenes, and diving was curated. Following 

standard dataset splitting strategies, 80% of this dataset was 

used for training and 20% for validation (see Table 2). 

 

4.3 Model selection 

 

The focus of this section is the selection and comparative 

analysis of different models. Table 3 displays the chosen 

models along with their top-1 accuracy on pre-training 

datasets. The model selected for this study is ViT-Ti16, 

incorporating the modifications detailed in Section 3. All 

models were pre-trained using images resized to 224×224 

pixels. 

 

Table 3. Configurations, param and top-1 accuracy on ImageNet-1k 

 
Model Param. ImageNet-1k Top-1 acc.% Oxford-IIIT-Pets CIFAR-100 Oxford Flowers-102 

ViT-Ti16 5.8M 67.7 88.2 86.2 98.3 

ViT-B16 86M 76.6 95.8 91.9 99.6 

R-50 27M 77.3 91.1 86.1 94.0 

Swin-T [18] 29M 79.4 94.3 95.8 99.2 

Swin-B [18] 88M 81.2 97.2 97.0 99.7 

DeiT-S [19] 22M 77.8 95.9 95.3 99.1 

Ours 5.9M 75.8 94.1 92.5 99.1 

 

4.4 Pre-training and fine-tuning 

 

 
 

Figure 6. Top-1 accuracy achieved on ImageNet-1k 

The methodology for pre-training and fine-tuning aligns 

with the practices established in literature [13], with 

adaptations made to accommodate the specific hardware setup 

used. Pre-training was conducted using the Adam optimizer 

[20], with β1 set at 0.9 and β2 at 0.999. Batch sizes varied in 

accordance with GPU memory constraints, and a cosine 

learning rate schedule was employed, incorporating a 10,000-

step linear warmup. Random horizontal flipping was used for 

image preprocessing. On the ImageNet-1k dataset, models 

were trained over 300 epochs. Fine-tuning involved the use of 

SGD with a momentum of 0.9, exploring various learning rates 

and training durations for each dataset. 
 

4.5 Fine-tuning result 
 

All pre-trained models were fine-tuned using the curated 

dataset of drowning and swimming images. Upon stabilization 

of the accuracy curve, the backbone module of each model was 

frozen, with focus shifted solely to training the output module, 

specifically the MLP heads, to enhance performance. Figure 6 

presents the results of the pre-trained models post fine-tuning 
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with the drowning and swimming images dataset. Detailed 

top-1 accuracy figures for these results are provided in Table 

4. 

 

Table 4. Models’ accuracy, precision and recall rate after 

fine-tuning 

 

Model Param. 
Top-1 

acc.% 

Precision. % Recall. % 

ViT-Ti16 5.8M 86.7 80.3 86.5 

ViT-B16 86M 89.6 85.7 90.2 

R-50 27M 91.6 94.1 90.7 

Swin-T 29M 90.4 93.5 91.2 

Swin-B 88M 92.3 95.5 92.8 

DeiT-S 22M 91.3 89.4 92.2 

Ours 5.9M 91.5 92.8 90.9 

 

A notable observation is the optimal balance between 

accuracy and cost achieved by the proposed model. Analysis 

of the results reveals intriguing insights. The largest model, 

Swin-B, excels across various metrics, including top-1 

accuracy, precision, and recall rates. This performance aligns 

with the design intent of Swin Transformer, which integrates 

the strengths of both ViT and CNN models [21]. However, the 

ViT-B16 and ViT-T16 models display relatively lower 

performance, particularly in terms of precision. This is 

hypothesized to stem from the original ViT models' limited 

local information processing capabilities, adversely affecting 

their precision. The recall rates of these models partially 

corroborate this hypothesis. 

 

4.6 MWSDD testing result 

 

Due to resource constraints, including the unavailability of 

a swimming pool and limited budget for hardware, the 

effectiveness of the MWSDD system was simulated using two 

identical cameras. These cameras were positioned to capture 

video footage in a swimming pool, with their angles set to 

create a 50% overlap in the filming area, as described in 

Section 3. This simulation ran for two hours daily over a span 

of 20 days. During this period, only seven drowning incidents 

were recorded. These videos were processed and used to fine-

tune the proposed model, resulting in an increase in accuracy 

to 93.2%. 

The limited improvement in accuracy through the MWSDD 

method was anticipated. Two possible explanations are 

proposed: first, the scarcity of data for training the model; 

second, the majority of drowning images in the fine-tuning 

dataset were already correctly identified, suggesting that the 

primary barrier to accuracy enhancement lies in other aspects 

of the dataset. A review of the dataset confirmed that 361 out 

of 387 drowning images were accurately identified. 

An interesting observation during the experiment was the 

necessity for models associated with each camera to begin 

with the same well-pre-trained parameters but subsequently 

undergo fine-tuning with data specific to each camera. This is 

attributed to the unique video data each camera captures; 

despite a 50% overlap in the filming area, each camera still 

records 50% unique footage. 

In terms of further research and model enhancement, three 

avenues are identified: (i) conducting additional experiments 

to ascertain the optimal number of plain CNN layers and 

pooling layers; (ii) incorporating methodologies from other 

research, such as distillation or self-supervised training; (iii) 

refining hyper-parameters for improved performance. 

5. CONCLUSION 

 

This study has contributed to the field of drowning detection 

by developing a hybrid ViT model and introducing the 

MWSDD method to enhance system accuracy. The research 

addressed two primary concerns: the balance between cost and 

efficiency of the model, and the provision of an effective 

drowning detection system. 

Two key innovations were presented. First, a simplified, 

compact yet efficient model was developed, achieving a 

91.5% accuracy on a specialized swimming and drowning 

dataset, compared to the 89.6% accuracy of the ViT-B16 

model. This was accomplished by integrating plain CNNs and 

pooling layers to replace the patch projection layers of the 

original ViT, significantly reducing the model's parameter 

size. Second, the MWSDD method was proposed, leveraging 

an overlapping field of view between adjacent cameras to 

improve accuracy. 

The applications of the MWSDD technique and the hybrid 

ViT model are anticipated to be particularly beneficial for 

small and medium-sized swimming pools, local government 

facilities, and private pool owners. These entities, seeking 

cost-effective yet reliable drowning detection solutions, may 

find these innovations especially relevant. 

In summary, this research not only addresses the urgent 

need for improved drowning detection but also offers practical 

solutions that balance performance with resource constraints. 

The advancements made here open avenues for further 

exploration in enhancing safety measures in aquatic 

environments. 
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