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The early detection of abnormal changes in the Optic Disc (OD) and optic cup in the retina 

is a highly challenging task since there are no initial signs when glaucoma develops. The 

primary indicator for glaucoma is the ratio between the optic cup and OD. To compute the 

cup-to-disc ratio, the localization of OD is very important. This paper presents an approach 

for Optic Disc Localization (ODL) using semantic classification by deep learning. A 

computerized intact ODL system is developed by integrating the following two important 

modules; Preprocessing and localization modules. The initial area of interest around the OD 

is selected in the former module. Then, OD-DeepNet is specially designed to classify the 

pixels in the OD region by semantic approach. The dilated convolutions are recently gaining 

more attention in the field of image segmentation, and thus the proposed OD-DeepNet uses 

dilated convolutions with different dilation rates (4, 8, and 16). The analysis of the ODL 

system is performed on DRISHTI-GS1 (101 images) and RIM-ONE (169 images) database 

fundus images with nested (double) k-fold validation. The localized OD is evaluated in 

terms of accuracy, Dice coefficient, and Jaccard index. The OD-DeepNet provides 93.25% 

of average accuracy with a Dice coefficient of 0.921 and Jaccard index of 0.919. It is also 

observed that applying batch normalization with a batch size of 32 during training provides 

promising results. 
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1. INTRODUCTION

Glaucoma is a sight-threatening condition due to the 

increase in intraocular pressure. The national glaucoma 

research states that over three million Americans aged 40 and 

above are affected by glaucoma and 80 million people 

worldwide. It will increase to 111 million by 2040. The 

changes in the Optic Cup (OC) require immediate medical 

attention. The primary indicator for glaucoma diagnosis is 

Cup-to-Disc Ratio (CDR). To compute CDR, the Optic Disc 

Localization (ODL) is very important before segmenting the 

OC. To compute CDR, the Optic Disc Localization (ODL) is 

very important before segmenting the OC. The imaging 

modalities such as fundus, fluorescein angiography, optical 

coherence tomography, magnetic resonance and ophthalmic 

ultrasound imaging are used for diagnosing glaucoma. 

Much research on the localization of Optic Disc (OD) from 

fundus images has focused on developing automated tools 

without manual interaction. Because fundus images give high 

contrast characteristics than others, particularly it provides 

different colors from the red background of the retina. 

Researchers from all around the globe have come up with a 

variety of ways on fundus image categorization for glaucoma 

diagnosis. Some of the latest approaches are discussed in 

section 2.  

2. RELATED WORKS

A regression model is discussed in study [1] for ODL with 

fovea centers. At first, a heat map is generated using the 

available information in the ground truth data using a two-

dimension Gaussian equation. The designed model can 

transform single-pixel values into feature space for ODL. 

Features from different scales are aggregated for glaucoma 

diagnosis in study [2]. It bridges the gap between localization 

and semantic information using multi-layer average pooling. 

A Generative Adversarial Network (GAN) based ODL is 

described in study [3]. The fusion of low and high-level 

features is obtained by skip connection, and the cross-entropy 

loss function is used for the segmentation. Also, it uses data 

augmentation and transfer learning to overcome overfitting 

problems during training. A region-based approach is 

discussed in study [4] for OD and OC segmentation. Two 

networks are designed to segment OD and OC independently. 

A disc attention module connects the two networks. The 

segmentation of OD using attention gates is described in study 

[5] with Condition Random Fields (CRFs). The conventional

architectures such as U-net and DeepLab are modified for

effective segmentation by integrating attention modules

connected between the encoder and decoder. Also, the fully

connected layer is supported with CRFs for better performance.
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A multi-label deep network is described in study [6] for OD 

segmentation by polar transformation. A one-stage system 

labels the OD and OC pixels using a U-shape deep network. A 

multi-label loss function is also developed for effective 

training. The polar transformed image is fed to the network 

instead of the original fundus image. Glaucoma diagnosis with 

vertical CDR is discussed in study [7]. The OD is segmented 

out using shifted filter responses. The responses from bright 

circular regions and divergent points of vessel trees are 

combined for the segmentation. Then matrix learning vector 

quantization is employed to segment OD and OC. 

A patch-based GAN system is discussed in study [8] for OD 

and OC segmentation. AT first, a lightweight network is 

designed, and then a morphology-aware segmentation loss 

function is developed for smooth and accurate segmentation. 

The patch-based system discriminates the OD pixels more 

effectively than the convention system with an adversarial loss 

function. A joint OD and OC segmentation is described in 

study [9] using an encoder and decoder network. The 

segmentation is considered a pixel-wise labeling system with 

preprocessing and post-processing to reduce the complexity. 

A fuzzy broad learning approach is discussed in study [10] for 

glaucoma diagnosis. Two individual learning systems are 

developed using green and red channel images. At first, the 

region of interest is extracted, then data augmentation is 

employed to increase the samples. 

Semi-supervised learning is implemented in study [11] for 

glaucoma diagnosis. It involves a two-stage cascaded 

approach with feature representation by a deep learning 

approach and CDR by random forest regressor. A disc-aware 

network is designed in study [12] for glaucoma screening with 

an ensemble approach. It integrates the local information of 

the OD region with the in-depth features from the original 

fundus image. The final result is obtained from the fusion of 

probabilities of different streams. Multi-view in formation 

based glaucoma screening is described in study [13]. The 

conventional Active Contour Model (ACM) is modified with 

the help of shape and appearance details. 

The locally statistically ACM addresses the in homogeneity 

phenomenon. Structure learning is introduced in study [14] for 

locating the OD region. The edge map of OD is obtained via 

the classifier model based on the structure learning followed 

by thresholding. Then, the OD boundary is obtained by the 

circular Hough transform. Linear vector quantization is 

employed in study [15] for glaucoma diagnosis. At first, OD 

is extracted from the green channel image, and five spatial 

filters are utilized to extract micro statistical features. Recent 

deep learning and machine learning based systems to diagnose 

glaucoma are reported in studies [16-18]. 

The quality of the features and classifiers used in standard 

classification systems is directly related to the performance of 

these systems. It's possible for an excellent classifier to 

provide poor results if the characteristics it uses to make 

decisions lack discriminating power, and vice versa. 

Additionally, in order to extract characteristics, one has to 

have enough understanding of the domain. Recent 

developments in Deep Learning (DL) employing CNN have 

allowed for the creation of several computerized diagnostic 

systems in the medical field that do not need a separate phase 

for feature extraction. In order to use deep learning of fundus 

images for ODL for glaucoma diagnosis, OD-DeepNet model 

is constructed in this work and then examined using two 

distinct databases such as DRISHTI-GS1 [19] and RIM-ONE 

[20]. 

This paper presents an efficient ODL system using deep 

learning based semantic classification. The proposed ODL 

system is attractive as it eliminates operator-dependent 

variability. The rest of the paper is as follows: Section 2 

presents the ODL system using fundus images through 

semantic classification. Section 3 describes the performances 

of the ODL system on DRISHTI-GS1, and RIM-ONE 

database images. The proposed ODL system and the results 

are summarized in the last section with the conclusions. 

 

 

3. PROPOSED ODL SYSTEM 

 

The computation of CDR for diagnosing glaucoma requires 

the region of OD to be identified from the fundus images, 

which involves localization or segmentation. Image 

segmentation can be classified into two types: low-level 

segmentation and model-based segmentation. The former 

analyzes the low-level features such as intensity, shape, colour, 

and texture for the segmentation. In contrast, the model-based 

systems utilize the object's structure, such as global shape and 

semantic concept. The aim of this approach is to transform a 

pixel p of an image in the DataBase (DB) into one of the two 

classes (c), either normal or abnormal. It can be defined by 

 

: ( )DB DBA p c or c A p→ =  (1) 

 

where, 𝐴𝐷𝐵 is the approach (semantic classification) that 

predict p into one of c classes using DB. Figure 1 shows the 

proposed ODL system using fundus images. 

It consists of preprocessing and semantic classification 

modules. The integration of these modules generates a 

computerized intact ODL system. In the preprocessing stage, 

an initial OD region is extracted to reduce the computational 

complexity of semantic classification module. When 

examining the fundus image via the green channel, the OD 

appears the brightest area. Thus, the initial region is extracted 

from the green channel and then superimposed with the 

original image to get the OD regions in colour domain. The 

discriminating information for characterizing OD are obtained 

by utilizing the atrous convolution by the proposed OD-

DeepNet architecture. 

 

 
 

Figure 1. Proposed ODL approach using OD- DeepNet 
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3.1 Preprocessing 

 

The accuracy and speed of any segmentation system depend 

on the size of the local area over which the system is operated. 

Thus, in this stage, the local area around the OD region is 

segmented by utilizing the property of OD [21]. In the fundus 

image, the brightest intensities belong to the OD region. Hence, 

the brightest pixels are searched at first. Then, the area around 

those pixels is segmented. This preprocessing step is applied 

to the DRISHTI-GS1 images only as the RIM-ONE images 

are already cropped from the original images. Figure 2 (a) 

shows the original DRISHTI-GS1 images, and Figure 2 (b) 

shows the area around that consists of OD. The size of the 

extracted OD is 600×600 pixels. 

 

 
 

Figure 2. (a) Original DRISHTI-GS1 images (b) Initial OD 

region 

 

3.2 Semantic classification 

 

Once the fundus image has been preprocessed, the exact OD 

region is segmented using the proposed OD-DeepNet 

architecture. Figure 3 shows the OD-DeepNet architecture. 

The proposed OD-DeepNet uses dilated convolutions with 

different Dilation Rates (DRs), representing the spacing 

between the kernel's values. It is well known that dilated 

convolutions are recently gaining more attention in image 

segmentation [22, 23]. From the preprocessed image, only the 

OD region is cropped by morphological operations and then 

fed to the proposed system for faster segmentation using 

semantic classification. 

The atrous convolution in the proposed OD-DeepNet 

enlarges the kernel's field of view. The capabilities of 

traditional convolutional processes can be expanded using 

atrous convolution, also known as dilated convolution. It 

involves inserting gaps (dilations) between the kernel parts. A 

normal convolutional operation involves applying a kernel to 

a receptive field, which is a localized portion of the input data. 

The process of producing a single output value involves 

multiplying each element of the kernel by the matching 

element in the receptive field, and then adding the products of 

these multiplications together. In order to create a feature map, 

this procedure must be carried out throughout the whole of the 

input. The idea of dilatation is brought into the kernel by the 

use of atrous convolution. The term "dilation" refers to the 

distance between each constituent of the kernel. When 

performing a conventional convolution, the value of the 

dilation parameter is always set to 1, which indicates that 

neighboring components in the kernel are utilized for 

calculation. However, with atrous convolution, the dilation 

may be more than 1, which enables the incorporation of gaps 

between the kernel parts. This is accomplished using a process 

known as atrous convolution. 

Atrous convolution is a technique that may effectively 

extend the receptive field of a convolutional layer without 

increasing the number of parameters or the amount of work 

that must be done computationally. This is accomplished by 

utilizing greater dilations. This increased receptive field 

allows the network to acquire more contextual information, 

which is especially helpful for tasks that require the fine-

grained processing of pictures, such as object segmentation or 

detection. The technique of atrous convolution has seen 

widespread use in the designs of deep learning systems, 

particularly in the area of semantic segmentation. The dilation 

rate is a hyper parameter that regulates the spacing between 

the kernel components. This hyperparameter may be modified 

based on the particular needs of the job as well as the desired 

size of the receptive field. For a one-dimensional signal x, the 

atrous convolution with kernel w of size k is defined as: 

 

   
1

[ ]
k

j

atrous i x i DR j w j
=

= +   (2) 

 

Different DR produces different atrous convolution. For 

DR=1, Eq. (2) becomes standard convolution. The proposed 

OD-DeepNet uses Spatial Pyramid Pooling (SPP) [24], which 

segments the OD at multiple scales. As the size of the OD 

region is different, the SPP is employed, which removes the 

fixed-size constraint. It produces outputs with a fixed length, 

preventing initial cropping. In SPP, the in-depth features on a 

single-scale are rescaled to an arbitrary scale. This approach 

helps to classify the regions than single scale features 

accurately. The proposed OD-DeepNet uses multiple atrous 

convolutions in parallel with different DRs (4, 8, and 16). 

Further processing is applied to the extracted features to locate 

the final OD by fusing the features. 

The proposed OD-DeepNet uses Visual Geometry Group 

(VGG)-16 network weights [25], with two targets (OD and 

non-OD pixels) to reduce the computation complexity. VGG-

16 is a popular object recognition deep learning architecture 

that provides better results for detecting 1000 objects. The 

proposed system uses the ImageNet pre-trained weights of 

VGG-16, and the classification layer is only modified to 

segment the OD region with the help of transfer learning. The 

cross-entropy loss from each spatial position is summed up 

(overall loss) while training, and the weights are optimized 

using the stochastic gradient descent procedure.  The cross-

entropy loss is defined by: 

 

1

log( )
c

j j

j

Loss t p
=

= −  (3) 

 

where, truth label is 𝑡𝑗 and the probability for the jth class is 𝑝𝑗. 

The system uses batch normalization to standardize the inputs 

and accelerates the training for better classification. The 

proposed system uses a batch size of 32. The rectified linear 

activation function is used in the hidden layers for simplicity. 

Though different activation functions (linear, sigmoid, and 

softmax) can be used at the output layer, the sigmoid function 

is employed in this work as it uses probability distributions for 

the classification. It is defined by: 

 
i

j

X

N
X

1

e
soft_max(i)

e
j=

=


 

(4) 
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Figure 3. Proposed OD-DeepNet architecture 

 

where, 𝑋𝑖 is the output value of ith layer and N is the number 

of output layer. Figure 4 shows the softmax function used 

before the score map. 

 

 
 

Figure 4. Softmax function 

 

 

4. RESULTS AND DISCUSSIONS 

 

The performances of the proposed ODL system are 

discussed in this section. When considering supervised 

classification, the system must be trained to make the correct 

classification. To train the network, a large number of samples 

whose classification is known a priori are prepared. 

 

4.1 Database 

 

The proposed ODL system uses samples from two 

databases; DRISHTI-GS1 [19] and RIM-ONE [20]. For each 

fundus image, the location of OD is also given, which is used 

to evaluate the proposed ODL system. Figure 5 shows sample 

images in these two databases. 

 
 

Figure 5. Database images 

 

4.2 Validation method 

 

 
 

Figure 6. Nested k-fold validation scheme 

 

The DRISHTI-GS1 and RIM-ONE databases contain a total 

of 101 images (31 normal and 70 glaucoma images) with a 
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resolution of 2896×1944 pixels and 169 images (92 normal, 

39 glaucoma, and 38 suspicious images) with a resolution of 

2144×1424 pixels respectively. For the evaluation, nested k-

fold cross-validation is used. The outer loop uses 10-fold, and 

the inner loop uses 3-fold cross-validation. It is shown in 

Figure 6. The validation scheme optimizes the hyper-

parameter under the model selection. It is also called double 

cross-validation. It can also reduce the bias between the model 

selection and the hyper-parameter tuning. The ground truth 

data of the testing samples is not supplied to the classifier and 

is used only for the ODL system evaluation. Figure 7 shows 

the ground truth images. 

 

 
 

Figure 7. Ground truth image (a) DRISHTI-GS1 (b) RIM-

ONE 

 

4.3 Performance metrics 

 

The performance of the ODL system is validated using the 

measures shown in Table 1. In Table 1, T represents True 

(correct), F represent False (incorrect), P represents Positive 

(OD pixels) and N represents Negative (non OD pixels). The 

accuracy in image segmentation approach refers to the degree 

of correctness or precision in the process of segmenting an 

image into meaningful and semantically coherent regions or 

segments. It is typically measured by comparing the 

segmentation results against ground truth annotations. In this 

study, pixel accuracy is employed for the accuracy calculation. 

It measures the percentage of correctly classified pixels in the 

segmentation output compared to the ground truth. This metric 

does not take into account the spatial extent or shape of the 

segmented regions. A value of 100% indicates a perfect 

segmentation. 

Dice coefficient measures the similarity between the 

predicted and ground truth segments. It is calculated as twice 

the intersection divided by the sum of areas of predicted and 

ground truth regions. A value of 1 indicates a perfect 

segmentation. Jaccard Index calculates the overlap between 

the predicted segmentation and the ground truth. It is 

computed by dividing the area of intersection by the area of 

union between the predicted and ground truth regions. A 

higher Jaccard Index indicates a more accurate segmentation. 

 

Table 1. Performance measures of PODL approach 

 
Measure (%) Formula 

Accuracy [26] 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Dice coefficient [27] 
2 × 𝑇𝑃

(2 × 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁
 

Jaccard index [27] 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 

4.4 Performance evaluation 

 

The proposed ODL system is evaluated using four different 

inputs to the OD-DeepNet; Red (R), Green (G) and Blue (B) 

channel of the initial OD segmented image and the original 

colour image of the initial OD segmented image. Figure 8 

shows the inputs to the OD-DeepNet system for ODL. Figure 

9 shows the output of the OD-DeepNet and Table 2 shows the 

average performance measures of the OD-DeepNet system for 

different inputs. 

 

 
 

Figure 8. Different inputs to the OD-DeepNet system for 

ODL 

 

 
 

Figure 9. Segmentation results of the OD-DeepNet using R 

channel image 

 

Table 2. Average performance measures of the OD-DeepNet 

system for different inputs 

 
Measure (%) R G B Colour 

Accuracy 93.25% 90.11% 84.32% 91.44% 

Dice coefficient 0.921 0.890 0.815 0.909 

Jaccard index 0.919 0.887 0.807 0.897 

 

 
 

Figure 10. OD-DeepNet performance comparison with BN 

 

It can be seen from Table 2 that the OD-DeepNet provides 

93.25% average accuracy for locating the OD while using the 

R channel of the initial segmented output from the 

preprocessing module. The colour RGB OD image provides 

91.44% of average accuracy. It is observed from Figure 8 that 

the worst performer is the B channel, as the OD is not visible 
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in that channel. The R channel image obtains a maximum of 

0.921(Dice coefficient) and 0.919 (Jaccard index). Figure 10 

shows the performance comparison of OD-DeepNet with 

batch normalization (BN) and without BN. It is inferred from 

Figure 9 that the OD-DeepNet provides better results when 

using BN to train the network. 

It can be seen from Figure 10 that the OD-DeepNet provides 

promising results with BN with an accuracy of 93.25%, 

whereas it is 89.25% without BN. It is noted that a 2% 

improvement in the Dice measure is observed when using BN, 

and a 2.7% improvement is observed in the Jaccard index 

measure. The proposed OD-DeepNet is compared with other 

techniques in the literature to show its effectiveness. Table 3 

shows the comparative analysis of the OD-DeepNet system. 

 

Table 3. Comparative analysis of the OD-DeepNet system 

 
Measure (%) [15] [18] OD-DeepNet 

Accuracy 90.25% 91.58% 93.25% 

Dice coefficient 0.897 0.914 0.921 

Jaccard index 0.892 0.902 0.919 

 

 

5. CONCLUSIONS 

 

In this work, the proposed semantic classification is applied 

to the problem of detecting OD in digital fundus images of the 

retina. To overcome the large inter and intra-observer 

variability of manual OD segmentation, a fully automated 

ODL system has been developed that segments OD directly 

from the fundus images. An initial OD region is cropped 

around the brightest intensity region in the fundus image. Then, 

the proposed OD-DeepNet architecture is employed for 

accurate ODL. It uses multiple atrous convolutions in parallel 

with different DRs and SPP for the segmentation. The 

proposed system is trained on the training set from two 

databases, DRISHTI-GS1 and RIM-ONE and then tested 

against the test set. The proposed system is tested on these 

databases independently. Results show that the proposed ODL 

system is an attractive alternative that improves the reliability 

of fully automated segmentation systems to reduce the 

inaccuracies of manual segmentation and the stress on 

ophthalmologists. It is concluded that the development of the 

ODL system is justified as it provides promising results in 

terms of the Dice coefficient and accuracy of the segmented 

OD region. 
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