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The main aim of our study is to estimate the temporal stability and assess the prognostic 

performance of radiomic features extracted from lung computer tomography (CT) images. 

We have considered the Lung CT diagnosis dataset for our work which contains 61 patients 

identified with lung adenocarcinoma cases. In this work, we have segmented 284 nodules 

by applying the random walk ensemble segmentation technique, and thirty- eight radiomic 

features were extracted from the segmented nodule region. These features include 19 gray-

level co-occurrence (GLCM)-based features and 7 gray-level run length matrix (GLRLM)-

based features, 12 histogram-based features. Later, the temporal stability was explored by 

considering Intra-class correlation coefficients (ICC) between features extracted from 

segmented nodule regions using our proposed segmentation technique and the segmented 

ground truth images provided by radiologists in the LungCT-Diagnosis dataset publicly 

available in The Cancer Imaging Archive (TCIA). The prognosis performance of features 

with temporal stability was assessed based on the Kaplan-Meier survival analysis. It has 

been observed that 16 radiomic features exhibited temporal stability, and seven temporally 

stable features have a statistically strong prognostic association with patient survival. This 

work explores the temporal stability and prognostic power of radiomic features using 

survival analysis to achieve optimum treatment planning at an early stage of diagnosis in 

lung adenocarcinoma cases.  
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1. INTRODUCTION

1.1 Lung cancer and its impact 

Lung cancer is the most dangerous cancer in the world. 

According to the International Agency for Research on Cancer 

2020, lung cancer is the primary cause of death related to 

cancer worldwide [1]. It has been observed that most causes of 

death in the United States of America are due to lung cancer. 

Figure 1 shows the cancer statistics reported by the global 

cancer statistics, which estimated 11.4% new lung cancer 

cases and reported 18% highest mortality rates of lung cancer 

compared to other cancers [2]. Lung cancer is further 

classified into two types where 80% to 85% of lung cancer is 

non-small cell lung cancer (NSCLC), and 10% to 15% of types 

of lung cancer are small-cell lung cancer [3]. The NSCLC is 

further segregated into adenocarcinoma, large-cell carcinoma, 

and squamous cell carcinoma. Adenocarcinoma is the most 

commonly occurring histologic subtype of non-small cell lung 

cancer [4]. It has been reported that patients diagnosed with 

lung adenocarcinoma have the worst survival compared with 

the subtypes of the NSCLC.  

The main goal of lung cancer therapy is to provide optimal 

personalized treatment for a patient based on the behavioral 

changes of their disease. Accurate radiological assessment is 

an essential outcome in clinical practices and treatment 

planning. The primary indication of lung cancer is a nodule or 

tumor located inside or attached to the pleural wall of the lung. 

This infected region may have uneven growth, and there might 

be a chance of an increase in its size. Even though various 

treatment options are available, such as chemotherapy, surgery, 

and radiotherapy, the 5-year survival rate is relatively low [5].  

1.2 Image modalities for lung cancer diagnosis 

Over a few decades, extensive utilization of non-invasive 

process that involves imaging tools which have played a vital 

role in diagnosing various diseases, and different modalities 

were developed, such as Computer Tomography (CT), 

Magnetic resonance imaging (MRI), and positron emission 

tomography (PET) to help the radiologist in diagnosing lung 

cancer at its early stage. Out of these modalities, CT has been 

identified as a standard modality in detecting lung cancer at an 

early stage. It has been observed that the visual interpretation 

of medical images that aids the clinicians alone may not 

provide an efficient curative treatment at an early stage of 

diagnosis, which in turn may not yield an optimum survival 

and also observed a high probability of re-occurrence rate. 

Therefore, it is essential to derive and explore the prognostic 

and temporal stability of radiomic features to yield an 

optimum survival analysis. 
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1.3 Radiomics in lung cancer research 

 

Most of the research has been carried out in detecting and 

classifying lung tumors using image processing; on the other 

hand, many researchers have focused on developing CT-based 

quantitative prognostic image biomarkers derived from 

segmented regions of the tumor. These works have identified 

that these quantitative features have great potential for 

predicting survival outcomes of patients with lung cancer [6-

9] and can build a powerful prognosis in designing an optimal 

decision system for treatment planning which may not be 

obtained from visual interpretation alone. According to the 

survey [10], most studies were conducted on detecting and 

classifying lung nodules rather than predicting a patient’s 

survival. However, many approaches have been developed for 

quantitative imaging biomarkers to predict survival analysis. 

Hawkins et al. [11] extracted 2D and 3D features from the 

region growing segmentation technique and predicted the 

survival analysis using the Kaplan Meier plot (KM plot) with 

a p-value of 0.0219. This basic region-growing segmentation 

fails to segment the nodules attached to the lung’s pleural wall. 

Then Grove et al. [12] have done survival analysis by 

developing two CT quantitative descriptors, such as convexity 

and entropy, using single click ensemble segmentation [13] 

using a KM plot with a p-value of 0.0080 and 0.0404, 

respectively. However, one must ensure the proper pre-

processing step; otherwise, it may result in improper extraction 

of the nodule region. Later, Paul et al. [14] predicted long-term 

and short-term survival by integrating five standard features 

with five deep-neural networks and followed Hawkins et al. 

[11] in extracting traditional features using the region-growing 

features segmentation method. The studies discussed have 

used a common dataset, i.e., the LungCT-diagnosis dataset, 

where all the patients were diagnosed with lung 

adenocarcinoma. 

On the other hand, radiomic techniques played an essential 

role in extracting quantitative features from medical images 

and were termed radiomic features [15, 16]. These radiomic 

features were first proposed in 2012 and have experienced 

exponential growth in highlighting the tissue characteristics in 

the nodule when compared to a clinician. The main 

applications of radiomic feature extraction are prognostics and 

classification. The classification is mainly used to determine 

the malignancy and segmentation of lung diseases, whereas 

prognostic deals with treatment response and survival analysis. 

Ge and Zhang [17] have identified that there was a tremendous 

increase in the applications of radiomic techniques associated 

with lung CT images over the past decades and found that most 

of the research has been carried out on radiomic feature 

extraction associated with classification [18-23] rather than 

prognostic [24-26] illustrated in the Figure 2 a)-b).  

 

1.4 Current limitations and the scope of this study 

 

The following limitations were identified in the previous 

studies:  

• Most researchers have applied basic segmentation 

techniques in the extraction process of quantitative 

features. However, the basic segmentation techniques 

could not segment all the types of nodules, mainly juxta-

pleural nodules, which might lead to improper imaging 

feature extraction processes and affect survival analysis 

and treatment planning.  

 

 
 

Figure 1. Global Cancer Statistics - estimated new cases and deaths [2] 

    
 

Figure 2a). Depicts the growth of the radiomics studies in CT 

images associated to lung cancer has been increasing 

gradually past 7 years 

Figure 2b). Represents number of research articles published 

on classification and prognostic studies in lung cancer + CT + 

radiomics [16] 
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• Most of the studies considered the datasets with no proper 

segmented annotations defined by the radiologists. 

• Most studies derived limited quantitative features and 

were used in classification rather than analyzing a 

patient’s survival. 

 
We have addressed and overcome the limitations mentioned 

above. Our study focused on prognostic studies by examining 

the prognostic power and temporal stability of radiomic 

features extracted from nodule-segmented regions of lung CT 

images. As discussed earlier in the previous session regarding 

the importance of radiomics, the prognostics study of the 

radiomic features using survival analysis can build 

personalized decision-making for better treatment planning. 

We have also proposed a novel semi-automatic hybrid 

segmentation model that can efficiently segment different lung 

nodules, mainly juxta-pleural nodules, and we have chosen the 

Lung CT-Diagnosis dataset from TCIA, which consists of 

ground-truth segmentation annotations. Our study mainly 

focused on prognostic studies by examining the prognostic 

power and temporal stability of radiomic features extracted 

from nodule-segmented regions of lung CT images. 

 

 
2. MATERIALS AND METHODS 

 
2.1 Overall process 

 
The overall process of the proposed workflow is illustrated 

in Figure 3, where we have estimated the stability of radiomic 

features and assessed the prognostic power based on survival 

analysis. In this work, to estimate the temporal stability, the 

intra-class correlation coefficient (ICC) values were 

considered between the radiomic features extracted from 

nodule segmented region using our proposed segmentation 

technique and the ground-truth segmented nodules available 

in the Lung CT-Diagnosis dataset. We have proposed a 

random-walk ensemble segmentation technique which is a 

new approach and can be able to segment all the different types 

of nodules, whereas the ground-truth segmented regions were 

obtained from the region-growing algorithm, which was 

applied under the supervision of radiologists. Once the 

temporally stable features were selected using ICC analysis, 

the prognostic power of these features was analyzed using a 

Kaplan-Meier survival plot based on the p-value of patient 

survival. 
 

2.2 Study population 
 

The Lung CT-Diagnosis dataset is used in this work, which 

is publicly available in The Cancer Imaging Archive (TCIA) 

and maintained by the Moffitt cancer centre [27]. The CT 

images were acquired by standard-of-care, contrast-enhanced 

CT scans among patients with non-small cell cancer with 

biopsy-verified adenocarcinoma with 2 years of follow-up. 

This dataset provides 4,682 lung CT images of 61 patients 

diagnosed with lung adenocarcinoma and clinical information 

such as TNM staging, mortality status, and patient survival 

time. These pretreatment CT scans were acquired between 

2006 and 2009 and were represented as DICOM (Digital 

Imaging Communication Medicine) with a slice thickness of 3 

mm to 6 mm. Out of 4,682 CT images, we have identified 

nearly 284 CT images containing nodules using metadata of 

all patients and extracted these CT images using ITK-Snap. 

ITK-Snap tool is a freeware and interactive tool that plays a 

vital role in the medical imaging community 

(http://itksnap.org) [28]. ITK - SNAP default navigation 

window is illustrated in Figure 4. The series of CT image slices 

of each patient containing lung nodules are identified using the 

axial view shown in Figure 4. Then we converted the DICOM 

format of each CT slice, i.e., dcm, to png format, i.e., png. Next, 

we extracted lung nodules using the segmentation technique 

from these CT images, explained in the below section. 

 

 
 

Figure 3. The overall process to assess the prognostic power of radiomic features is based on survival analysis 
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Figure 4. ITK-SNAP navigation windows 

 

2.3 Random walk - ensemble segmentation 

 

Segmentation is a primary step to extract the nodule or 

infection region from lung CT images. As discussed in the 

earlier section 1.2, most of the researchers have applied basic 

segmentation techniques, where we have observed that these 

techniques failed in the case of juxta-pleural nodules, i.e., 

these lung nodules were extracted along with the other parts of 

the lung. This improper segmentation may affect further steps, 

such as feature extraction, which can be used in classification, 

detection, and prognostic studies. Even though distinct 

segmentation techniques were proposed to segment juxta-

pleural and juxta-vascular individually [29], it is still 

challenging. 

Here, we have proposed a novel method to segment all the 

different types of nodules. In this approach, we have integrated 

a random-walk algorithm with an ensemble process in a 

single-click ensemble segmentation technique. We have 

optimized the initialization of seed point selection through the 

ensembling method. In this method, the initialization is done 

with two data points: 1) A foreground data point should be 

selected inside the tumor region, and 2) A background data 

point should be selected healthy region of the lung. The 

implementation of lung nodule segmentation using a Random-

walk (RW)-ensemble approach is better explained with the 

help an algorithm 1. 

 

Algorithm 1: Nodule segmentation using the RW-

ensemble approach 

Input: Lung CT images with nodules 

The implementation process of the proposed model: 

01:  Start 

# Load the dataset 

02:  Consider the number of patients (P) in the dataset 

03:  For each patient (P) in the dataset 

04:    Count the number of CT images (N) of a patient P  

05:    Initialize a temporary variable → temp_out = 

zeros(size(N)) 

# Nodule Segmentation 

06:    For each N of a patient P 

07:      Choose (x1,y1): foreground seed point inside the 

nodule region  

08:      Choose (x2,y2): background seed point exterior 

region of the nodule  

  09:      Apply Random-walk algorithm on the each CT image 

N → seg_out= random-walk (N, (x1,y1),(x2,y2)) 

10:      Obtain segmented mask by the process of 

thresholding  

11:      Consider (i, j) = size(seg_out) 

12:      For Each value of (i, j)  

13:         If seg_out (i, j)>= threshold value 

14:              Assign → seg_mask (i, j) = 1; 

15:         Else  

16:              Assign → seg_mask (i, j) = 0; 

17:         End If 

18:      End For 

# Ensembling Process 

19:      The obtained segmented mask is ensembled with the 

temp_out →  temp_out= seg_mask ∩ temp_out 

20:    End For 

21:   Thus, the temp_out represents the final segmented 

output, obtained by ensembling N segmented masks 

of a       patient P       

22:  End For 

23:  Stop 

Output: Lung nodule segmented region   

 

2.4 Radiomic feature extraction 

 

The thirty-eight radiomic features were extracted from the 

segmented nodule output, out of which 26 texture features 

were extracted and 12 histogram-based features were extracted 

using MATLAB. Gray Level Co-occurrence Matrix (GLCM) 

and Gray Level Run Length Matrix (GLRLM) are two 

commonly used methods for extracting texture features from 

images where 19 GLCM-based features and 11 GLRLM-

based features were computed with the help of formulas 

defined in studies [30, 31]. We have computed these features 

using radiomic tools in MATLAB software [32]. The radiomic 

features considered in this work are mentioned in Figure 5. 

Each feature was calculated by taking the average of all CT 

slices that contain extracted nodules of a particular patient. 

 

2.4.1 Temporal stability  

The temporal stability of the radiomic features is calculated 

and validated by using Intra-Class Correlation Coefficient 

(ICC) [33, 34] between the features obtained from segmented 

nodules using random walk-ensemble segmentation technique 

and the ground truth segmented nodules provided by the 

LungCT-Diagnosis dataset [27]. The ground-truth segmented 

nodules were obtained from a region-growing algorithm where 

radiologists chose the seed points. ICC is estimated by 

considering a 95% confidence interval, which defines low 

stability features when the value is less than 0.5, defines good 

stability features when the value is between 0.5 and 0.75, and 

indicates good stability when the value greater than 0.75 

depicts high stability features [35, 36]. 

 

2.4.2 Prognostic power estimation of features 

The prognostic power of radiomic features was estimated 

based on the significance of patient survival analysis. The 

survival analysis was obtained from the Kaplan-Meier plot 

with a log-rank test [37]. Here we have investigated the 

prognostic power of each feature by considering the p-value 
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between the patient groups, which were separated employing 

Median Absolute Deviation (MAD) [38], which can give by 

the formula, i.e.,  

 

𝑀𝐴𝐷𝑗 =  ∑ 𝑥𝑖,𝑗 −  𝑥𝑗 ̅̅ ̅𝑛
𝑖=1   

 

where, ‘i’ represents the number of patients (n) and ‘j’ 

represents a radiomic feature and �̅�  represents the median 

value of a feature. 

The features which produce significant survival probability 

p-value, i.e., p<0.05 between two groups, were considered to 

have good predictive prognostic power. The Kaplan-Meier 

plot can be obtained by using KMWin software [39]. 

 

 

 
 

Figure 5. Types of radiomic features [36] 
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3. RESULTS 

 

The Table 1 illustrates the ICC values of the features with 

their respective stability status, such as high, good, and low. 

Here the ICC was computed among the radiomic features 

extracted from the nodule-segmented region obtained from the 

random-walk ensemble segmentation technique and the 

ground truth nodules segmented under the radiologists’ 

supervision. 

We have noticed that sixteen radiomic features exhibit good 

to high temporal stability contrast (contr_glcm), convexity 

(conv_glcm), energy (ener_glcm), entropy (entro_glcm), 

information measure of correlation2 (imc2_glcm), maximum 

probability (max_prob_glcm), autocorrelation that is 

associated with GLCM-based features exhibited high temporal 

stability with ICC values, and difference entropy (denth_glcm), 

inverse difference moment normalized (idmn_glcm) 

illustrated in Figure 6. The remaining features of GLCM-based 

features comes under the category of low temporal stability. 

When it comes to the GLRLM-based features: gray level 

non-uniformity (gln_glrlm), long gray level run emphasis 

(lgre_glrlm), high gray level run emphasis (hgre_glrlm) show 

high temporal stability, and all remaining other features show 

low temporal stability. Two histogram-based radiomic 

features indicated high temporal stability, such as entropy 

(entro_hist) and energy (ener_hist). The skewness (skew_hist) 

and kurtosis (kurt_hist) were reported as good temporal 

stability features. The ICC values of each feature are 

represented in the Table 1. we have identified 12 features with 

high temporal stability and 3 with good temporal stability. 

Later, the prognostic performance of these 16 features was 

assessed by survival analysis using a Kaplan-Meier plot based 

on survival time. 

Figures 7-10 represent Kaplan-Meier plots of 16 temporally 

stable features and weak and robust prognosis performance. 

The survival probability is considered with respect to time in 

months to plot the Kaplan-Meier curve, and the two curves 

were obtained by classifying the features into two groups or 

classes depending on the median absolute deviation (MAD). 

We have obtained survival analysis from the Kaplan-Meier 

plot using the KMWin v1.53 version [38], an open-access 

software. 

Figure 7 a)-d) illustrates the four GLCM-based features 

with strong prognostic power using Kaplan-Meier plots. 

Figure 7 a)-d) represents autocorrelation (Rxx_glcm) with p-

value 0.0120, contrast (contr_glcm) with p-value 0.0377, 

inverse difference moment normalized (idmn_glcm) with p-

value 0.0432, and convexity (conv_glcm) with p-value 0.0156. 

Figure 8 a)-e) illustrates the Kaplan-Meier plots of the 

GLCM-based features, which exhibited weak prognostic 

power: energy (ener_glcm), entropy (entro_glcm), and 

maximum probability (max_prob_glcm) reported similar p-

value 0.2433, whereas information measure of correlation2 

(imc2_glcm) reported 0.6410 p-values. Figure 8e) shows the 

Kaplan-Meier plot of difference entropy (denth_glcm) with a 

p-value of 0.8527, demonstrating a weak prognosis. 
 

Table 1. The ICC values and stability status of radiomic features 
 

Radiomic Features ICC 
Temporal Stability 

High Good Low 

GLCM-based Features 

contr_glcm 0.786 
 

    

conv_glcm 0.986 
 

  

corr_glcm 0.456     
 

denth_glcm 0.532  
 

 

dissi_glcm 0.32     
 

ener_glcm 0.95 
 

  

entro_glcm 0.926 
 

    

homog_glcm 0.353   
 

Idmn_glcm 0.669   
 

  

imc1_glcm 0.397   
 

imc2_glcm 0.906 
 

    

max_prob_glcm 0.951 
 

  

Rxx_glcm 0.775 
 

    

GLRLM-based Features 

gln_glrlm 0.832 
 

    

hgre_glrlm 0.832 
 

  

lgre_glrlm 0.943 
 

    

lre_glrlm 0.321   
 

rln_glrlm 0.04     
 

rp_glrlm 0.027   
 

sre_glrlm 0.193     
 

Histogram-based Features 

ener_hist 0.864 
 

    

entro_hist 0.905 
 

  

kurr_hist 0.549                          
 

skew_hist 0.519  
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Figure 6. Intra-class correlation coefficient values of radiomic features 

  

  
Figure 7 a)-d). Kaplan-Meier survival plots of GLCM based features (Rxx_glcm: autocorrelation, contr_glcm: 

contrast, idmn_glcm: inverse difference moment normalized, conv_glcm: convexity) representing strong 

prognostic power (p <0.05; log-rank test) 
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Figure 8 a)-d). Kaplan-Meier survival plots of GLCM-based features (energy: ener_glcm, entropy: entro_glcm, 

information measure of correlation2: imc2_glcm, max_prob_glcm) which exhibits weak prognostic power (p>0.05) 
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Figure 9b) & 9c). Kaplan-Meier survival plots of GLRLM-based features (gray-level non-uniformity: gln_glrlm, 

high gray-level run emphasis: (hgre_glrlm))) with weak prognostic power (p >0.05) 

 

 

Figure 9 a)-c) represents Kaplan-Meier curves of 

temporally stable GLRLM-based features with a prognostic 

solid performance with a p-value of 0.0182, such as Low gray 

level run emphasis: (lgre_glrlm) and Figure 8 a) & b) depicts 

the weak prognostic performance of GLRLM based features: 

gray level non-uniformity: (gln_glrlm), high gray level run 

emphasis (hgre_glrlm) with exact p-value 0.7180 using 

Kaplan-Meier plot. 

Figure 10a) & b) represents Kaplan-Meier plot of 

histogram-based radiomic features: energy (ener_hist) and 

entropy (entro_hist). These two features exhibit strong 

prognostic power with (p-value< 0.05) p-value 0.004545 and 

0.03448, respectively, whereas we have observed that Kaplan-

Meier plot of histogram-based radiomic features skewness 

(skew_hist) and kurtosis (kurt_hist) have weak prognostic 

power with p-value >0.05 shown in the Figure 10 c) & d). The 

prognostic power of these temporally stable radiomic features 

is summarized in the Table 2. The Table 2 represents the 

prognostic status of radiomic features, such as strong or weak 

with p-values. 

 

 

4. DISCUSSION 

 

The main aim of this study is to assess the prognostic power 

of temporally stable radiomic features associated with patient 

survival. The traditional radiology practice involves 

visualization and qualitative analysis of the size and volume of 

lung nodules. Even though the tumors have histopathological 

similarities among the patients, it is challenging to suggest 

precision medicine with this traditional radiology practice. It 

is necessary to extract meaningful hidden objective data to 

achieve precision medicine for better treatment [40]. 

Radiomics features are the best way to meet the above criteria 

by characterizing the intra-tumor heterogeneity. The Sintra-

tumor heterogeneity depicts the spatial relationship and 

inhomogeneous distribution among the pixels of a specified 

area which aids in the therapeutic response of lung cancer 

patients [41]. Thus, it is required to estimate the potentiality of 

features associated with the prognostic prediction of lung 

cancer.  

Recently, most researchers have developed significant 

amounts of quantitative features from CT images [42, 43]. 

Most of these studies involve feature selection, and a question 

arises about whether features have any observed association 

with lung cancer survival. 

Assessing the association of these features with lung cancer 

survival is still a significant challenge. We classify our work 

into four parts 1) nodule segmentation, 2) radiomic feature 

extraction, 3) estimating the temporal stability, and 4) 

assessing the prognostic power using survival analysis. In our 

study, first, we concentrated on the primary step, accurate 

segmentation, which was one of the critical problems 

addressed by the study [44]. However, the basic semi-

automatic segmentation techniques may lead to inaccurate 

segmentation due to inter-observer variability and include the 

surrounding region of the lung parenchyma; mainly, it has 

been observed in the case of juxta-pleural nodules. Then there 

might be the chance to extract incorrect radiomic features, 

leading to the wrong survival analysis. Here, we have 

proposed a new novel segmentation method named random-

walk ensemble segmentation which we have observed an 

accurate segmentation of all lung nodules, including juxta-

pleural nodules. Here, we have proposed a new novel 

segmentation method named random-walk ensemble 

segmentation which we have observed an accurate 

segmentation of all lung nodules, including juxta-pleural 

nodules. 

We have implemented this method on the Lung CT- 

diagnosis dataset of 61 patients and 284 segmented lung 

nodules. Then, in the second step, we extracted thirty-eight 

radiomic features, such as 19 features from the gray-level 

covariance matrix, 7 features from the gray-level run length 

matrix, and 12 features from the histogram. However, we have 

considered 13 GLCM-based and 7 GLRLM-based features, 

mainly highlighting the tumour region's homogeneity and 

heterogeneity. In contrast, the four histogram features 

highlight texture and volumetric measurements. Most of the 

researchers identified that some of these features have high 

repeatability and reproducibility [36, 45], and the other reason 

is to select only these features mentioned in the Table 1 to 

avoid data sparsity.  
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Figure 10a) & b). Kaplan-Meier survival plots of two histogram-based features (Energy: Ener_hist, Entropy: Entro_hist) 

indicating strong prognostic performance (p<0.05) 

 

  
 

Figure 10c) & d). Kaplan-Meier survival plots of two other histogram-based features (Skewness: skew_hist, kurtosis: 

kurt_hist) representing weak prognostic performance 

 

Table 2. Summary of prognostic status of temporally stable radiomic features 

 
Temporally Stable Radiomic Features P-Value  Prognostic Status 

GLCM-based Features  Strong Weak 

Contrast: contr_glcm 0.0377 ✓  

Convolution: conv_glcm 0.0156 ✓  

Difference Entropy: denth_glcm 0.8527    ✓ 

Energy: ener_glcm 0.2433  ✓ 

Entropy: entro_glcm 0.2433  ✓ 

Information Measurement of Correlation2: imc2_glcm 0.6140  ✓ 

Maximum probability: max_prob_glcm 0.2433  ✓ 

Autocorrelation 0.0120 ✓  

GLRLM-based Features    

Gray level non-uniformity: gln_glrlm 0.7180  ✓ 

High gray level emphasis: hgre_glrlm 0.7180  ✓ 

Low gray level emphasis: lgre_glrlm 0.0182 ✓  

Histogram-based Features    

Energy: ener_hist 0.0455 ✓  

Entropy: entro_hist 0.0355 ✓  

Kurtosis: kurr_hist 0.8812  ✓ 

Skewness: skew_hist 0.9009  ✓ 
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In the next step, the stability of these features was explored 

based on the internal correlation coefficient (ICC). Here we 

have calculated temporal stability between segmented nodules 

obtained from the proposed method, and the ground truth 

segmented nodule annotations under the supervision of 

radiologists available in the Lung CT-Diagnosis dataset [35]. 

Temporal stability is categorized into high, good, and low 

(Table 1). We have identified 16 radiomic features with high 

and good temporally stable features. We have reported 

topmost radiomic features with high temporal stability based 

on ICC value are convexity (conv_glcm:0.986), maximum 

probability (max_prob_glcm:0.951), low gray-level run 

emphasis (lgre_glcm:0.943), entropy (entro_glcm:0.926), and 

information measure of correaltion2 (imc2:0.906). 

Finally, we have assessed the prognostic performance of 

these 16 radiomic features, which were temporally stable with 

the help of survival analysis using the Kaplan-Meier curves 

with log-rank test illustrated in Figures 7-10. Out of 16 

temporally stable features, seven radiomic features such as 

energy (ener_hist), entropy (entro_hist), convexity 

(conv_glcm), contrast (contr_glcm), information measure of 

correlation 2 (imoc2_glcm), autocorrelation (Rxx_glcm), low 

grey-level run emphasis (lgre_glrlm) represents strong 

prognostic power with p-value<0.05.  

Our study also emphasizes the importance of the convexity 

score, which exhibits a high temporally stable and robust 

prognostic significance associated with survival. High 

convexity scores were reported for the regular shape of the 

nodules, which can be treated as a good survival, and low 

convexity scores were reported for irregular shapes, which can 

be treated as worse survival [12]. 

Even though most researchers have estimated the 

prognostic power of temporally stable radiomic features on 

different types of images, such as electronic portal imaging 

device images [36], cone-beam CT images [46], and lung CT 

images. We have identified some drawbacks from the previous 

studies: 1) the limited number of cases considered for their 

studies [36], 2) the extraction of more radiomic features, which 

may cause the data sparsity problem [47], 3) the images were 

generally acquired from different imaging principles or from 

different acquisition devices where the features extracted from 

these images might exhibit distinct feature values, and finally 

4) No validation of nodule segmentation results concerning 

segmentation annotations represented by nodules. Prognostic 

power with the increased number of cases in the dataset 

validated our work with ground-truth values. 

We have addressed the above problems by proposing a new 

approach to select the stable features that reduce data sparsity 

and estimate their prognostic power with increased cases in the 

dataset, and validated our work with ground-truth values.  

The significant contributions of our work are as follows: 1) 

our proposed hybrid RW-ensemble nodule segmentation 

method works efficiently for juxta-pleural nodules, 2) We 

have chosen an appropriate Lung CT-Diagnosis dataset 

provides annotations defined by radiologists that aid for 

validation, 3) The extracted radiomic features reported with 

consistent values as the dataset considered is device 

independent which mean that these feature values were 

independent with reference to the acquisition process, 4) 

Finally, we estimated the prognostic potentiality of temporally 

stable radiomic features using survival analysis.  

Even though we have selected an appropriate dataset for our 

study, we have limited our work to the lung adenocarcinoma 

cases. We have extracted only radiomic features instead of 

radiomic with genomic features.   

 

4.1 Future scope 

 

The dataset may practically contain images acquired from 

different devices with different modalities. In such cases, the 

radiomic feature values are represented in different scale 

values, which may produce incorrect results and affect 

treatment planning. It is necessary to normalize the values of 

the radiomic features by proper scaling processes in the future. 

In future work, the radiomic features can be combined with 

genomic features to improve individualized therapy planning. 

As there is an advancement in machine learning and deep 

learning techniques, one can use these techniques to extract 

radiomic features to address larger datasets. 

 

 

5. CONCLUSION 

 

The main aim of our work is to investigate the prognostic 

power of temporal stability of radiomic features in lung CT 

images. We have proposed a novel random-walk (RW) 

ensemble segmentation technique to segment all nodules, 

including juxta-pleural ones. We have processed 284 CT 

images of 61 patients diagnosed with lung adenocarcinoma 

cases and extracted 38 radiomic features, of which 16 features 

reported good to high temporal stability using the internal 

correlation coefficient (ICC). Out of these, 16 temporally 

stable radiomic features, seven features such as 4 gray level 

co-occurrence (GLCM)- based features and one gray level run 

length matrix (GLRLM)- based features, and 2 histogram-

based features exhibited strong prognosis performance in 

association with the survival analysis of patients using Kaplan-

Meier curves.  

The potential application of estimating the prognostic 

potentiality of radiomic features is to improve the 

effectiveness of medical imaging, which can interpret the 

behavior changes of the lung nodule. It aids radiologists in 

better treatment planning, aiming toward optimal therapy. 

Finally, we reported that convexity has a powerful prognostic 

power with an excellent significant association with survival 

analysis.  

Our work can also be extended to the other types of lung 

cancer as we have concentrated only on lung adenocarcinoma 

in the future. In future work, one can validate their results on 

larger datasets using different learning techniques to investigate 

the prognostic power of radiomic features in combination with 

other clinical or genomic markers. 
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NOMENCLATURE 

 

CT Computer Tomography 

GLCM Gray level co-occurrence matrix 

GLRLM Gray level run-length matrix 

ICC Intra-class correlation coefficient 

ITK Imaging tool kit 

MAD Median Average Deviation 

NSCLC  Non-small cell lung cancer 

TCIA The cancer imaging archive 

MRI Magnetic resonance imaging 

PET Positron emission tomography 
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